Coleoptera: Dytiscidae)

Total Page:16

File Type:pdf, Size:1020Kb

Coleoptera: Dytiscidae) Cladistics Cladistics 24 (2008) 563–590 10.1111/j.1096-0031.2007.00192.x Phylogeny and diversification of diving beetles (Coleoptera: Dytiscidae) Ignacio Riberaa,*, Alfried P. Voglerb,c and Michael Balked aDepartamentode Biodiversidad y Biologı´a Evolutiva, Museo Nacional de Ciencias Naturales, Jose´ Gutie´rrez Abascal 2, Madrid 28006, Spain; bDepartment of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, UK; cDivision of Biology, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK; dZoologische Staatssammlung, Muenchhausenstrasse 21, D-81247 Mu¨nchen, Germany Accepted 30 July 2007 Abstract Dytiscidae is the most diverse family of beetles in which both adults and larvae are aquatic, with examples of extreme morphological and ecological adaptations. Despite continuous attention from systematists and ecologists, existing phylogenetic hypotheses remain unsatisfactory because of limited taxon sampling or low node support. Here we provide a phylogenetic tree inferred from four gene fragments (cox1, rrnL, H3 and SSU, 4000 aligned base pairs), including 222 species in 116 of 174 known genera and 25 of 26 tribes. We aligned ribosomal genes prior to tree building with parsimony and Bayesian methods using three approaches: progressive pair-wise alignment with refinement, progressive alignment modeling the evolution of indels, and deletion of hypervariable sites. Results were generally congruent across alignment and tree inference methods. Basal relationships were not well defined, although we identified 28 well supported lineages corresponding to recognized tribes or groups of genera, among which the most prominent novel results were the polyphyly of Dytiscinae; the grouping of Pachydrini with Bidessini, Peschetius with Methlini and Coptotomus within Copelatinae; the monophyly of all Australian Hydroporini (Necterosoma group), and their relationship with the Graptodytes and Deronectes groups plus Hygrotini. We found support for a clade formed by Hydroporinae plus Laccophilini, and their sister relationship with Cybistrini and Copelatinae. The tree provided a framework for the analysis of species diversification in Dytiscidae. We found a positive correlation between the number of species in a lineage and the age of the crown group as estimated through a molecular clock approach, but the correlation with the stem age was non-significant. Imbalances between sister clades were significant for several nodes, but the residuals of the regression of species numbers with the crown age of the group identified only Bidessini and the Coptotomus + Agaporomorphus clade as lineages with, respectively, above and below expected levels of species diversity. Ó The Willi Hennig Society 2008. Approximately 25 families in three of four suborders They also occur in specialized habitats such as ground- of Coleoptera are typically aquatic in some of their life water aquifers, high altitude lakes and streams, or stages (Beutel and Leschen, 2005). Among these, the bromeliad water tanks in the forest canopy (Franciscolo, Dytiscidae (predaceous diving beetles), with some 4000 1979; Balke, 2005). Although most species are tightly described species (Nilsson, 2001, 2003a, 2004; Nilsson associated with their aquatic habitat throughout their and Fery, 2006) represent the perhaps most conspicuous life cycle except in the pupal stage, many species are group. Dytiscids range in size from about 1–50 mm, and strong flyers and able to disperse readily over land. are predators both as larvae and adults. They are found Diving beetles have been used as model organisms in in virtually any aquatic freshwater ecosystems, from a variety of ecological and evolutionary subjects, such as lakes, streams, springs, wet rock surfaces and puddles. coexistence and competition of closely related taxa (e.g., Juliano and Lawton, 1990a,b; Scheffer and Nes, 2006), *Corresponding author: the evolution of the stygobiontic fauna (Leys et al., E-mail address: [email protected] 2003, 2005), the role of habitat constraints in large-scale Ó The Willi Hennig Society 2008 564 I. Ribera et al./Cladistics 24 (2008) 563–590 macroecological patterns (Ribera et al., 2001, 2003b), or Hydroporinae (Wolfe, 1985, 1988). The position of the mechanics and functional morphology of swimming Laccornellus and Canthyporus within Hydroporini was behavior (Nachtigall, 1961; Ribera and Nilsson, 1995). also questioned (e.g., Roughley and Wolfe, 1987), as They are also among the best known groups of beetles, well as the composition of Bidessini and Hyphydrini being studied by an active research community, and (Bistro¨m, 1988; Bistro¨m et al., 1997). recent comprehensive revisions of many genera and an The most recent comprehensive taxonomic ordination up-to-date world catalog are available (Nilsson, 2001). of the family is that of Miller (2001a) (Table 1), based Despite this wide research interest, very few studies have on a phylogenetic analysis of morphological characters addressed phylogenetic relationships at the level of the and followed in the world catalog of Nilsson (2001). entire family using morphological (Burmeister, 1976; Main novelties were the recognition of Matinae and its Miller, 2001a) or molecular (Ribera et al., 2002b) placement as sister to the remaining Dytiscidae, the characters. These studies were limited in terms of taxon separation of Agabinae from Colymbetinae, and the sampling or the set of characters used (mostly female establishment of Hydrodytinae for some inconspicuous genitalia; small subunit rRNA, SSU), and support levels taxa previously considered within Copelatinae. The were generally low. taxon sampling and phylogenetic resolution within The most recent taxonomic revision of the whole Hydroporinae were generally limited, and no major family was that of Sharp (1882), separating two major changes were proposed. In a subsequent analysis groups according to the articulation between the meta- centered on Hydroporinae (Miller et al., 2006), and thoracic anepisternum and the mesocoxa: the ‘‘Dytisci- despite the better sampling, the phylogenetic relation- dae Fragmentati’’ (no contiguous articulation), ships were equally poorly supported. In the first family including what are now families Hygrobiidae and wide molecular phylogenetic study of Dytiscidae Noteridae plus Laccophilinae and Vatellini, and ‘‘Dyti- (Ribera et al., 2002b), based on 70 full SSU scidae Complicati’’ (contiguous articulation), including sequences, support was also generally low, although Amphizoidae and the rest of current Dytiscidae. Within some groups of genera within Hydroporinae were the latter, the major divisions separated the Hydropo- strongly supported (e.g., Hydroporus and Graptodytes rinae (excluding Vatellini) from the ‘‘Colymbetides’’ and groups, Hygrotini, Bidessini). what is the Dytiscinae in recent classifications. Here, we expand this molecular analysis of Dytiscidae In his monograph of the Palaearctic Dytiscidae, to include all major supra-generic groups and nearly Zimmermann (1930, 1933) already considered Hygro- 70% of the genera, based on four genes (4000–5000 biidae and Amphizoidae as separate families, and aligned nucleotides). Specific emphasis of taxonomic divided Dytiscidae in five subfamilies: Noterinae (now sampling was on the subfamily Hydroporinae, and in Noteridae), Laccophilinae, Hydroporinae, Colymbeti- particular Hydroporini, where the constitution and nae and Dytiscinae. The composition of these groups relationships of lineages remain particularly poorly has remained largely unchanged except for the large known. We aim to provide a phylogenetic framework Colymbetinae, which has experienced successive refine- for future evolutionary and systematic studies of Dytisc- ments by removing taxa with deviating morphologies idae, by identifying the major monophyletic lineages and no apparent close relatives. Thus, the Nearctic within the family and some of their phylogenetic Coptotomus was considered by Bo¨ving and Craighead relationships. The resulting tree was also used to study (1931) to form the subfamily Coptotominae, mostly relative diversification rates in different groups of because of the unusual larvae (with lateral gills on the Dytiscidae, as a first step of establishing the causes of abdomen). Burmeister (1976) recognized the non-mono- their high species richness relative to other aquatic phyly of the remaining ‘‘Colymbetines’’, associating lineages of beetles. Agabetes to Laccophilinae and placing the bulk of Copelatinae in an unresolved position within Dytisci- dae. Subsequent authors removed Lancetes (Ruhnau Materials and methods and Brancucci, 1984) and Hydrotrupes (Beutel, 1994) from the ‘‘Colymbetine’’ pool. Taxon sampling The phylogeny of the most diverse group of Dytisci- dae, the Hydroporinae, remains poorly understood The taxonomy here follows the most recent world (Miller et al., 2006; Michat and Alarie, in press). Several catalog of Dytiscidae (Nilsson, 2001), with the following major lineages have been recognized, with, for example, modifications: (1) Tribe Carabdytini (comprising Carab- Zimmermann (1930, 1933) considering six tribes: Vatel- dytes) was considered part of Colymbetini, as shown by lini, Methlini, Hyphydrini, Hydrovatini, Bidessini and Balke (2001), Balke et al. (2007), and confirmed here. (2) Hydroporini. The first cladistic analyses showed that Tribe Hydroporini was divided in several groups of Hydroporini as defined at the time was polyphyletic, as genera (named after the oldest valid genus name), based Laccornis
Recommended publications
  • Checklist of the Coleoptera of New Brunswick, Canada
    A peer-reviewed open-access journal ZooKeys 573: 387–512 (2016)Checklist of the Coleoptera of New Brunswick, Canada 387 doi: 10.3897/zookeys.573.8022 CHECKLIST http://zookeys.pensoft.net Launched to accelerate biodiversity research Checklist of the Coleoptera of New Brunswick, Canada Reginald P. Webster1 1 24 Mill Stream Drive, Charters Settlement, NB, Canada E3C 1X1 Corresponding author: Reginald P. Webster ([email protected]) Academic editor: P. Bouchard | Received 3 February 2016 | Accepted 29 February 2016 | Published 24 March 2016 http://zoobank.org/34473062-17C2-4122-8109-3F4D47BB5699 Citation: Webster RP (2016) Checklist of the Coleoptera of New Brunswick, Canada. In: Webster RP, Bouchard P, Klimaszewski J (Eds) The Coleoptera of New Brunswick and Canada: providing baseline biodiversity and natural history data. ZooKeys 573: 387–512. doi: 10.3897/zookeys.573.8022 Abstract All 3,062 species of Coleoptera from 92 families known to occur in New Brunswick, Canada, are re- corded, along with their author(s) and year of publication using the most recent classification framework. Adventive and Holarctic species are indicated. There are 366 adventive species in the province, 12.0% of the total fauna. Keywords Checklist, Coleoptera, New Brunswick, Canada Introduction The first checklist of the beetles of Canada by Bousquet (1991) listed 1,365 species from the province of New Brunswick, Canada. Since that publication, many species have been added to the faunal list of the province, primarily from increased collection efforts and
    [Show full text]
  • British Museum (Natural History)
    Bulletin of the British Museum (Natural History) Darwin's Insects Charles Darwin 's Entomological Notes Kenneth G. V. Smith (Editor) Historical series Vol 14 No 1 24 September 1987 The Bulletin of the British Museum (Natural History), instituted in 1949, is issued in four scientific series, Botany, Entomology, Geology (incorporating Mineralogy) and Zoology, and an Historical series. Papers in the Bulletin are primarily the results of research carried out on the unique and ever-growing collections of the Museum, both by the scientific staff of the Museum and by specialists from elsewhere who make use of the Museum's resources. Many of the papers are works of reference that will remain indispensable for years to come. Parts are published at irregular intervals as they become ready, each is complete in itself, available separately, and individually priced. Volumes contain about 300 pages and several volumes may appear within a calendar year. Subscriptions may be placed for one or more of the series on either an Annual or Per Volume basis. Prices vary according to the contents of the individual parts. Orders and enquiries should be sent to: Publications Sales, British Museum (Natural History), Cromwell Road, London SW7 5BD, England. World List abbreviation: Bull. Br. Mus. nat. Hist. (hist. Ser.) © British Museum (Natural History), 1987 '""•-C-'- '.;.,, t •••v.'. ISSN 0068-2306 Historical series 0565 ISBN 09003 8 Vol 14 No. 1 pp 1-141 British Museum (Natural History) Cromwell Road London SW7 5BD Issued 24 September 1987 I Darwin's Insects Charles Darwin's Entomological Notes, with an introduction and comments by Kenneth G.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • HABITAT MANAGEMENT PLAN Green Bay and Gravel Island
    HABITAT MANAGEMENT PLAN Green Bay and Gravel Island National Wildlife Refuges October 2017 Habitat Management Plans provide long-term guidance for management decisions; set forth goals, objectives, and strategies needed to accomplish refuge purposes; and, identify the Fish and Wildlife Service’s best estimate of future needs. These plans detail program planning levels that are sometimes substantially above current budget allocations and as such, are primarily for Service strategic planning and program prioritization purposes. The plans do not constitute a commitment for staffing increases, operational and maintenance increases, or funding for future land acquisition. The National Wildlife Refuge System, managed by the U.S. Fish and Wildlife Service, is the world's premier system of public lands and waters set aside to conserve America's fish, wildlife, and plants. Since the designation of the first wildlife refuge in 1903, the System has grown to encompass more than 150 million acres, 556 national wildlife refuges and other units of the Refuge System, plus 38 wetland management districts. This page intentionally left blank. Habitat Management Plan for Green Bay and Gravel Island National Wildlife Refuges EXECUTIVE SUMMARY This Habitat Management Plan (HMP) provides vision and specific guidance on enhancing and managing habitat for the resources of concern (ROC) at the refuge. The contributions of the refuge to ecosystem- and landscape-scale wildlife and biodiversity conservation, specifically migratory waterfowl, are incorporated into this HMP. The HMP is intended to provide habitat management direction for the next 15 years. The HMP is also needed to ensure that the refuge continues to conserve habitat for migratory birds in the context of climate change, which affects all units of the National Wildlife Refuge System.
    [Show full text]
  • Coleoptera: Dytiscidae: Copelatinae): First Record of a Troglomorphic Diving Beetle from Brazil
    Zootaxa 3710 (3): 226–232 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3710.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:FD7C6A48-0CA0-43F5-B937-59C3528F4769 Copelatus cessaima sp. nov. (Coleoptera: Dytiscidae: Copelatinae): first record of a troglomorphic diving beetle from Brazil DANIEL S. CAETANO¹, DANIELA DE C. BENÁ2,3 & SERGIO A. VANIN² ¹Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA. E-mail: [email protected] ²Departamento de Zoologia, Universidade de São Paulo, Rua do Matão, trav. 14, nº 321, Cidade Universitária, 05508-900, São Paulo, SP, Brasil ³Museu de Zoologia, Universidade de São Paulo, Avenida Nazaré 481, 04263-000, São Paulo, SP, Brasil Abstract Copelatus cessaima sp. nov. is described from Brazil. The new species was collected in water puddles inside of caves found in an ironstone formation and has typical troglomorphic characters: the eyes and metathoracic wings are absent, the elytra are fused and the body has long setae. This is the second species of Copelatinae reported as troglomorphic and the first record of a troglomorphic Dytiscidae species in Brazil. The modified morphology of the new species and the lack of elytral striae make the placement of C. cessaima sp. nov. in one of the 15 recognized Copelatus species groups difficult. Thus, we assign the new species to a “group unknown” as defined in Nilsson's world catalogue of the family Dytiscidae. Key words: Dytiscidae, Copelatinae, Copelatus, new species, caves, taxonomy, troglomorphism Resumo Copelatus cessaima sp.
    [Show full text]
  • Metacommunities and Biodiversity Patterns in Mediterranean Temporary Ponds: the Role of Pond Size, Network Connectivity and Dispersal Mode
    METACOMMUNITIES AND BIODIVERSITY PATTERNS IN MEDITERRANEAN TEMPORARY PONDS: THE ROLE OF POND SIZE, NETWORK CONNECTIVITY AND DISPERSAL MODE Irene Tornero Pinilla Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://www.tdx.cat/handle/10803/670096 http://creativecommons.org/licenses/by-nc/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial This work is licensed under a Creative Commons Attribution-NonCommercial licence DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode Irene Tornero Pinilla 2020 DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode IRENE TORNERO PINILLA 2020 DOCTORAL PROGRAMME IN WATER SCIENCE AND TECHNOLOGY SUPERVISED BY DR DANI BOIX MASAFRET DR STÉPHANIE GASCÓN GARCIA Thesis submitted in fulfilment of the requirements to obtain the Degree of Doctor at the University of Girona Dr Dani Boix Masafret and Dr Stéphanie Gascón Garcia, from the University of Girona, DECLARE: That the thesis entitled Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode submitted by Irene Tornero Pinilla to obtain a doctoral degree has been completed under our supervision. In witness thereof, we hereby sign this document. Dr Dani Boix Masafret Dr Stéphanie Gascón Garcia Girona, 22nd November 2019 A mi familia Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar.
    [Show full text]
  • Newsletter of the Biological Survey of Canada (Terrestrial Arthropods)
    Spring 1999 Vol. 18, No. 1 NEWSLETTER OF THE BIOLOGICAL SURVEY OF CANADA (TERRESTRIAL ARTHROPODS) Table of Contents General Information and Editorial Notes ............(inside front cover) News and Notes Activities at the Entomological Societies’ Meeting ...............1 Summary of the Scientific Committee Meeting.................2 EMAN National Meeting ...........................12 MacMillan Coastal Biodiversity Workshop ..................13 Workshop on Biodiversity Monitoring.....................14 Project Update: Family Keys ..........................15 Canadian Spider Diversity and Systematics ..................16 The Quiz Page..................................28 Selected Future Conferences ..........................29 Answers to Faunal Quiz.............................31 Quips and Quotes ................................32 List of Requests for Material or Information ..................33 Cooperation Offered ..............................39 List of Email Addresses.............................39 List of Addresses ................................41 Index to Taxa ..................................43 General Information The Newsletter of the Biological Survey of Canada (Terrestrial Arthropods) appears twice yearly. All material without other accreditation is prepared by the Secretariat for the Biological Survey. Editor: H.V. Danks Head, Biological Survey of Canada (Terrestrial Arthropods) Canadian Museum of Nature P.O. Box 3443, Station “D” Ottawa, Ontario K1P 6P4 TEL: 613-566-4787 FAX: 613-364-4021 E-mail: [email protected] Queries,
    [Show full text]
  • Coleoptera) Rolf G
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2008) 255–269 www.elsevier.de/ode A genus-level supertree of Adephaga (Coleoptera) Rolf G. Beutela,Ã, Ignacio Riberab, Olaf R.P. Bininda-Emondsa aInstitut fu¨r Spezielle Zoologie und Evolutionsbiologie, FSU Jena, Germany bMuseo Nacional de Ciencias Naturales, Madrid, Spain Received 14 October 2005; accepted 17 May 2006 Abstract A supertree for Adephaga was reconstructed based on 43 independent source trees – including cladograms based on Hennigian and numerical cladistic analyses of morphological and molecular data – and on a backbone taxonomy. To overcome problems associated with both the size of the group and the comparative paucity of available information, our analysis was made at the genus level (requiring synonymizing taxa at different levels across the trees) and used Safe Taxonomic Reduction to remove especially poorly known species. The final supertree contained 401 genera, making it the most comprehensive phylogenetic estimate yet published for the group. Interrelationships among the families are well resolved. Gyrinidae constitute the basal sister group, Haliplidae appear as the sister taxon of Geadephaga+ Dytiscoidea, Noteridae are the sister group of the remaining Dytiscoidea, Amphizoidae and Aspidytidae are sister groups, and Hygrobiidae forms a clade with Dytiscidae. Resolution within the species-rich Dytiscidae is generally high, but some relations remain unclear. Trachypachidae are the sister group of Carabidae (including Rhysodidae), in contrast to a proposed sister-group relationship between Trachypachidae and Dytiscoidea. Carabidae are only monophyletic with the inclusion of a non-monophyletic Rhysodidae, but resolution within this megadiverse group is generally low. Non-monophyly of Rhysodidae is extremely unlikely from a morphological point of view, and this group remains the greatest enigma in adephagan systematics.
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • Table of Contents 2
    Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels 1 March 2011 Austin Brady Richards and D. Christopher Rogers Table of Contents 2 1.0 Introduction 4 1.1 Acknowledgments 5 2.0 Standard Taxonomic Effort 5 2.1 Rules for Developing a Standard Taxonomic Effort Document 5 2.2 Changes from the Previous Version 6 2.3 The SAFIT Standard Taxonomic List 6 3.0 Methods and Materials 7 3.1 Habitat information 7 3.2 Geographic Scope 7 3.3 Abbreviations used in the STE List 8 3.4 Life Stage Terminology 8 4.0 Rare, Threatened and Endangered Species 8 5.0 Literature Cited 9 Appendix I. The SAFIT Standard Taxonomic Effort List 10 Phylum Silicea 11 Phylum Cnidaria 12 Phylum Platyhelminthes 14 Phylum Nemertea 15 Phylum Nemata 16 Phylum Nematomorpha 17 Phylum Entoprocta 18 Phylum Ectoprocta 19 Phylum Mollusca 20 Phylum Annelida 32 Class Hirudinea Class Branchiobdella Class Polychaeta Class Oligochaeta Phylum Arthropoda Subphylum Chelicerata, Subclass Acari 35 Subphylum Crustacea 47 Subphylum Hexapoda Class Collembola 69 Class Insecta Order Ephemeroptera 71 Order Odonata 95 Order Plecoptera 112 Order Hemiptera 126 Order Megaloptera 139 Order Neuroptera 141 Order Trichoptera 143 Order Lepidoptera 165 2 Order Coleoptera 167 Order Diptera 219 3 1.0 Introduction The Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) is charged through its charter to develop standardized levels for the taxonomic identification of aquatic macroinvertebrates in support of bioassessment. This document defines the standard levels of taxonomic effort (STE) for bioassessment data compatible with the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols (Ode, 2007) or similar procedures.
    [Show full text]
  • A Genus-Level Supertree of Adephaga (Coleoptera) Rolf G
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2008) 255–269 www.elsevier.de/ode A genus-level supertree of Adephaga (Coleoptera) Rolf G. Beutela,Ã, Ignacio Riberab, Olaf R.P. Bininda-Emondsa aInstitut fu¨r Spezielle Zoologie und Evolutionsbiologie, FSU Jena, Germany bMuseo Nacional de Ciencias Naturales, Madrid, Spain Received 14 October 2005; accepted 17 May 2006 Abstract A supertree for Adephaga was reconstructed based on 43 independent source trees – including cladograms based on Hennigian and numerical cladistic analyses of morphological and molecular data – and on a backbone taxonomy. To overcome problems associated with both the size of the group and the comparative paucity of available information, our analysis was made at the genus level (requiring synonymizing taxa at different levels across the trees) and used Safe Taxonomic Reduction to remove especially poorly known species. The final supertree contained 401 genera, making it the most comprehensive phylogenetic estimate yet published for the group. Interrelationships among the families are well resolved. Gyrinidae constitute the basal sister group, Haliplidae appear as the sister taxon of Geadephaga+ Dytiscoidea, Noteridae are the sister group of the remaining Dytiscoidea, Amphizoidae and Aspidytidae are sister groups, and Hygrobiidae forms a clade with Dytiscidae. Resolution within the species-rich Dytiscidae is generally high, but some relations remain unclear. Trachypachidae are the sister group of Carabidae (including Rhysodidae), in contrast to a proposed sister-group relationship between Trachypachidae and Dytiscoidea. Carabidae are only monophyletic with the inclusion of a non-monophyletic Rhysodidae, but resolution within this megadiverse group is generally low. Non-monophyly of Rhysodidae is extremely unlikely from a morphological point of view, and this group remains the greatest enigma in adephagan systematics.
    [Show full text]
  • Biological Assessment of the Patapsco River Tributary Watersheds, Howard County, Maryland
    Biological Assessment of the Patapsco River Tributary Watersheds, Howard County, Maryland Spring 2003 Index Period and Summary of Round One County- Wide Assessment Patuxtent River April, 2005 Final Report UT to Patuxtent River Biological Assessment of the Patapsco River Tributary Watersheds, Howard County, Maryland Spring 2003 Index Period and Summary of Round One County-wide Assessment Prepared for: Howard County, Maryland Department of Public Works Stormwater Management Division 6751 Columbia Gateway Dr., Ste. 514 Columbia, MD 21046-3143 Prepared by: Tetra Tech, Inc. 400 Red Brook Blvd., Ste. 200 Owings Mills, MD 21117 Acknowledgement The principal authors of this report are Kristen L. Pavlik and James B. Stribling, both of Tetra Tech. They were also assisted by Erik W. Leppo. This document reports results from three of the six subwatersheds sampled during the Spring Index Period of the third year of biomonitoring by the Howard County Stormwater Management Division. Fieldwork was conducted by Tetra Tech staff including Kristen Pavlik, Colin Hill, David Bressler, Jennifer Pitt, and Amanda Richardson. All laboratory sample processing was conducted by Carolina Gallardo, Shabaan Fundi, Curt Kleinsorg, Chad Bogues, Joey Rizzo, Elizabeth Yarborough, Jessica Garrish, Chris Hines, and Sara Waddell. Taxonomic identification was completed by Dr. R. Deedee Kathman and Todd Askegaard; Aquatic Resources Center (ARC). Hunt Loftin, Linda Shook, and Brenda Decker (Tetra Tech) assisted with budget tracking and clerical support. This work was completed under the Howard County Purchase Order L 5305 to Tetra Tech, Inc. The enthusiasm and interest of the staff in the Stormwater Management Division, including Howard Saltzman and Angela Morales is acknowledged and appreciated.
    [Show full text]