Down-Regulation of BCL2L13 Renders Poor Prognosis in Clear Cell And

Total Page:16

File Type:pdf, Size:1020Kb

Down-Regulation of BCL2L13 Renders Poor Prognosis in Clear Cell And Meng et al. Cancer Cell Int (2021) 21:332 https://doi.org/10.1186/s12935-021-02039-y Cancer Cell International PRIMARY RESEARCH Open Access Down-regulation of BCL2L13 renders poor prognosis in clear cell and papillary renal cell carcinoma Fei Meng1,2,3 , Luojin Zhang4, Mingjun Zhang5, Kaiqin Ye1,3, Wei Guo1,2, Yu Liu1,2,3, Wulin Yang1,3, Zhimin Zhai4, Hongzhi Wang1,3, Jun Xiao6* and Haiming Dai1,3* Abstract Background: BCL2L13 belongs to the BCL2 super family, with its protein product exhibits capacity of apoptosis-medi- ating in diversifed cell lines. Previous studies have shown that BCL2L13 has functional consequence in several tumor types, including ALL and GBM, however, its function in kidney cancer remains as yet unclearly. Methods: Multiple web-based portals were employed to analyze the efect of BCL2L13 in kidney cancer using the data from TCGA database. Functional enrichment analysis and hubs of BCL2L13 co-expressed genes in clear cell renal cell carcinoma (ccRCC) and papillary renal cell carcinoma (pRCC) were carried out on Cytoscape. Evaluation of BCL2L13 protein level was accomplished through immunohistochemistry on parafn embedded renal cancer tissue sections. Western blotting and fow cytometry were implemented to further analyze the pro-apoptotic function of BCL2L13 in ccRCC cell line 786-0. Results: BCL2L13 expression is signifcantly decreased in ccRCC and pRCC patients, however, mutations and copy number alterations are rarely observed. The poor prognosis of ccRCC that derived from down-regulated BCL2L13 is independent of patients’ gender or tumor grade. Furthermore, BCL2L13 only weakly correlates with the genes that mutated in kidney cancer or the genes that associated with inherited kidney cancer predisposing syndrome, while actively correlates with SLC25A4. As a downstream efector of BCL2L13 in its pro-apoptotic pathway, SLC25A4 is found as one of the hub genes that involved in the physiological function of BCL2L13 in kidney cancer tissues. Conclusions: Down-regulation of BCL2L13 renders poor prognosis in ccRCC and pRCC. This disadvantageous factor is independent of any well-known kidney cancer related genes, so BCL2L13 can be used as an efective indicator for prognostic evaluation of renal cell carcinoma. Keywords: BCL-rambo, Cell death, Renal cancer, Prognosis, ANT Introduction Kidney cancer remains one of the malignant tumors with *Correspondence: [email protected]; [email protected] the incidence increased notably in recent years [1]. It is 1 Anhui Province Key Laboratory of Medical Physics and Technology, composed of heterogeneous subtypes with histological Institute of Health and Medical Technology, Hefei Institutes of Physical and molecular abnormalities. Clear cell renal cell carci- Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, Anhui, China noma (ccRCC) accounts for about 75% of all the cases, 6 Department of Urology, The First Afliated Hospital of USTC, Division which is mainly characterized as constitutional chro- of Life Sciences and Medicine, University of Science and Technology mosome 3p deletion, dysfunctional von Hippel-Lindau of China, Hefei 230001, China Full list of author information is available at the end of the article (VHL) gene and uncontrolled stabilization of hypoxia © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Meng et al. Cancer Cell Int (2021) 21:332 Page 2 of 12 inducible factors (HIFs) by molecular features. Papillary Materials and methods renal cell carcinoma (pRCC), which occupies about 15% University of California Santa Cruz (UCSC) genome browser of the incidence, usually displays loss of chromosome Y, and UCSC Xena gain of chromosome 7 and/or chromosome 17. Moreo- Protein–protein interaction (PPI) network analysis of ver. diferent molecular characteristics are assigned to BCL2L13 was performed using UCSC genome browser each pathological subtype, including both Type I and (https:// genome. ucsc. edu), which ofers visualized inter- Type II pRCC [2, 3]. Chromophobe renal cell carcinoma connection of the concerned genes [18, 19]. BCL2L13 (chRCC) and some other rare types make up the rest. mRNA and exon expression were completed on UCSC Mutations of VHL have been proved to be one of the Xena platform (http:// xena. ucsc. edu), complied with data typical genetic causes of kidney cancer, which often lead from TCGA [20]. to stabilization of HIF1α and HIF2α, creating an illusion of pseudohypoxia in stricken renal tissues [4]. Te accu- mulated HIF1α-HIF1β and HIF2α-HIF1β dimers will Catalogue of Somatic Mutations in Cancer (COSMIC) cause an elevation in growth factors, including platelet- and Open Targets Platform derived growth factors (PDGFs) and vascular endothe- Te most frequent somatic mutations in ccRCC and lial growth factors (VEGFs), which will prompt tumor pRCC tissues were queried by COSMIC cancer browser angiogenesis [5, 6]. Te VHL-HIF-VEGF axis repre- (http:// cancer. sanger. ac. uk), showing the top 20 can- sents one of the canonical pathways for renal carcino- didate genes curated from published research for each genesis, while some other gene mutations or epigenetic cancer type [21]. Heritable kidney cancer-predisposing changes have also been reported [7, 8], including muta- syndrome related genes are searched from Open Targets tions of polybromo-1 (PBRM1) [9], SET domain-con- Platform (https:// www. targe tvali dation. org). Te over- taining 2 (SETD2) [10] and tuberous sclerosis complex all target-disease association score is the harmonic sum 1/2 (TSC1/2) [11, 12]. Nevertheless, nearly 40% of the aggregated from genetics, genomics, drugs, animal mod- resected kidney cancer patients are confronted with risk els and text mining data [22]. of recurrence, the efective predictive markers are absent so far [13]. BCL-2-like protein 13 (BCL2L13), also termed BCL- University of Alabama Cancer Database (UALCAN) rambo, is encoded by the BCL2L13 gene [14]. It has and cBioPortal for cancer genomics manifested that BCL2L13 participates in drug resist- Te BCL2L13 mRNA expression and corresponding ance in several tumors. For example, BCL2L13 was efect on tumor prognosis were analyzed on UALCAN found elevated in tumors like glioblastoma (GBM) and (http:// ualcan. path. uab. edu/) [23–25]. Lymph node childhood acute lymphoblastic leukemia (ALL) [15, 16]. metastasis of renal cancer: N0, No regional lymph node In GBM, BCL2L13 interacts with ceramide synthases 2 metastasis; N1, Metastases in 1 to 3 axillary lymph nodes; and 6 (CerS2/6), inhibiting the leakage of cytochrome c N2, Metastases in 4 to 9 axillary lymph nodes. Mutations into cytoplasm [15]. Augmented BCL2L13, which takes and copy number alterations (CNAs) of BCL2L13, the part in L-asparaginase resistance, executes as an inde- impact of these alterations on patients’ overall survival pendent adverse prognostic factor in ALL [16]. On the (OS), and BCL2L13 co-expressed genes in kidney cancer other hand, BCL2L13 has been demonstrated to inter- were achieved by cBioPortal for cancer genomics stud- act with adenine nucleotide translocator (ANT, encoded ies (http:// www. cbiop ortal. org/) [26]. |Spearman’s r|> 0.4 by SLC25A4), a component of mitochondrial perme- was set to sort out the BCL2L13 co-expressed genes in ability transition pore (MPTP), therefore promoting ccRCC and pRCC. cytochrome c release from mitochondrial intermem- brane space to cytoplasm, resulting in activation of the apoptotic caspase cascade [17]. TargetScan and the encyclopedia of RNA interactomes Te prognostic value of BCL2L13 in kidney cancer is (ENCORI) still unclearly. In this study, we profled BCL2L13 across TargetScan (http:// www. targe tscan. org) was engaged 33 cancer types in the Cancer Genome Atlas (TCGA), to analyze the potential target microRNA (miRNA) in and found that its mRNA expression is signifcantly homo sapiens, conformed to the canonical transcript reduced in ccRCC and pRCC. Moreover, low BCL2L13 of BCL2L13, which supported by 736 3P-seq tags [27]. expression correlates with lessened survival probability Correlation between BCL2L13 and the target miRNA of kidney cancer. It poses an attractive hypothesis that in kidney cancer were analyzed on ENCORI pan-cancer BCL2L13 may be a promising prognosis marker for kid- analysis platform (http:// starb ase. sysu. edu. cn/ panCa ncer. ney cancer. php), upon the expression data from TCGA [28]. Meng et al. Cancer Cell Int (2021) 21:332 Page 3 of 12 Cytoscape and Search Tool for the Retrieval of Interacting 5.1) were used to capture the morphological changes Genes (STRING) of 786-0 cells after treatments. For quantitative assess- Kyoto Encyclopedia of Genes and Genomes (KEGG) ment, 786-0 cells were harvested after treatments pathway enrichment analysis and hubs of BCL2L13 co- and stained with both FITC Annexin V and PI (BD expressed genes were accomplished within Cytoscape, Pharmingen, 556547), then subjected to fow cytom- with the plug-in ClueGO, CluePedia, MCODE and etry (Beckman Coulter, CytoFLEX). Annexin V + / CytoHubba, which realized by the grid topology algo- PI − , Annexin V + /PI + and Annexin V − /PI + cells rithm density of maximum neighborhood component were used to represent the types of early apoptotic, late (DMNC) [29–31].
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Multidrug Transporter MRP4/ABCC4 As a Key Determinant of Pancreatic
    www.nature.com/scientificreports OPEN Multidrug transporter MRP4/ ABCC4 as a key determinant of pancreatic cancer aggressiveness A. Sahores1, A. Carozzo1, M. May1, N. Gómez1, N. Di Siervi1, M. De Sousa Serro1, A. Yanef1, A. Rodríguez‑González2, M. Abba3, C. Shayo2 & C. Davio1* Recent fndings show that MRP4 is critical for pancreatic ductal adenocarcinoma (PDAC) cell proliferation. Nevertheless, the signifcance of MRP4 protein levels and function in PDAC progression is still unclear. The aim of this study was to determine the role of MRP4 in PDAC tumor aggressiveness. Bioinformatic studies revealed that PDAC samples show higher MRP4 transcript levels compared to normal adjacent pancreatic tissue and circulating tumor cells express higher levels of MRP4 than primary tumors. Also, high levels of MRP4 are typical of high-grade PDAC cell lines and associate with an epithelial-mesenchymal phenotype. Moreover, PDAC patients with high levels of MRP4 depict dysregulation of pathways associated with migration, chemotaxis and cell adhesion. Silencing MRP4 in PANC1 cells reduced tumorigenicity and tumor growth and impaired cell migration. Transcriptomic analysis revealed that MRP4 silencing alters PANC1 gene expression, mainly dysregulating pathways related to cell-to-cell interactions and focal adhesion. Contrarily, MRP4 overexpression signifcantly increased BxPC-3 growth rate, produced a switch in the expression of EMT markers, and enhanced experimental metastatic incidence. Altogether, our results indicate that MRP4 is associated with a more aggressive phenotype in PDAC, boosting pancreatic tumorigenesis and metastatic capacity, which could fnally determine a fast tumor progression in PDAC patients. Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies, due to its late diag- nosis, inherent resistance to treatment and early dissemination 1.
    [Show full text]
  • Role of RUNX1 in Aberrant Retinal Angiogenesis Jonathan D
    Page 1 of 25 Diabetes Identification of RUNX1 as a mediator of aberrant retinal angiogenesis Short Title: Role of RUNX1 in aberrant retinal angiogenesis Jonathan D. Lam,†1 Daniel J. Oh,†1 Lindsay L. Wong,1 Dhanesh Amarnani,1 Cindy Park- Windhol,1 Angie V. Sanchez,1 Jonathan Cardona-Velez,1,2 Declan McGuone,3 Anat O. Stemmer- Rachamimov,3 Dean Eliott,4 Diane R. Bielenberg,5 Tave van Zyl,4 Lishuang Shen,1 Xiaowu Gai,6 Patricia A. D’Amore*,1,7 Leo A. Kim*,1,4 Joseph F. Arboleda-Velasquez*1 Author affiliations: 1Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114 2Universidad Pontificia Bolivariana, Medellin, Colombia, #68- a, Cq. 1 #68305, Medellín, Antioquia, Colombia 3C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114 4Retina Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles St., Boston, MA 02114 5Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115 6Center for Personalized Medicine, Children’s Hospital Los Angeles, Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA 7Department of Pathology, Harvard Medical School, 25 Shattuck St., Boston, MA 02115 Corresponding authors: Joseph F. Arboleda-Velasquez: [email protected] Ph: (617) 912-2517 Leo Kim: [email protected] Ph: (617) 912-2562 Patricia D’Amore: [email protected] Ph: (617) 912-2559 Fax: (617) 912-0128 20 Staniford St. Boston MA, 02114 † These authors contributed equally to this manuscript Word Count: 1905 Tables and Figures: 4 Diabetes Publish Ahead of Print, published online April 11, 2017 Diabetes Page 2 of 25 Abstract Proliferative diabetic retinopathy (PDR) is a common cause of blindness in the developed world’s working adult population, and affects those with type 1 and type 2 diabetes mellitus.
    [Show full text]
  • Receptor-Mediated Mitophagy Accepted21march2016
    King’s Research Portal DOI: 10.1016/j.yjmcc.2016.03.010 Document Version Peer reviewed version Link to publication record in King's Research Portal Citation for published version (APA): Yamaguchi, O., Murakawa, T., Nishida, K., & Otsu, K. (2016). Receptor-mediated mitophagy. Journal of Molecular and Cellular Cardiology, 95, 50-56. [95]. https://doi.org/10.1016/j.yjmcc.2016.03.010 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Bcl-2–Modifying Factor Induces Renal Proximal Tubular Cell Apoptosis in Diabetic Mice Garnet J
    ORIGINAL ARTICLE Bcl-2–Modifying Factor Induces Renal Proximal Tubular Cell Apoptosis in Diabetic Mice Garnet J. Lau,1 Nicolas Godin,1 Hasna Maachi,1 Chao-Sheng Lo,1 Shyh-Jong Wu,1 Jian-Xin Zhu,1 Marie-Luise Brezniceanu,1 Isabelle Chénier,1 Joelle Fragasso-Marquis,1 Jean-Baptiste Lattouf,1 Jean Ethier,1 Janos G. Filep,2 Julie R. Ingelfinger,3 Viji Nair,4 Matthias Kretzler,4 Clemens D. Cohen,5 Shao-Ling Zhang,1 and John S.D. Chan1 – This study investigated the mechanisms underlying tubular apopto- than glomerular pathology (2 5). For example, examination sis in diabetes by identifying proapoptotic genes that are differen- of nephrons from proteinuric diabetic patients shows that tially upregulated by reactive oxygen species in renal proximal 71% of glomeruli display glomerulotubular junction abnor- tubular cells (RPTCs) in models of diabetes. Total RNAs isolated malities and 8–17% of glomeruli are atubular glomeruli (6,7). from renal proximal tubules (RPTs) of 20-week-old heterozygous The mechanisms underlying tubular atrophy are incom- db/m+, db/db,anddb/db catalase (CAT)-transgenic (Tg) mice were pletely delineated. Studies have shown that high glucose used for DNA chip microarray analysis. Real-time quantitative PCR (HG) concentrations are associated with increased reactive assays, immunohistochemistry, and mice rendered diabetic with oxygen species (ROS) production, which inhibits proximal streptozotocin were used to validate the proapoptotic gene expres- – sion in RPTs. Cultured rat RPTCs were used to confirm the apoptotic tubular function and induces apoptosis (8 10). Apoptosis activity and regulation of proapoptotic gene expression. Addition- has been detected in renal proximal tubular cells (RPTCs) ally, studies in kidney tissues from patients with and without diabe- of diabetic mice (11,12) and rats (13,14) as well as in RPTCs teswereusedtoconfirm enhanced proapoptotic gene expression in of diabetic patients (15–17), suggesting that tubular apo- RPTs.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
    Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int.
    [Show full text]
  • Supplementary Figures and Tables
    SUPPLEMENTARY DATA Supplementary Figure 1. Isolation and culture of endothelial cells from surgical specimens of FVM. (A) Representative pre-surgical fundus photograph of a right eye exhibiting a FVM encroaching on the optic nerve (dashed line) causing tractional retinal detachment with blot hemorrhages throughout retina (arrow heads). (B) Magnetic beads (arrows) allow for separation and culturing of enriched cell populations from surgical specimens (scale bar = 100 μm). (C) Cultures of isolated cells stained positively for CD31 representing a successfully isolated enriched population (scale bar = 40 μm). ©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1035/-/DC1 SUPPLEMENTARY DATA Supplementary Figure 2. Efficient siRNA knockdown of RUNX1 expression and function demonstrated by qRT-PCR, Western Blot, and scratch assay. (A) RUNX1 siRNA induced a 60% reduction of RUNX1 expression measured by qRT-PCR 48 hrs post-transfection whereas expression of RUNX2 and RUNX3, the two other mammalian RUNX orthologues, showed no significant changes, indicating specificity of our siRNA. Functional inhibition of Runx1 signaling was demonstrated by a 330% increase in insulin-like growth factor binding protein-3 (IGFBP3) RNA expression level, a known target of RUNX1 inhibition. Western blot demonstrated similar reduction in protein levels. (B) siRNA- 2’s effect on RUNX1 was validated by qRT-PCR and western blot, demonstrating a similar reduction in both RNA and protein. Scratch assay demonstrates functional inhibition of RUNX1 by siRNA-2. ns: not significant, * p < 0.05, *** p < 0.001 ©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1035/-/DC1 SUPPLEMENTARY DATA Supplementary Table 1.
    [Show full text]
  • Supplementary Material and Methods
    Supplementary material and methods Generation of cultured human epidermal sheets Normal human epidermal keratinocytes were isolated from human breast skin. Keratinocytes were grown on a feeder layer of irradiated human fibroblasts pre-seeded at 4000 cells /cm² in keratinocyte culture medium (KCM) containing a mix of 3:1 DMEM and HAM’s F12 (Invitrogen, Carlsbad, USA), supplemented with 10% FCS, 10ng/ml epidermal growth factor (EGF; R&D systems, Minneapolis, MN, USA), 0.12 IU/ml insulin (Lilly, Saint- Cloud, France), 0.4 mg/ml hydrocortisone (UpJohn, St Quentin en Yvelelines, France) , 5 mg/ml triiodo-L- thyronine (Sigma, St Quentin Fallavier, France), 24.3 mg/ml adenine (Sigma), isoproterenol (Isuprel, Hospira France, Meudon, France) and antibiotics (20 mg/ml gentamicin (Phanpharma, Fougères, France), 100 IU/ml penicillin (Phanpharma), and 1 mg/ml amphotericin B (Phanpharma)). The medium was changed every two days. NHEK were then cultured over a period of 13 days according to the protocol currently used at the Bank of Tissues and Cells for the generation of clinical grade epidermal sheets used for the treatment of severe extended burns (Ref). When needed, cells were harvested with trypsin-EDTA 0.05% (Thermo Fisher Scientific, Waltham, MA, USA) and collected for analysis. Clonogenic assay Keratinocytes were seeded on a feeder layer of irradiated fibroblasts, at a clonal density of 10-20 cells/cm² and cultivated for 10 to 14 days. Three flasks per tested condition were fixed and colored in a single 30 mns step using rhodamine B (Sigma) diluted at 0.01 g/ml in 4% paraformaldehyde. In each tested condition, cells from 3 other flasks were numerated after detachment by trypsin treatment.
    [Show full text]
  • Supplemental Information
    Supplemental Information Supplemental Figures Supplemental Figure 1. Quantitation of bioluminescent imaging data in Figure 1B. 1 Supplemental Figure 2. Impact of Brg1 shRNAs on proliferation of immortalized murine embryonic fibroblasts (iMEFs), BCR-ABL/p19-/- B cell acute lymphoblastic leukemia (B-ALL), murine breast cancer cells (4T1), and BrafV600E melanoma. A) shRNA/GFP competition assay in indicated murine cell lines. Rpa3 shRNA targeting replication protein A3 serves as a positive control. shRNA targeting Renilla luciferase is included as a negative control. B) Western blotting for additional Brg1 shRNAs in the indicated cell lines transduced with the Ren or Brg1 LMN-shRNAs. A representative experiment of three biological replicates is shown. 2 Supplemental Figure 3. Effect of Brg1 shRNAs on proliferation of human leukemia cell lines. A) shRNA/GFP competition assay in the indicated human cell lines with shRen.713, shBrg1.4471, or shSpt16.3249. All shRNAs were evaluated in a timecourse of GFP% measurements at days 4, 8, 12, 16, 20, and 24. CML-BC indicates chronic myeloid leukemia blast crisis. B) Western blotting of SPT16 levels in whole cell lysates prepared from HeLa cells transduced with the indicated MLP shRNA constructs following puromycin selection. 3 Supplemental Figure 4. Expression and functional validation of SWI/SNF subunits in MLL-AF9/NrasG12D leukemia. A) RPKM values for genes encoding SWI/SNF complex subunits from polyA+ tail RNA-seq performed in RN2 cell line. B) shRNA/GFP competition assay with two independent shRNAs targeting indicated SWI/SNF subunits. Experiments were performed in RN2 cells as in Figure 1A. n=2-3. C) RT-qPCR was performed to test the knockdown efficiency of indicted SWI/SNF subunit shRNAs.
    [Show full text]
  • Alterations of the Interactome of Bcl-2 Proteins in Breast Cancer at the Transcriptional, Mutational and Structural Level
    RESEARCH ARTICLE Alterations of the interactome of Bcl-2 proteins in breast cancer at the transcriptional, mutational and structural level Simon Mathis Kønig1, Vendela Rissler1, Thilde Terkelsen1, Matteo Lambrughi1, 1,2 Elena PapaleoID * 1 Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark, a1111111111 2 Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract Apoptosis is an essential defensive mechanism against tumorigenesis. Proteins of the B- OPEN ACCESS cell lymphoma-2 (Bcl-2) family regulate programmed cell death by the mitochondrial apopto- sis pathway. In response to intracellular stress, the apoptotic balance is governed by inter- Citation: Kønig SM, Rissler V, Terkelsen T, Lambrughi M, Papaleo E (2019) Alterations of the actions of three distinct subgroups of proteins; the activator/sensitizer BH3 (Bcl-2 homology interactome of Bcl-2 proteins in breast cancer at 3)-only proteins, the pro-survival, and the pro-apoptotic executioner proteins. Changes in the transcriptional, mutational and structural level. expression levels, stability, and functional impairment of pro-survival proteins can lead to an PLoS Comput Biol 15(12): e1007485. https://doi. imbalance in tissue homeostasis. Their overexpression or hyperactivation can result in org/10.1371/journal.pcbi.1007485 oncogenic effects. Pro-survival Bcl-2 family members carry out their function by binding the Editor: Igor N. Berezovsky, A�STAR Singapore, BH3 short linear motif of pro-apoptotic proteins in a modular way, creating a complex net- SINGAPORE work of protein-protein interactions. Their dysfunction enables cancer cells to evade cell Received: July 8, 2019 death.
    [Show full text]
  • Proteins Interact with Their Pro-Survival Partner MCL-1
    Promiscuous and selective: how intrinsically disordered BH3- proteins interact with their pro-survival partner MCL-1. Liza Dahal, Tristan O.C. Kwan, Jeffery J. Hollins and Jane Clarke1 1Corresponding author, Email: [email protected] Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW Highlights • Despite differences in residual helicity BH3 peptides bind equally fast to MCL-1. • Differences in stabilities results from off-rates, altering complex lifetimes. • This difference arises from variation in interactions at MCL-1 binding interface. GRAPHICAL ABSTRACT Promiscuous and selective: how intrinsically disordered BH3- proteins interact with their pro-survival partner MCL-1. Liza Dahal, Tristan O.C. Kwan, JefFery J. Hollins and Jane Clarke1 1Corresponding author, Email: [email protected] Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW Abstract 1 The BCL-2 family of proteins plays a central role in regulating cell survival and apoptosis. Disordered BH3-only proteins bind promiscuously to a number of different BCL-2 proteins, with binding affinities that vary by orders of magnitude. Here we investigate the basis for these differences in affinity. We show that eight different disordered BH3 proteins all bind to their BCL-2 partner (MCL-1) very rapidly, and that the differences in sequences result in different dissociation rates. Similarly, mutation of the binding surface of MCL-1 generally affects association kinetics in the same way for all BH3 peptides but has significantly
    [Show full text]