The Contribution of A. W. Roberts' Observations to the AAVSO
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The HARPS Search for Earth-Like Planets in the Habitable Zone I
A&A 534, A58 (2011) Astronomy DOI: 10.1051/0004-6361/201117055 & c ESO 2011 Astrophysics The HARPS search for Earth-like planets in the habitable zone I. Very low-mass planets around HD 20794, HD 85512, and HD 192310, F. Pepe1,C.Lovis1, D. Ségransan1,W.Benz2, F. Bouchy3,4, X. Dumusque1, M. Mayor1,D.Queloz1, N. C. Santos5,6,andS.Udry1 1 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Versoix, Switzerland e-mail: [email protected] 2 Physikalisches Institut Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland 3 Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, 98bis Bd Arago, 75014 Paris, France 4 Observatoire de Haute-Provence/CNRS, 04870 St. Michel l’Observatoire, France 5 Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 6 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal Received 8 April 2011 / Accepted 15 August 2011 ABSTRACT Context. In 2009 we started an intense radial-velocity monitoring of a few nearby, slowly-rotating and quiet solar-type stars within the dedicated HARPS-Upgrade GTO program. Aims. The goal of this campaign is to gather very-precise radial-velocity data with high cadence and continuity to detect tiny signatures of very-low-mass stars that are potentially present in the habitable zone of their parent stars. Methods. Ten stars were selected among the most stable stars of the original HARPS high-precision program that are uniformly spread in hour angle, such that three to four of them are observable at any time of the year. -
Arxiv:1611.02368V1 [Astro-Ph.SR] 8 Nov 2016 Methods
Draft version March 14, 2021 Preprint typeset using LATEX style AASTeX6 v. 1.0 SPECTROSCOPIC COMPARISON OF METAL{RICH RRAB STARS OF THE GALACTIC FIELD WITH THEIR METAL{POOR COUNTERPARTS Merieme Chadid1, Christopher Sneden2, and George W.Preston3, 1Universit´eNice Sophia{Antipolis, Observatoire de la C^otedAzur, UMR 7293, Parc Valrose, F-06108, Nice Cedex 02, France; [email protected] 2Department of Astronomy and McDonald Observatory, The University of Texas, Austin, TX 78712, USA; [email protected] 3Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USA; [email protected] ABSTRACT We investigate atmospheric properties of 35 stable RRab stars that possess the full ranges of period, light amplitude, and metal abundance found in Galactic RR Lyrae stars. Our results are derived from several thousand echelle spectra obtained over several years with the du Pont telescope of Las Campanas Observatory. Radial velocities of metal lines and the Hα line were used to construct curves of radial velocity versus pulsation phase. From these we estimated radial velocity amplitudes for metal lines (formed near the photosphere) and Hα Doppler cores (formed at small optical depths). We also measured Hα emission fluxes when they appear during primary light rises. Spectra shifted to rest wavelengths, binned into small phase intervals, and coadded were used to perform model atmospheric and abundance analyses. The derived metallicities and those of some previous spectroscopic surveys were combined to produce a new calibration of the Layden abundance scale. We then divided our RRab sample into metal-rich (disk) and metal-poor (halo) groups at [Fe/H] = −1.0, The atmospheres of RRab families, so defined, differ with respect to (a) peak strength of Hα emission flux, (b) Hα radial velocity amplitude, (c) dynamical gravity, (d) stellar radius variation, (e) secondary acceleration during the photometric bump that precedes minimum light, and (g) duration of Hα line-doubling. -
The HARPS Search for Earth-Like Planets in the Habitable Zone
Astronomy & Astrophysics manuscript no. pepe˙article August 18, 2011 (DOI: will be inserted by hand later) The HARPS search for Earth-like planets in the habitable zone I – Very low-mass planets around HD20794, HD85512 and HD192310? F. Pepe1, C. Lovis1, D. Segransan´ 1, W. Benz2, F. Bouchy3;4, X. Dumusque1, M. Mayor1, D. Queloz1, N. C. Santos5;6, and S. Udry1 1 Observatoire de Geneve,` Universite´ de Geneve,` 51 ch. des Maillettes, CH–1290 Versoix, Switzerland 2 Physikalisches Institut Universitat¨ Bern, Sidlerstrasse 5, CH–3012 Bern, Switzerland 3 Institut d’Astrophysique de Paris, UMR7095 CNRS, Universite´ Pierre & Marie Curie, 98bis Bd Arago, F–75014 Paris, France 4 Observatoire de Haute-Provence/CNRS, F–04870 St.Michel l’Observatoire, France 5 Centro de Astrof´ısica da Universidade do Porto, Rua das Estrelas, P–4150-762 Porto, Portugal 6 Departamento de F´ısica e Astronomia, Faculdade de Ciencias,ˆ Universidade do Porto, Portugal received; accepted Abstract. In 2009 we started, within the dedicated HARPS-Upgrade GTO program, an intense radial-velocity monitoring of a few nearby, slowly-rotating and quiet solar-type stars. The goal of this campaign is to gather, with high cadence and continuity, very-precise radial-velocity data in order to detect tiny signatures of very-low-mass stars potentially in the habitable zone of their parent stars. 10 stars have been selected among the most stable stars of the original HARPS high-precision program, uniformly spread in hour angle, such that three to four of them are observable at any time of the year. For each star we record 50 data points spread over the observing season. -
The Chemical Compositions of Variable Field Horizontal Branch
Submitted to ApJS The Chemical Compositions of Variable Field Horizontal Branch Stars: RR Lyrae Stars Bi-Qing For1,2,3 and Christopher Sneden1 Department of Astronomy, University of Texas, Austin, TX 78712, USA George W. Preston4 Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USA ABSTRACT We present a detailed abundance study of 11 RR Lyrae ab-type variables: AS Vir, BS Aps, CD Vel, DT Hya, RV Oct, TY Gru, UV Oct, V1645 Sgr, WY Ant, XZ Aps, and Z Mic. High resolution and high S/N echelle spectra of these variables were obtained with 2.5 m du Pont telescope at the Las Campanas Observatory. We obtained more than 2300 spectra, roughly 200 spectra per star, distributed more or less uniformly throughout the pulsational cycles. A new method has been developed to obtain initial effective temperature of our sample stars at a specific pulsational phase. We find that the abundance ratios are generally consistent with those of similar metallicity field stars in different evolutionary states and throughout the pulsational cycles for RR Lyrae stars. TY Gru remains the only n-capture enriched star among the RRab in our sample. A new relation is found between microturbulence and effective temperature among stars of the HB population. In addition, the variation of microturbulence as a arXiv:1110.0548v1 [astro-ph.SR] 4 Oct 2011 function of phase is empirically shown to be similar to the theoretical variation. Finally, we conclude that the derived Teff and log g values of our sample stars follow the general trend of a single mass evolutionary track. -
Black Holes, Chaos in Universe, Processes in Space, Stars, Galaxies, Ordered Universe
International Journal of Astronomy 2020, 9(1): 12-26 DOI: 10.5923/j.astronomy.20200901.03 Black Hole & There is no Chaos in the Universe Weitter Duckss Independent Researcher, Zadar, Croatia Abstract This year's Nobel's Prize in physics has turned into another degradation of science. The first part of the article (3.) deals with chaos that includes very different star systems. Inside a system there are objects with a lot of satellites and those with none. Some planets in distant orbits and brown dwarfs are warmer than some stars. The objects and stars of the same mass have completely different temperatures and are often classified into almost all star types. There is light inside an atmosphere or on the surface of an object without an atmosphere, but it disappears just outside the atmosphere or the surface of the object without the atmosphere. There are galaxies with the blueshift and redshift; although the Universe expands faster and faster, there are 200 000 galaxies and clusters of galaxies that merge or collide. There are enormous differences in the quantity of redshift at the same distances for galaxies and larger objects, i.e., there are different distances – with the differences measured in billions of light-years – for the same quantities of redshift. The other part of the article (4.) removes chaos and returns order in the Universe by implementing identical principles in the whole of the volume and for all objects. Keywords Black holes, Chaos in universe, Processes in space, Stars, Galaxies, Ordered universe universality and removing any paradox that might negate the 1. -
Annual Report 2008
ESO European Organisation for Astronomical Research in the Southern Hemisphere Annual Report 2008 presented to the Council by the Director General Prof. Tim de Zeeuw The European Southern Observatory ESO, the European Southern Observatory, is the foremost intergovernmental as tronomy organisation in Europe. It is sup ported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. Several other countries have expressed an interest in membership. Created in 1962, ESO carries out an am bitious programme focused on the de sign, construction and operation of pow erful groundbased observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique worldclass observing sites in the Atacama Desert ESO’s first site at La Silla. region of Chile: La Silla, Paranal and Chajnantor. ESO’s first site is at La Silla, One of the most exciting features of the Each year, about 2000 proposals are a 2400 m high mountain 600 km north VLT is the option to use it as a giant opti made for the use of ESO telescopes, re of Santiago de Chile. It is equipped with cal interferometer (VLT Interferometer or questing between four and six times several optical telescopes with mirror VLTI). This is done by combining the light more nights than are available. ESO is the diameters of up to 3.6 metres. The from several of the telescopes, including most productive groundbased observa 3.5metre New Technology Telescope one or more of four 1.8metre moveable tory in the world, which annually results broke new ground for telescope engineer Auxiliary Telescopes. -
Apjs, 201, 15 (∼ ) Howard, A
The Astrophysical Journal, 819:28 (11pp), 2016 March 1 doi:10.3847/0004-637X/819/1/28 © 2016. The American Astronomical Society. All rights reserved. THE ANGLO-AUSTRALIAN PLANET SEARCH XXIV: THE FREQUENCY OF JUPITER ANALOGS Robert A. Wittenmyer1,2,3, R. P. Butler4, C. G. Tinney1,2, Jonathan Horner2,3, B. D. Carter3, D. J. Wright1,2, H. R. A. Jones5, J. Bailey1,2, and Simon J. O’Toole6 1 School of Physics, University of New South Wales, Sydney 2052, Australia; [email protected] 2 Australian Centre for Astrobiology, University of New South Wales, Sydney 2052, Australia 3 Computational Engineering and Science Research Centre, University of Southern Queensland, Toowoomba, Queensland 4350, Australia 4 Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015-1305, USA 5 Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, Herts AL10 9AB, UK 6 Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670, Australia Received 2015 December 20; accepted 2016 January 20; published 2016 February 24 ABSTRACT We present updated simulations of the detectability of Jupiter analogs by the 17-year Anglo-Australian Planet Search. The occurrence rate of Jupiter-like planets that have remained near their formation locations beyond the ice line is a critical datum necessary to constrain the details of planet formation. It is also vital in our quest to fully understand how common (or rare) planetary systems like our own are in the Galaxy. From a sample of 202 solar- +2.8 type stars, and correcting for imperfect detectability on a star-by-star basis, we derive a frequency of 6.2-1.6% for giant planets in orbits from 3 to 7 au. -