Revealing Host Factors Important for Hepatocyte Infection by Plasmodium

Total Page:16

File Type:pdf, Size:1020Kb

Revealing Host Factors Important for Hepatocyte Infection by Plasmodium Universidade de Lisboa Faculdade de Ciências Departamento de Biologia Vegetal Revealing Host Factors Important for Hepatocyte Infection by Plasmodium Cristina Dias Rodrigues Doutoramento em Biologia Biologia Celular 2007 Cover image | An Anopheles gambiae female mosquito feeding on a mammalian host (adapted from http://www.abc.net.au/science/news/img/health/mosquito190804.jpg). Universidade de Lisboa Faculdade de Ciências Departamento de Biologia Vegetal Revealing Host Factors Important for Hepatocyte Infection by Plasmodium. Cristina Dias Rodrigues Dissertation submitted to obtain a PhD Degree in Biology, speciality of Cellular Biology by the Universidade de Lisboa. Supervisor Maria Manuel Mota, MsD, PhD. Principal Investigator of Instituto de Medicina Molecular and Auxiliary Professor at Faculdade de Medicina, Universidade de Lisboa. Co-Supervisor Maria da Graça Alves Vieira, PhD. Auxiliary Professor of Faculdade de Ciências, Universidade de Lisboa. Research is to see what everybody else has seen, and to think what nobody else has thought. Albert Szent-Györgi All truths are easy to understand once they are discovered; the point is to discover them. Galileo Galilei Preface The present thesis embraces the data obtained during my Ph.D. research project developed from November 2003 to June 2007. The experimental work was supervised by Prof. Doutora Maria Manuel Mota and was carried out at Instituto de Medicina Molecular, in Lisboa and Instituto Gulbenkian de Ciência, in Oeiras, Portugal. The RNAi screens were performed at Cenix BioScience, Dresden, Germany. This Ph.D. was supervised by Prof. Maria da Graça Alves Vieira from Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Portugal. The financial support was provided by the portuguese Fundação para a Ciência e Tecnologia, through the Ph.D. fellowship grant SFRH/BD/14232/2003. This thesis is structured in 5 chapters, which are preceded by a summary, both in Portuguese and in English. Chapter 1 comprises a general introduction to malaria and its current world situation, followed by an overview on the Plasmodium life cycle, the state of the art on the liver stage biology and the objectives of this thesis. Chapters 2 to 4 consist of the results obtained throughout the research project, which are presented in a publication format. Each results chapter includes an abstract, an introduction, the results and discussion, as well as the methods, acknowledgments and references. Chapter 5 encloses a general discussion and the future perspectives of the work develop. In Appendix are supplied my Curriculum Vitae and the publications in which I have participated until the date of printing this thesis. i Agradecimentos Acknowledgements Ao longo do meu doutoramento “cresci” em termos científicos mas acima de tudo como pessoa. Estes quatro anos foram muito intensos em sentimentos totalmente diferentes: entusiasmo vs. desânimo, alegria vs. tristeza, partilha vs. inibição, convicção vs. dúvida, sorrisos vs. lâgrimas, companheirismo vs. momentos de solidão. Durante esta jornada foram várias as pessoas que me acompanharam e às quais faço questão de agradecer. À Maria. Um bem-haja à minha orientadora científica e amiga. É díficil conseguir expressar em palavras tudo pelo qual gostaria de te agradecer. Obrigada pela oportunidade de poder trabalhar contigo e pela tua constante presença e apoio. Obrigada pela orientação científica e por me ensinares a fazer Ciência, pelo teu entusiasmo contagiante, pelas discussões científicas, por compreenderes os meus erros, por toda a preocupação, carinho e amizade e por respeitares as minhas ideias e o meu ritmo de trabalho e de escrita. À Professora Graça. Obrigada por ter aceite ser a minha orientadora interna ao nível da Faculdade de Ciências da Universidade de Lisboa. Foi um prazer partilhar e discutir o meu trabalho consigo... Muito obrigada por todo o apoio, ajuda e carinho. Ao Miguel. Quando começámos a trabalhar juntos foi um pouco difícil para mim. De repente ter de partilhar ideias, opiniões, horários, material, preocupações, definir prioridades e até partilhar uma vida/casa num país frio foi um desafio. Aprendi imenso contigo durante o meu doutoramento e sem ti os 6 meses em Dresden teriam sido ainda mais difíceis. Crescemos como colegas e amigos! Miguelito, muito obrigada por todo o apoio científico e pessoal. À Sónia. Muito obrigada pela constante boa disposição, companheirismo, ânimo, amizade no lab e principalmente durante as nossas mil viagens épicas. Estás nas minhas memórias de NY, Dresden, Berlim, Praga, Budapeste e Londres. E espero que em breve de Barcelona, mas desta vez espera-se que sem quedas!! To Michi. When I think about the first time that I went to Cenix BioScience, it comes to my mind the picture of you and Christian. Two friendly guys!! At that time I had never thought that we would still be working together after 4 years, which is spectacular. We were involved since the beginning and together we have been able to build an amazing story. Thank you for your Agradecimentos/ Acknowledgements support to the development of malaria research at Cenix. Many thanks for all the help, your work and input, your enthusiasm and all the scientific discussions. To Cécilie. I have learned a lot working with you, especially in what regards a good laboratory methodology. Thank you for your excellent work, your availability to answer my questions, your support and friendship and for the evenings and dinners while we were in Dresden. I hope to see you and Régis soon here in Lisbon. To Chris. Thank you for embracing the malaria research. To be able to work directly with you is a great honor and I have been learning constantly. Thanks for all your amazing input to our work and I will never forget your support and advices at the Keystone Meeting. À Sílvia. Agradeço-te pela tua constante disponibilidade em ajudares e especialmente por o fazeres com um sorriso. Sei que posso contar sempre contigo. Muito obrigada pelo apoio, energia e positivismo em termos profissionais e pessoais. O teu bom humor e espírito de amiga têm- me contagiado! Si, mil “thanks”. À Sabrina. Muito obrigada pela ajuda no trabalho, pelo apoio na recente cruzada de se fazer hepatócitos primários, pela tua amizade repleta de energia e sabedoria de vida. Desejos de muitas felicidades e havemos de nos cruzar algures no mundo! Não desanime nunca! À Lígia. Muito obrigada pelos teus maravilhosos hepatócitos primários de ratinhos, por me ensinares o protocolo que tão arduamente optimizaste e por estares sempre disponível a ajudar. Obrigada por todo o apoio e carinho. Mantém esse sorriso lindo! A todos os meus colegas que constituem a Unidade de Malária. Vocês estiveram presentes durante o meu doutoramento em fases diferentes... Se não me falha a memória, aqui vai por ordem de chegada ao grupo. Patrícia, muito obrigada por toda a ajuda, constante disponibilidade, amizade e contagiante gosto de se fazer Ciência sem deixar de se viver e explorar o Mundo e os sentidos. Admiro a tua capacidade de conciliar tantas actividades. Bjinho gde Linda! Daniel, muito obrigada pela paciência e muitos ensinamentos aquando da minha chegada ao grupo. Foste espectacular! Casanova, pelo apoio inicial e por me ensinares princípios laboratoriais básicos. Força para o teu doutoramento. Pensamento positivo! Bruno, muito obrigada por todo o apoio e força de que tudo vai correr bem. Desejos de muitas felicidades e se falhei na Holanda espero não falhar em Itália. Tudo de bom. iv Agradecimentos/ Acknowledgements Margarida, marcaste-me desde o primeiro dia em que fui ao IGC. Ainda me lembro da tua disponibilidade e simpatia a falares comigo. Foi muito bom trabalhar contigo, muito obrigada por todos os teus concelhos. Fica bem! Ana, o teu percurso constitui para mim um exemplo de como é possível mudar. Admiro a tua coragem, perseverança e luta. Obrigada por todo o apoio, ombro amigo e concelhos. Coragem, energia e sorriso estampado! Marta, a tua forte personalidade em prosseguires as tuas convicções é marcante. Muito obrigada pelas constantes perguntas e pelo apoio e compreensão em momentos difíceis. Desejos de muitas felicidades na tua nova etapa de vida em Londres and “see u”! Nuno, aprendi muito ao trabalhar contigo e obrigada por toda a ajuda. Espero que alcances todos os teus objectivos profissinais e pessoais. Nunca desistas! Cristina, muito obrigada pela tua visão do que é fazer Ciência, pelo exemplo de organização e capacidade de trabalho, pelo apoio e amizade. Ao te observar parece tão fácil! Ataíde, obrigada pelo trabalho indispensável com os nossos amigos mosquitos, pela constante boa disposição, companheirismo e gargalhadas. Boa sorte na Austrália e vê-se estás por lá em Fevereiro para fazeres as honras. Arrasa! Iana, thanks for your example of courage for going after of what you really wanted. I wish you all the best. Carina, és um exemplo de perseverança e insistência. Não percas estas qualidades e apesar de o tempo passar a correr lembra-te que durante um doutoramento também se deve aproveitar. Força! Kirsten, thanks for all the scientific questions, conversations about different subjects and help with the english. A smile! Catarina, obrigada pelo teu empenho no trabalho de produção de mosquitos. Bjinho! Luís, muito obrigada por toda a tua ajuda preciosa nesta fase final e por respeitares a minha agitação. Boa sorte por NY e aproveita ao máximo esta nova fase da tua vida. Inês e Ana, parte essencial do grupo sem vocês tudo seria muito mais difícil. Ana, um especial obrigado por todo o teu apoio. A special thanks to all at Cenix BioScience. Thank you for the exceptionable working environment, all the help and company outside the lab that has allowed me to enjoy Dresden. Thank you to Geert-Jan Gemert and Robert Sauerwein for providing precious P. berghei infected mosquitoes. Thank you to Jean-François Franetich and Dominique Mazier for the primary human hepatocytes and P. falciparum sporozoites.
Recommended publications
  • Supplementary Table S1. Upregulated Genes Differentially
    Supplementary Table S1. Upregulated genes differentially expressed in athletes (p < 0.05 and 1.3-fold change) Gene Symbol p Value Fold Change 221051_s_at NMRK2 0.01 2.38 236518_at CCDC183 0.00 2.05 218804_at ANO1 0.00 2.05 234675_x_at 0.01 2.02 207076_s_at ASS1 0.00 1.85 209135_at ASPH 0.02 1.81 228434_at BTNL9 0.03 1.81 229985_at BTNL9 0.01 1.79 215795_at MYH7B 0.01 1.78 217979_at TSPAN13 0.01 1.77 230992_at BTNL9 0.01 1.75 226884_at LRRN1 0.03 1.74 220039_s_at CDKAL1 0.01 1.73 236520_at 0.02 1.72 219895_at TMEM255A 0.04 1.72 201030_x_at LDHB 0.00 1.69 233824_at 0.00 1.69 232257_s_at 0.05 1.67 236359_at SCN4B 0.04 1.64 242868_at 0.00 1.63 1557286_at 0.01 1.63 202780_at OXCT1 0.01 1.63 1556542_a_at 0.04 1.63 209992_at PFKFB2 0.04 1.63 205247_at NOTCH4 0.01 1.62 1554182_at TRIM73///TRIM74 0.00 1.61 232892_at MIR1-1HG 0.02 1.61 204726_at CDH13 0.01 1.6 1561167_at 0.01 1.6 1565821_at 0.01 1.6 210169_at SEC14L5 0.01 1.6 236963_at 0.02 1.6 1552880_at SEC16B 0.02 1.6 235228_at CCDC85A 0.02 1.6 1568623_a_at SLC35E4 0.00 1.59 204844_at ENPEP 0.00 1.59 1552256_a_at SCARB1 0.02 1.59 1557283_a_at ZNF519 0.02 1.59 1557293_at LINC00969 0.03 1.59 231644_at 0.01 1.58 228115_at GAREM1 0.01 1.58 223687_s_at LY6K 0.02 1.58 231779_at IRAK2 0.03 1.58 243332_at LOC105379610 0.04 1.58 232118_at 0.01 1.57 203423_at RBP1 0.02 1.57 AMY1A///AMY1B///AMY1C///AMY2A///AMY2B// 208498_s_at 0.03 1.57 /AMYP1 237154_at LOC101930114 0.00 1.56 1559691_at 0.01 1.56 243481_at RHOJ 0.03 1.56 238834_at MYLK3 0.01 1.55 213438_at NFASC 0.02 1.55 242290_at TACC1 0.04 1.55 ANKRD20A1///ANKRD20A12P///ANKRD20A2///
    [Show full text]
  • Negative Regulation of Diacylglycerol Kinase &Theta
    Cell Death and Differentiation (2010) 17, 1059–1068 & 2010 Macmillan Publishers Limited All rights reserved 1350-9047/10 $32.00 www.nature.com/cdd Negative regulation of diacylglycerol kinase h mediates adenosine-dependent hepatocyte preconditioning G Baldanzi1,5, E Alchera2,5, C Imarisio2, M Gaggianesi1, C Dal Ponte2, M Nitti3, C Domenicotti3, WJ van Blitterswijk4, E Albano2, A Graziani1,5 and R Carini*,2,5 In liver ischemic preconditioning (IP), stimulation of adenosine A2a receptors (A2aR) prevents ischemia/reperfusion injury by promoting diacylglycerol-mediated activation of protein kinase C (PKC). By concerting diacylglycerol to phosphatidic acid, diacylglycerol kinases (DGKs) act as terminator of diacylglycerol signalling. This study investigates the role of DGK in the development of hepatocyte IP. DGK activity and cell viability were evaluated in isolated rat hepatocytes preconditioned by 10 min hypoxia followed by 10 min re-oxygenation or by the treatment with the A2aR agonist, CGS21680, and subsequently exposed to prolonged hypoxia. We observed that after IP or A2aR activation, a decrease in DGK activity was associated with the onset of hepatocyte tolerance to hypoxia. CGS21680-induced stimulation of A2aR specifically inhibited DGK isoform h by activating RhoA–GTPase. Consistently, both siRNA-mediated downregulation of DGK h and hepatocyte pretreatment with the DGK inhibitor R59949 induced cell tolerance to hypoxia. The pharmacological inhibition of DGK was associated with the diacylglycerol- dependent activation of PKC d and e and of their downstream target p38 MAPK. In conclusion, we unveil a novel signalling pathway contributing to the onset of hepatocyte preconditioning, which through RhoA–GTPase, couples A2aR to the downregulation of DGK.
    [Show full text]
  • Mouse Rps6ka5 Antibody (C-Term) Purified Rabbit Polyclonal Antibody (Pab) Catalog # AW5466
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 Mouse Rps6ka5 Antibody (C-term) Purified Rabbit Polyclonal Antibody (Pab) Catalog # AW5466 Specification Mouse Rps6ka5 Antibody (C-term) - Product Information Application WB,E Primary Accession Q8C050 Reactivity Mouse Host Rabbit Clonality Polyclonal Calculated MW M=97,90 KDa Isotype Rabbit Ig Antigen Source HUMAN Mouse Rps6ka5 Antibody (C-term) - Additional Information Gene ID 73086 Antigen Region All lanes : Anti-Rps6ka5 Antibody (C-term) at 850-883 1:1000 dilution Lane 1: L929 whole cell Other Names lysates Lane 2: mouse spleen lysates Lane 3: Ribosomal protein S6 kinase alpha-5, mouse thymus lysates Lysates/proteins at 20 S6K-alpha-5, 90 kDa ribosomal protein S6 µg per lane. Secondary Goat Anti-Rabbit IgG, kinase 5, Nuclear mitogen- and (H+L),Peroxidase conjugated at 1/10000 stress-activated protein kinase 1, RSK-like dilution Predicted band size : 97 kDa protein kinase, RLSK, Rps6ka5, Msk1 Blocking/Dilution buffer: 5% NFDM/TBST. Dilution WB~~1:1000 Mouse Rps6ka5 Antibody (C-term) - Background Target/Specificity This Mouse Rps6ka5 antibody is generated Serine/threonine-protein kinase that is from a rabbit immunized with a KLH required for the mitogen or stress-induced conjugated synthetic peptide between phosphorylation of the transcription factors 850-883 amino acids from the C-terminal CREB1 and ATF1 and for the regulation of the region of Mouse Rps6ka5. transcription factors RELA, STAT3 and ETV1/ER81, and that contributes to gene Format activation by histone phosphorylation and Purified polyclonal antibody supplied in PBS functions in the regulation of inflammatory with 0.09% (W/V) sodium azide.
    [Show full text]
  • Phospho-RPS6KA5-T581 Rabbit Pab
    Leader in Biomolecular Solutions for Life Science Phospho-RPS6KA5-T581 Rabbit pAb Catalog No.: AP1197 Basic Information Background Catalog No. Serine/threonine-protein kinase that is required for the mitogen or stress-induced AP1197 phosphorylation of the transcription factors CREB1 and ATF1 and for the regulation of the transcription factors RELA, STAT3 and ETV1/ER81, and that contributes to gene Observed MW activation by histone phosphorylation and functions in the regulation of inflammatory Refer to figures genes (PubMed:11909979, PubMed:12569367, PubMed:12763138, PubMed:9687510, PubMed:18511904, PubMed:9873047). Phosphorylates CREB1 and ATF1 in response to Calculated MW mitogenic or stress stimuli such as UV-C irradiation, epidermal growth factor (EGF) and 61kDa/81kDa/89kDa anisomycin (PubMed:11909979, PubMed:9873047). Plays an essential role in the control of RELA transcriptional activity in response to TNF and upon glucocorticoid, associates in Category the cytoplasm with the glucocorticoid receptor NR3C1 and contributes to RELA inhibition and repression of inflammatory gene expression (PubMed:12628924, Primary antibody PubMed:18511904). In skeletal myoblasts is required for phosphorylation of RELA at 'Ser-276' during oxidative stress (PubMed:12628924). In erythropoietin-stimulated cells, Applications is necessary for the 'Ser-727' phosphorylation of STAT3 and regulation of its WB transcriptional potential (PubMed:12763138). Phosphorylates ETV1/ER81 at 'Ser-191' and 'Ser-216', and thereby regulates its ability to stimulate transcription, which may be Cross-Reactivity important during development and breast tumor formation (PubMed:12569367). Directly Human, Mouse, Rat represses transcription via phosphorylation of 'Ser-1' of histone H2A (PubMed:15010469). Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several Recommended Dilutions immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN (PubMed:12773393).
    [Show full text]
  • Application of a MYC Degradation
    SCIENCE SIGNALING | RESEARCH ARTICLE CANCER Copyright © 2019 The Authors, some rights reserved; Application of a MYC degradation screen identifies exclusive licensee American Association sensitivity to CDK9 inhibitors in KRAS-mutant for the Advancement of Science. No claim pancreatic cancer to original U.S. Devon R. Blake1, Angelina V. Vaseva2, Richard G. Hodge2, McKenzie P. Kline3, Thomas S. K. Gilbert1,4, Government Works Vikas Tyagi5, Daowei Huang5, Gabrielle C. Whiten5, Jacob E. Larson5, Xiaodong Wang2,5, Kenneth H. Pearce5, Laura E. Herring1,4, Lee M. Graves1,2,4, Stephen V. Frye2,5, Michael J. Emanuele1,2, Adrienne D. Cox1,2,6, Channing J. Der1,2* Stabilization of the MYC oncoprotein by KRAS signaling critically promotes the growth of pancreatic ductal adeno- carcinoma (PDAC). Thus, understanding how MYC protein stability is regulated may lead to effective therapies. Here, we used a previously developed, flow cytometry–based assay that screened a library of >800 protein kinase inhibitors and identified compounds that promoted either the stability or degradation of MYC in a KRAS-mutant PDAC cell line. We validated compounds that stabilized or destabilized MYC and then focused on one compound, Downloaded from UNC10112785, that induced the substantial loss of MYC protein in both two-dimensional (2D) and 3D cell cultures. We determined that this compound is a potent CDK9 inhibitor with a previously uncharacterized scaffold, caused MYC loss through both transcriptional and posttranslational mechanisms, and suppresses PDAC anchorage- dependent and anchorage-independent growth. We discovered that CDK9 enhanced MYC protein stability 62 through a previously unknown, KRAS-independent mechanism involving direct phosphorylation of MYC at Ser .
    [Show full text]
  • Mapping of Diabetes Susceptibility Loci in a Domestic Cat Breed with an Unusually High Incidence of Diabetes Mellitus
    G C A T T A C G G C A T genes Article Mapping of Diabetes Susceptibility Loci in a Domestic Cat Breed with an Unusually High Incidence of Diabetes Mellitus 1,2, 3, 4 5 Lois Balmer y , Caroline Ann O’Leary y, Marilyn Menotti-Raymond , Victor David , Stephen O’Brien 6,7, Belinda Penglis 8, Sher Hendrickson 9, Mia Reeves-Johnson 3, 3 10 3 3,11, Susan Gottlieb , Linda Fleeman , Dianne Vankan , Jacquie Rand z and 1, , Grant Morahan * z 1 Centre for Diabetes Research, Harry Perkins Institute for Medical Research, University of Western Australia, Nedlands 6009, Australia; [email protected] 2 School of Medical and Health Sciences, Edith Cowan University, Joondalup, Perth 6027, Australia 3 School of Veterinary Science, the University of Queensland, Gottan 4343, Australia; [email protected] (C.A.O.); [email protected] (M.R.-J.); [email protected] (S.G.); [email protected] (D.V.); [email protected] (J.R.) 4 Laboratory of Genomic Diversity, Center for Cancer Research (FNLCR), Frederick, MD 21702, USA; [email protected] 5 Laboratory of Basic Research, Center for Cancer Research (FNLCR), National Cancer Institute, Frederick, MD 21702, USA; [email protected] 6 Laboratory of Genomics Diversity, Center for Computer Technologies, ITMO University, 197101 St. Petersburg, Russia; [email protected] 7 Guy Harvey Oceanographic Center, Halmos College of Arts and Sciences, Nova Southeastern University, Ft Lauderdale, FL 33004, USA 8 IDEXX Laboratories, East Brisbane 4169, Australia; [email protected] 9 Department of Biology, Shepherd University, Shepherdstown, WV 25443, USA; [email protected] 10 Animal Diabetes Australia, Melbourne 3155, Australia; l.fl[email protected] 11 American College of Veterinary Internal Medicine, University of Zurich, 8006 Zurich, Switzerland * Correspondence: [email protected] These authors contributed equally to this work.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • The Roles of Diacylglycerol Kinases in the Central Nervous System: Review of Genetic Studies in Mice
    J Pharmacol Sci 124, 000 – 000 (2014) Journal of Pharmacological Sciences © The Japanese Pharmacological Society Critical Review The Roles of Diacylglycerol Kinases in the Central Nervous System: Review of Genetic Studies in Mice Mitsue Ishisaka1 and Hideaki Hara1,* 1Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu 501-1196, Japan Received November 12, 2013; Accepted January 23, 2014 Abstract. Diacylglycerol kinase (DGK) is an enzyme that converts diacylglycerol to phosphatidic acid. To date, 10 isoforms of DGKs (a, b, g, d, e, z, h, q, i, and k) have been identified in mammals, and these DGKs show characteristic expression patterns and roles. The expression levels of DGKs are comparatively higher in the central nervous system than in other organs and may play several important roles in regulating higher brain functions. Currently, many studies have been performed to reveal the roles of DGKs by knocking down or overexpression of DGKs in vitro. Additionally, knockout or overexpression mice of several DGKs have been generated, and phenotypes of these mice have been studied. In this review, we discuss the roles of DGKs in the central nervous system based on recent findings in genetic models. Keywords: central nervous system, diacylglycerol kinase, genetic mouse, mood disorder 1. Introduction DGKs play unique roles in each isoform. To demonstrate the functions of DGKs, many studies After Gq protein–coupled receptors are stimulated, have been performed using a genetic approach in vitro phospholipase C is activated and produces diacylglycerol and in vivo. To date, several overexpression­ or knockout (DG) from inositol phospholipids (1). DG is an essential (KO)­mice have been generated by many research second messenger in mammalian cells and plays impor­ groups: DGKa­KO (23), cardiac­specific overexpression tant roles in gene transcription, lipid signaling, cyto­ of DGKa (24), DGKb­KO (25), DGKd­KO (26), DGKe­ skeletal dynamics, intracellular membrane trafficking, KO (27), DGKz­KO (28), and DGKi­KO mice (29).
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • Effects of Chronic Stress on Prefrontal Cortex Transcriptome in Mice Displaying Different Genetic Backgrounds
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector J Mol Neurosci (2013) 50:33–57 DOI 10.1007/s12031-012-9850-1 Effects of Chronic Stress on Prefrontal Cortex Transcriptome in Mice Displaying Different Genetic Backgrounds Pawel Lisowski & Marek Wieczorek & Joanna Goscik & Grzegorz R. Juszczak & Adrian M. Stankiewicz & Lech Zwierzchowski & Artur H. Swiergiel Received: 14 May 2012 /Accepted: 25 June 2012 /Published online: 27 July 2012 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract There is increasing evidence that depression signaling pathway (Clic6, Drd1a,andPpp1r1b). LA derives from the impact of environmental pressure on transcriptome affected by CMS was associated with genetically susceptible individuals. We analyzed the genes involved in behavioral response to stimulus effects of chronic mild stress (CMS) on prefrontal cor- (Fcer1g, Rasd2, S100a8, S100a9, Crhr1, Grm5,and tex transcriptome of two strains of mice bred for high Prkcc), immune effector processes (Fcer1g, Mpo,and (HA)and low (LA) swim stress-induced analgesia that Igh-VJ558), diacylglycerol binding (Rasgrp1, Dgke, differ in basal transcriptomic profiles and depression- Dgkg,andPrkcc), and long-term depression (Crhr1, like behaviors. We found that CMS affected 96 and 92 Grm5,andPrkcc) and/or coding elements of dendrites genes in HA and LA mice, respectively. Among genes (Crmp1, Cntnap4,andPrkcc) and myelin proteins with the same expression pattern in both strains after (Gpm6a, Mal,andMog). The results indicate significant CMS, we observed robust upregulation of Ttr gene contribution of genetic background to differences in coding transthyretin involved in amyloidosis, seizures, stress response gene expression in the mouse prefrontal stroke-like episodes, or dementia.
    [Show full text]
  • Cells Phenotype of Human Tolerogenic Dendritic Glycolytic
    High Mitochondrial Respiration and Glycolytic Capacity Represent a Metabolic Phenotype of Human Tolerogenic Dendritic Cells This information is current as of September 26, 2021. Frano Malinarich, Kaibo Duan, Raudhah Abdull Hamid, Au Bijin, Wu Xue Lin, Michael Poidinger, Anna-Marie Fairhurst and John E. Connolly J Immunol published online 27 April 2015 http://www.jimmunol.org/content/early/2015/04/25/jimmun Downloaded from ol.1303316 Supplementary http://www.jimmunol.org/content/suppl/2015/04/25/jimmunol.130331 http://www.jimmunol.org/ Material 6.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 26, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published April 27, 2015, doi:10.4049/jimmunol.1303316 The Journal of Immunology High Mitochondrial Respiration and Glycolytic Capacity Represent a Metabolic Phenotype of Human Tolerogenic Dendritic Cells Frano Malinarich,*,† Kaibo Duan,† Raudhah Abdull Hamid,*,† Au Bijin,*,† Wu Xue Lin,*,† Michael Poidinger,† Anna-Marie Fairhurst,† and John E.
    [Show full text]
  • MSK1 (RPS6KA5) (NM 004755) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC220636L2 MSK1 (RPS6KA5) (NM_004755) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: MSK1 (RPS6KA5) (NM_004755) Human Tagged ORF Clone Tag: mGFP Symbol: RPS6KA5 Synonyms: MSK1; MSPK1; RLPK Vector: pLenti-C-mGFP (PS100071) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: None ORF Nucleotide The ORF insert of this clone is exactly the same as(RC220636). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_004755 ORF Size: 2406 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 MSK1 (RPS6KA5) (NM_004755) Human Tagged ORF Clone – RC220636L2 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_004755.2 RefSeq Size: 3883 bp RefSeq ORF: 2409 bp Locus ID: 9252 UniProt ID: O75582 Domains: pkinase, S_TK_X, TyrKc, S_TKc Protein Families: Druggable Genome, Protein Kinase, Transcription Factors Protein Pathways: Bladder cancer, MAPK signaling pathway, Neurotrophin signaling pathway MW: 89.7 kDa This product is to be used for laboratory only.
    [Show full text]