Prevalence of Bacterial Zoonoses in Selected Trophy Hunted
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transfer of Skin Microbiota Between Two Dissimilar Autologous Microenvironments: a Pilot Study
RESEARCH ARTICLE Transfer of skin microbiota between two dissimilar autologous microenvironments: A pilot study 1 2¤ 2,3 Benji PerinID *, Amin Addetia , Xuan Qin 1 University of Washington Division of Dermatology and Dermatology Residency, Seattle, WA, United States of America, 2 Seattle Children's Hospital, Seattle, WA, United States of America, 3 University of Washington Department of Laboratory Medicine, Seattle, WA, United States of America a1111111111 ¤ Current address: University of Washington Department of Laboratory Medicine, Seattle, WA, United States a1111111111 of America a1111111111 * [email protected] a1111111111 a1111111111 Abstract Dysbiosis of skin microbiota is associated with several inflammatory skin conditions, includ- ing atopic dermatitis, acne, and hidradenitis suppurativa. There is a surge of interest by clini- OPEN ACCESS cians and the lay public to explore targeted bacteriotherapy to treat these dermatologic Citation: Perin B, Addetia A, Qin X (2019) Transfer conditions. To date, skin microbiota transplantation studies have focused on moving single, of skin microbiota between two dissimilar autologous microenvironments: A pilot study. enriched strains of bacteria to target sites rather than a whole community. In this prospective PLoS ONE 14(12): e0226857. https://doi.org/ pilot study, we examined the feasibility of transferring unenriched skin microbiota communi- 10.1371/journal.pone.0226857 ties between two anatomical sites of the same host. We enrolled four healthy volunteers Editor: Miroslav Blumenberg, NYU Langone (median age: 28 [range: 24, 36] years; 2 [50%] female) who underwent collection and trans- Medical Center, UNITED STATES fer of skin microbiota from the forearm to the back unidirectionally. Using culture methods Received: August 25, 2019 and 16S rRNA V1-V3 deep sequencing, we compared baseline and mixed ("transplant") Accepted: December 5, 2019 communities, at T = 0 and T = 24 hours. -
Supplementary Material Culturable Bacterial Community On
Supplementary Material Culturable Bacterial Community on Leaves of Assam Tea (Camellia sinensis var. assamica) in Thailand and Human Probiotic Potential of Isolated Bacillus spp. Patthanasak Rungsirivanich, Witsanu Supandee, Wirapong Futui, Vipanee Chumsai-Na-Ayudhya, Chaowarin Yodsombat and Narumol Thongwai Legends of Supplementary Figure and Tables Figure S1. Phylogenetic relationships of some bacterial isolates (bold) isolated from Assam tea leaves in Northern Thailand with their closest species and related taxa based on 16S rRNA gene sequence analysis. The branching pattern was generated by the neighbour-joining method. Bootstrap values (expressed as percentages of 1,000 replications). Bar, 0.05 substitutions per nucleotide position. Saccharolobus caldissimus JCM 32116T (GenBank accession no. LC275065) is presented as outgroup sequence. Table S1. Assam tea leaf collecting site from different regions in Northern Thailand. The data presented number of Assam tea plants, locations, altitude, bacterial cell count, number of isolate per sample and number of species per sample. Table S2. Classification of bacteria isolated from Assam tea leaf surfaces compared with the type strain and the similarity (%) of 16S rRNA gene sequence. Figure S1 Family Phylum 100 Staphylococcus haemolyticus ATCC 29970T (D83367) 79 Staphylococcus haemolyticus ML041-1 100 Staphylococcus warneri ATCC 27836T (L37603) 100 Staphylococcus warneri ML073-3 Staphylococcaceae Staphylococcus xylosus ATCC 29971T (D83374) 100 100 Staphylococcus xylosus ML052-2 T 59 Macrococcus -
133 What Does “NO-Synthase” Stand for ? Jerome Santolini1 1Institute For
[Frontiers In Bioscience, Landmark, 24, 133-171, Jan 1, 2019] What does “NO-Synthase” stand for ? Jerome Santolini1 1Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Universite Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Distribution of NOS 3.1.Mammalian NOSs as exclusive NO-synthase models 3.2. Emergence of a new family of proteins 3.3. Prokaryotes, Eubacteria and Archae 3.4. Eukaryotes: fungi and plants 3.5. Metazoan 4. A new and heterogeneous family of proteines 4.1. The impasse of standard phylogenetic analysis 4.2. A singular versatile enzyme 4.2.1. NOS function 4.2.2. Instability of NOS activity and function 4.2.3. Overlaps of NOS activity 4.2.4. Multiplicity of NOS 4.2.5. What does NOS stand for? 4.3. The necessity of an original approach 5. Diversity of NOS structures 5.1. A variable assembly of multiple modules 5.2. Existence of other types of NOSs 5.3. Types of NOSs are not uniform within a simple phylogenetic group 5.4. Strong disparities in the structure of oxygenase domains 5.4.1. Basal metazoans 5.4.2. Plants 5.4.3. Cyanobacteria 6. Discussion: Diversity of functions 6.1. A Name is not a function 6.2. A Structure is not a function 6.2.1. A built-in versatile catalysis 6.2.2. A highly-sensitive chemical system 6.2.3. Electron transfer (ET) as a major NOS fingerprint 6.3. An Activity is not a function 6.3.1. -
Aspects of the Aetiopathogenesis and Diagnosis of Ovine Footrot
Aspects of the aetiopathogenesis and diagnosis of ovine footrot Andrew Stephen McPHERSON A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy THE UNIVERSITY OF SYDNEY Farm Animal Health Sydney School of Veterinary Science Faculty of Science June 2018 Declaration of Authorship Apart from the assistance stated in the acknowledgements section, this thesis represents the original work of the author. The results of this study have not been presented for any other degree or diploma at any other university. Andrew McPHERSON BAnVetBioSci (Hons I) February 2018 i Acknowledgements First and foremost, I would like to thank my supervisors, Dr Om P. Dhungyel and Professor Richard J. Whittington for their continual support, encouragement, and guidance throughout my candidature. There is a long history of footrot research at The University of Sydney; I am grateful for the opportunity to make my own modest contribution to the body of knowledge that has emerged from this University. The research presented in this thesis was funded by Meat and Livestock Australia (MLA) and Ian H (Peter) Wrigley; this work would not have been possible without their support. I would also like to thank Peter Wrigley and his family for supporting me personally with a generous scholarship throughout my candidature. I would like to thank the technical staff of The University of Sydney Infectious Disease Laboratory (Anna Waldron, Rebecca Maurer, Vicki Patten, Ann-Michele Whittington, Alison Tweedie, Nicole Carter, Pabitra Dhungyel, Craig Kristo, and Stuart Glover), who have all provided me with assistance and support at some stage during my candidature.