Marketing Optimization

Total Page:16

File Type:pdf, Size:1020Kb

Marketing Optimization Marketing Optimization An Experian white paper Table of contents Executive summary .....................................................................................................................................2 Background - the marketing challenge ...................................................................................................4 The traditional approach - data driven marketing .................................................................................5 The next step - marketing optimization .................................................................................................10 What is marketing optimization? ............................................................................................................11 Marketing optimization applications .....................................................................................................15 How optimization improves traditional marketing approachs ..........................................................21 Optimization solutions from Experian ...................................................................................................22 About Experian Decision Analytics ........................................................................................................24 An Experian white paper | Page 1 Executive summary For your organization to thrive it is important to make the most of each customer interaction and maximize customer value. In a world where there are thousands or millions of customers, multiple touch points and many potential actions or offers, how can you ensure that your decisions will maximize sales and revenues whilst meeting your budget and customer contact policies? Marketers make significant investments to acquire new customers and promote products and services to existing customers to increase or maintain market share, product usage and profitability. Even though organizations execute hundreds of campaigns a year, there is always a limit on how many activities can be undertaken and how many their customers are willing to tolerate. With ever more tightly controlled budgets and fewer resources, marketers are under pressure to demonstrate continued contribution to the performance of the overall business, executing only those activities that will produce the best return. The ability to improve customer value by effectively marketing personalized products and services is increasingly important in the search for a competitive advantage. Marketing departments are increasingly using analytics to understand and predict customer behavior, needs and preferences. This allows them to move from bulk marketing campaigns towards smaller and more frequent highly targeted campaigns through a wide variety of customer contact channels. However, the increase in channels and number of different offers in the market means that it is even more challenging for the marketer to pick the best action for each customer from the universe of offers, channels, compliance and contact policies. Consequently, organizations need a more effective way of selecting the best customer actions to achieve the desired results. The solution to this issue is an optimization process that enables marketers to choose the best set of customer actions that maximizes the campaign’s overall economic return, taking into consideration customer behavior and expected value, whilst satisfying real-world constraints such as product targets, channel volume limitations, fixed budgets and customer contact policies. Experian offers the advanced Marketswitch® Optimization solution that is designed for easy use by marketers who want to create optimal campaigns and contact policies. It allows them to evaluate multiple, optimized scenarios and to view reports to understand the impact of different contact rules and volume targets, before committing resources and budgets. No expertise in advanced mathematics is required; just knowledge of the company’s marketing strategies, plans and campaign economics. Page 2 | Marketing Optimization Marketswitch Optimization from Experian can be integrated with most of the leading customer analytics and intelligence solutions. It can be deployed as a stand-alone application or integrated with most third-party campaign management systems, customer databases and modeling tools. There are over 20 world-class organizations in North America and Europe that are benefiting from Marketswitch Optimization, typically seeing improvements in their marketing returns of between 10% and 30% or more. Its flexible, user-definable approach, supported by Experian consulting, analytics and data can deliver significant benefits for campaign selection, customer and segment marketing, next best action across multiple touch points and customer level contact planning and forecasting. An Experian white paper | Page 3 Background - the marketing challenge In principle, marketing is simple: get the right product with the right message in the right place at the right time at the right price in front of the right person. But in practice it is not easy: thousands or millions of customers, multiple products, many channels, regulatory complications, dispersed geography, conflicting objectives, limited resources, intensifying competition and you still have to demonstrate real and growing contribution to the performance of the overall business. With this pressure and the scale of the marketing environment, finding the most effective and profitable ‘customer-offer-channel’ mix can be almost impossibly complex. For example, with just three potential offers per customer and eight potential contact opportunities per customer, there are twenty-four possible combinations. When this is applied to a million customers and twenty possible offers, this scales to 220 million potential options. A huge number of potential opportunities need to be evaluated to find the single best contact per customer. Even though some potential contacts can be ruled out because they break a business constraint or rule, the challenge is still huge. Figure 1: The complexity of marketing decisions creates a huge challenge Page 4 | Marketing Optimization The traditional approach - data driven marketing Organizations have made huge investments to capture, store and mine large quantities of customer data in an effort to get closer to individual customer’s needs and preferences. Phone Face to face Mail Web Data warehousing Analytics Planning Execution Channels • Data accumulation • Unified analytical • Campaign/offer • Customer • Interaction • Data management customer view design management systems management • Single customer view • Profiling • Contact policies • Campaign execution • Sales • Segmentation • Targeting and • Account management • Service • Modeling selection • Service systems • Utilization and • Scoring • Inclusions/exclusions • Sales systems performance • Net present values • Scheduling • Triggers management • Campaign Feedback measurement Figure 2: The typical components of a Customer Relationship Management (CRM) strategy The typical components of a CRM strategy: • Data warehousing - a key enabler providing one definition of a ‘customer’, a unified customer view across all accounts, an unambiguous information base ready for analysis. • Analytics - providing reporting, segmentation and predictive model analysis tools to mine customer demographic and behavioral data to identify needs, preferences and the potential likelihood and value of customer response. • Campaign planning and execution - managing and automating the tasks of planning and executing campaigns and triggered activities through the contact channels and measuring results. • Channel management systems - managing and tracking the sales and service interactions with customers through the channels. An Experian white paper | Page 5 These systems provide a high level of detailed information with which marketers can plan, execute and track their marketing activities. These tools have added significant value in driving marketing efficiency and enabling more marketing activity. Many organizations have now reached data-saturation, with an abundance of powerful information, but many still have no effective means of picking the best action for each customer across competing offers, channels, compliance and contact policies. Most selection techniques, no matter how sophisticated, still rely on little more than guesswork to determine how best to target customers to get the most return. These techniques have evolved over time: • Campaign managers decide who to target - using business rules and customer profiles, campaign managers use experience and trial and error to select targets. • Campaign managers decide which deciles to target - rank ordering customers based on a single dimension such as response, applying a subjective cut-off level. • Campaign managers prioritize trade-offs, playing with cut-offs to fit business goals and constraints - using prioritized rules and matrices of two or three score dimensions to subjectively determine trade-offs. Most selection techniques involve rules that evaluate only one offer or one customer at a time. In practice, most customers could be considered for more than one offers, so the order in which the rules are applied can give radically different results. Comparing different approaches Consider this simple example: An organization has four customers and one channel for a marketing campaign. Only one offer can be sent to each customer. Customers have been scored for their response
Recommended publications
  • Decision Intelligence in Public Health – DIONE Stolk, J. and Nyon, S
    22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 mssanz.org.au/modsim2017 Decision Intelligence in Public Health – DIONE Jacob Stolk1 and Simone Nyon1 1 Dione Complex Systems, Gold Coast, Queensland, Australia Email: [email protected] Abstract: Public health surveillance is the ongoing systematic collection, analysis, interpretation, and dissemination of health data for the planning, implementation, and evaluation of public health action. To achieve effective public health interventions, it is pivotal to analyse and interpret the vast amounts of data collected by surveillance systems to enable good understanding of all factors having an impact on health. For example, we can consider child protection, which is an important public health issue. Often relatively extensive data exist on families in official statistics, research reports, social services reports, school and medical records, etc. However, these data are dispersed and hard if not impossible to relate and compare. This leads to numerous interventions that are conducted without adequate knowledge of target families that are to benefit from these interventions. Inadequate knowledge also leads to lack of intervention where it is needed, such as undetected cases of child abuse. In many cases the basic data that are needed for intervention decisions exist, but are not available to decision makers due to inadequate communication and lack of data integration, analysis and interpretation. Chronic condition management is another area where extensive disparate data exist from statistics and various health services and intervention agencies. In this area too there are numerous organizations offering services and a great need to better coordinate these services to achieve better outcomes for patients and also to reduce soaring costs of the healthcare system.
    [Show full text]
  • Introduction to Decision Intelligence - Towards Data Science
    10/26/2019 Introduction to Decision Intelligence - Towards Data Science Listen to this story --:-- 18:26 Introduction to Decision Intelligence A new discipline for leadership in the AI era Cassie Kozyrkov Follow Aug 3 · 13 min read Curious to know what the psychology of avoiding lions on the savannah has in common with responsible AI leadership and the challenges of designing data warehouses? Welcome to decision intelligence! Source: xijian/Getty Decision intelligence is a new academic discipline concerned with all aspects of selecting between options. It brings together the best of applied data science, social science, and managerial science into a unified field that helps people use data to improve their lives, their businesses, and the world around them. It’s a vital science for the AI era, covering https://towardsdatascience.com/introduction-to-decision-intelligence-5d147ddab767 1/12 10/26/2019 Introduction to Decision Intelligence - Towards Data Science the skills needed to lead AI projects responsibly and design objectives, metrics, and safety-nets for automation at scale. Decision intelligence is the discipline of turning information into better actions at any scale. Let’s take a tour of its basic terminology and concepts. The sections are designed to be friendly to skim-reading (and skip-reading too, that’s where you skip the boring bits… and sometimes skip the act of reading entirely). What’s a decision? Data are beautiful, but it’s decisions that are important. It’s through our decisions — our actions — that we affect the world around us. We define the word “decision” to mean any selection between options by any entity, so the conversation is broader than MBA-style dilemmas (like whether to open a branch of your business in London).
    [Show full text]
  • Demystifying AI in Cybersecurity
    WHITE PAPER | Demystifying AI in Cybersecurity Demystifying AI in Cybersecurity A look at the technology, myth vs. reality, and how it benefits the cybersecurity industry Table of Contents Introduction ...................................................................................................................3 AI: What it is and What it isn’t .......................................................................................3 Machine Learning: the Next Step ...................................................................................3 Deep Learning: Putting a Finer Point on it ......................................................................3 Plenty of Promise, for Better or Worse ..........................................................................3 The Difference AI Makes in Cybersecurity .....................................................................4 Malware Detection ....................................................................................................4 Classification and Scoring .........................................................................................4 Phishing Detection ....................................................................................................4 Key Requirements for AI/ML-based Security ..................................................................4 Data ..........................................................................................................................4 Speed ........................................................................................................................5
    [Show full text]
  • The Dynamics Duo: Microsoft Dynamics GP and AP Automation
    Summer 2015 Self-service Business Intelligence for GP: What does that mean for me? The Dynamics Duo: Microsoft Dynamics GP and AP Automation Managing Long-Term Investment Assets in Dynamics GP GP OPTIMIZER I On the Cover GP Optimizer Magazine 5 Published by Rockton Software Self-service Business PO Box 921 Lafayette, CO 80026 Intelligence for GP: Editor: Mark Rockwell Welcome to the Summer 2015 Edition of the GP Optimizer Magazine. Our original goal [email protected] What does that mean for me? of The GP Optimizer Magazine was to reach 15,000 Microsoft Dynamics GP Users. Last Design: Lori Hartmann, Feline Graphics publication, we exceeded this goal by reaching over 50,000 users. [email protected] Advertising Inquiries: Steven Solomon The GP Optimizer Magazine contains articles written by Microsoft Dynamics GP Add-On [email protected] Partners; these articles are focused on making your investment in Microsoft Dynamics Editorial Inquiries: Steven Solomon GP more worthwhile by solving an issue that you might be experiencing. [email protected] Rockton Software has been in the Microsoft Dynamics GP Channel for over 15 years. You may have seen us at Convergence dressed up as bartenders, pirates, Vikings, or The GP Optimizer Magazine is published by cavemen. Regardless of our crazy costumes, we’ve established ourselves as fervent Rockton Software, with principal offices in Lafayette, CO. If you wish to receive this publication, please go to supporters of the greater GP Channel, and we want you to excel in business by www.rocktonsoftware.com and click on the GP leveraging other tools and knowledge from our friends in the community.
    [Show full text]
  • Lorien Pratt, Ph.D. Curriculum Vita
    Lorien Pratt, Ph.D. Curriculum Vita Sunnyvale, CA USA +1.303.589.7476 [email protected] Blog: www.lorienpratt.com SUMMARY Professional machine learning and decision intelligence consultant, developer, entrepreneur, writer, evangelist. Author of Link: How Decision Intelligence Connects Data, Actions, and Outcomes for a Better World. Co-organizer of the annual Responsible AI/DI Summit. Two TEDx talks. Inventor of machine learning inductive transfer. Co-Founder and Chief Scientist of Quantellia, LLC. Co-inventor and evangelist for Decision Intelligence. Over three decades delivering applied machine learning solutions, including for the Human Genome Project, the US Department of Energy, budget analysis for a $100 million annual spend for the Administrative Office (AO) of the US Courts, award-winning forensic analysis for the Colorado Bureau of Investigation, RBS, DARPA, and many more. EDUCATION Ph.D., Computer Science, Rutgers University, 5/93. Thesis: Transferring previously learned back-propagation neural networks to new learning tasks. M.S., Computer Science, Rutgers University, 5/88. A.B., Computer Science, Dartmouth College, 5/83. CONSULTING A variety of engagements including the following: Regular invited speaker to user groups, executive roundtables, keynotes, webinars, and workshops for organizations and companies like SAP, HP, Unisys, the TM Forum, Comptel, SAS. Machine learning consulting on a wide variety of projects for cyber security, web advertising, financial prediction, medical decision making, cable company capital expenditure, LIDAR image analysis, and more. Five-star rated consultant on the Experfy platform (www.experfy.com), from the Harvard Innovation Laboratory. Strategic consulting in decision intelligence, analytics, and telecom OSS/BSS to companies and organizations like the US Department of Defense, Solvina, ConceptWave, the Colorado Bureau of Investigation (CBI), Sun, IBM, Comptel, SAP, HP, Amdocs, Telcordia (now Ericsson).
    [Show full text]
  • Decision Intelligence: a Two-Part Course
    Decision Intelligence: A two-part course Every decade or so, a new business discipline is born. Did you know that there was a time before project planning? Before Business Intelligence? Before Business Process Management? Today, Decision Intelligence is the next such breakthrough: it is a proven approach that has saved hundreds of millions of dollars for organizations worldwide. It brings the best of Big Data, Predictive Analytics, Deep Learning, and Systems Modeling to every role in the organization, including executive management, program managers, and quantitative modeling experts. Join us for workshop Getting Started with Decision Intelligence plus, optionally, Decision Intelligence Hands-On. You’ll learn: - How to answer the question: “If I make this decision today, what will be the outcome tomorrow?” - How to create a decision collaboration team to design, test, and update your organization’s most important decisions, creating continuous improvement and organizational learning - How to combine intangible factors , like employee engagement and customer experience, with tangible ones, like cost of goods and closed sales - Two secrets that, together, will increase your team’s decision-making intelligence tenfold - How to make decisions that have multiple outcomes - How to avoid the most common trap that causes Big Data projects to fail, and how to radically accelerate the value that you receive from all data, big and small - The three secrets of small data, and how you can use it to supercharge your decision intelligence - How to ensure
    [Show full text]
  • A Global Civic Debate FUTURE SOCIETY on Governing the Rise of Artificial Intelligence
    THE THE A Global Civic Debate FUTURE SOCIETY on Governing the Rise of Artificial Intelligence Report 2018 O1O1●●●●●●●●●O1OOO11O1O●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●. OOO 11OO1O1OO1OOOO● 1●●●1 ●O111O1O1 O1●●●●●●●●●●●●11O1OOO111O1O1O11 1OO●●●11OO1O1OO1OO●●●●●●●●●●●●●● ●●●●●●●●●OOOO1O1OO11O11O1111O1● ●●O11O11O1OO1O11OO1O1O111O1OOO1 111O●●●O1O11OOOO1O●●●●OOOOO1OOO OO1OO1OOOOOO1●●●111O1●●●●1O11OO. O11O1111O11OOO1OO11OO.•●●●•●●● OO 1●●●●1O11OOOO1OOOOO● OOOO11O11O 1OO1O111●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●O11OO11O1OO1O11OOO●●● ●●●●●●●●●●●●11OO1OOOOOO1OOO1OOO. ●●●●●●●●●●●●●●●.. 11OO1O1O11●●●●●● ●●●●●● ● ●●●●●●●●●●●●●●●OOO1OO. 11OOOO1O111O1OO. ●●●●●●O11OO1 ●●● 1OO ●OO11O1111●●●●●●1OOO1OOOOOO 1O●●●11O11O1111O11●●●●●●1O11OO 11OO1O1O111OO1●●●•••●1OO11O1OO1 O11O111OO11OO111OO1●●●OO●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●111O1OOO11O1OOOO11OO1O1OO1 OOOOO●●●1OO1OO11O1OO1O111OO11O1 “The Future Society, a Global Civic Debate” translated by the binary table of the American THE AI INITIATIVE Standard Code for Information Interchange. Contents : Executive Sumary p. 4 Our Promise p. 15 Key insights p. 17 Top recommandations p. 51 Tales from Imaginaries p. 65 Our Methodology p. 76 Debate Health p. 78 Beyond the Global Civic Debate p. 80 Authors : Nicolas Miailhe Arohi Jain Caroline Jeanmaire Yolanda Lannquist Josephine Png The Future Society © 2018 www.thefuturesociety.org The Future Society 2 A Global Civic Debate on Governing the rise of Artificial Intelligence 5 languages Engagement & Participation : English, French, Chinese, 70 390 Page views Japanese,
    [Show full text]
  • Sample Chapter [PDF]
    LINK Link is an exercise in abstraction, causality, and modeling. It is about discovering and making visible interdependencies in complex systems. The author distills what she has learned in pithy insights. It takes discipline. You won’t regret reading this book. À Vint Cerf, Internet Pioneer Link is the missing link to our understanding of unintended consequences of many of our decisions and actions. This is a book for the ages, moving both technology (like AI) and human decision making to the next level. Must read. À V R Ferose, SVP and Head of SAP Academy for Engineering There is an explosion today in the impacts, risks, and opportunities of many decisions by private or governmental entities intended to impact future events. Link is about understanding these decisions and causal relationships. Societal transactions are accelerating: many more than ever are intangible, and there are substantial complexities created by newly discovered information as well as the resulting increase of global interdependencies. Surveillance capitalism, especially as enhanced by AI, is also a substantial risk today. Link is part of the solution: a crucial resource to understand causal chains, especially with the goal of avoiding unintended consequences of decisions involving data and technology. À Bill Fenwick, Partner Emeritus, Fenwick & West LLP LINK How Decision Intelligence Connects Data, Actions, and Outcomes for a Better World BY LORIEN PRATT United Kingdom À North America À Japan À India À Malaysia À China Emerald Publishing Limited Howard House, Wagon Lane, Bingley BD16 1WA, UK First edition 2019 Copyright r Lorien Pratt, 2019. Published under exclusive licence.
    [Show full text]
  • Artificial Intelligence in Finance
    Artificial Intelligence in Finance: Forecasting Stock Market Returns Using Artificial Neural Networks Alexandra Zavadskaya Department of Finance Hanken School of Economics Helsinki 2017 HANKEN SCHOOL OF ECONOMICS Department of: Finance Type of work: Thesis Author: Alexandra Zavadskaya Date: 29.09.2017 Title of thesis: Artificial Intelligence in Finance: Forecasting Stock Market Returns Using Artificial Neural Networks Abstract: This study explored various Artificial Intelligence (AI) applications in a finance field. It identified and discussed the main areas for AI in the finance: portfolio management, bankruptcy prediction, credit rating, exchange rate prediction and trading, and provided numerous examples of the companies that have invested in AI and the type of tasks they use it for. This paper focuses on a stock market prediction, and whether Artificial Neural Networks (ANN), being proxies for Artificial Intelligence, could offer an investor more accurate forecasting results. This study used two datasets: monthly returns of S&P500 index returns over the period 1968-2016, and daily S&P 500 returns over the period of 2007-2017. Both datasets were used to test for univariate and multivariate (with 12 explanatory variables) forecasting. This research used recurrent dynamic artificial neural networks and compared their performance with ARIMA and VAR models, using both statistical measures of a forecast accuracy (MSPE and MAPE) and economic (Success Ratio and Direction prediction) measures. The forecasting was performed for both in-sample and out-of-sample. Furthermore, given that ANN may produce different results during each iteration, this study has performed a sensitivity analysis, checking for the robustness of the results given different network configuration, such as training algorithms and number of lags.
    [Show full text]
  • Lorien Pratt, Ph.D. Curriculum Vita Sunnyvale, CA
    Lorien Pratt, Ph.D. Curriculum Vita Sunnyvale, CA . Denver, CO USA +1.303.589.7476 [email protected], @lorienpratt, www.lorienpratt.com SUMMARY Professional machine learning and decision intelligence consultant, developer, entrepreneur, writer, evangelist. Author of Link: How Decision Intelligence Connects Data, Actions, and Outcomes for a Better World. Co- organizer of the annual Responsible AI/DI Summit. Two TEDx talks. Inventor of transfer learning (TL). Co- Founder and Chief Scientist of Quantellia, LLC. Co-inventor and evangelist for Decision Intelligence (DI). Over three decades delivering applied machine learning solutions, including for the Human Genome Project, the US Department of Energy, budget analysis for a $100 million annual spend for the Administrative Office (AO) of the US Courts, award-winning forensic analysis for the Colorado Bureau of Investigation, RBS, DARPA, and many more EDUCATION • Ph.D., Computer Science, Rutgers University, 5/93. Thesis: Transferring previously learned back-propagation neural networks to new learning tasks. • M.S., Computer Science, Rutgers University, 5/88. • A.B., Computer Science, Dartmouth College, 5/83. CONSULTING A variety of engagements including: • Regular invited speaker to user groups, executive roundtables, keynotes, webinars, and workshops for organizations and companies like Global Knowledge, MCubed, MLConf, SAP, HP, Unisys, the TM Forum. • Machine learning consulting on a wide variety of projects for wellness, call centers, cyber security, web advertising, financial prediction, medical decision making, cable company capital expenditure, LIDAR image analysis, and more. • Five-star rated consultant on the Experfy platform (www.experfy.com), from the Harvard Innovation Laboratory. • Strategic consulting in decision intelligence, analytics, and telecom OSS/BSS to companies and organizations like the US Department of Defense, Solvina, ConceptWave, the Colorado Bureau of Investigation (CBI), Sun, IBM, Comptel, SAP, HP, Amdocs, Telcordia (now Ericsson).
    [Show full text]
  • Decision Intelligence for Wet Weather Management Xylem Digital Solutions
    ™ Intelligent Urban Watersheds Decision Intelligence for Wet Weather Management Xylem Digital Solutions Who we are A new Xylem platform of disruptive technologies to help water utilities substantially reduce the capital and operating costs of operating a water network What we do We use data gathering, artificial intelligence and machine learning tools to help utilities monitor, optimize and control the condition and performance of their networks Our impact We create outsize economic benefits (10x), substantially reducing non-revenue water and capital and operating costs through predictive analytics and design optimization Xylem Digital Solutions XDS major site Other major MCS site Nanjing Edmonton Manila Calgary Middletown Toronto South Bend Singapore Yellow Springs San Francisco Columbia Raleigh San Diego Atlanta Dallas Miami Sydney Problem: Increasing intensity and frequency of extreme wet weather Largest ever infrastructure spend for many cities Poorest citizens face largest economic burden Industry Status Quo Industry Status Quo . Intelligent Urban Watersheds Blue Infrastructure: Utilize data analytics to solve water challenges economically and efficiently. What is the Problem? Infrastructure Investment Affordability Status Quo Computing Capacity 1BillionX Era when many CSO interceptors and treatment plants were designed and built Intelligent Urban Watersheds The Internet of Things Big Data Analytics Machine Learning Digital Copy of Urban Watersheds Observation/ Digital Copy Tuning Urban Watershed Implementation Intelligent Urban
    [Show full text]
  • Cassie Kozyrkov, Chief Decision Scientist, Google
    Cassie Kozyrkov, Chief Decision Scientist, Google @quaesita @quaesita @quaesita @quaesita @quaesita @quaesita What is machine learning? @quaesita @quaesita @quaesita @quaesita @quaesita @quaesita @quaesita @quaesita Why do teams fail at machine learning? @quaesita Machine Learning Data Algorithms Models Predictions Ingredients Appliances Recipes Dishes @quaesita How does it work? @quaesita @quaesita @quaesita @quaesita Support Vector Classifier Decision Tree Neural Network @quaesita Label: Y or N @quaesita Label: Y or N @quaesita Label: Y or N Applied machine learning is a team sport @quaesita Meet the team Decision-maker @quaesita Data Decisions Is it tasty? Y or N ? Inputs Outputs @quaesita Meet the team Decision-maker Software engineer @quaesita Programmer Model Decisions Y or N ? Ada, Countess of Lovelace, 1815-1852 Expert Recipe Outputs @quaesita Meet the team Decision-maker Software engineer Data engineer @quaesita Data Programmer Models Decisions Is it tasty? Y or N ? Ingredients Expert Recipes Outputs @quaesita Meet the team Decision-maker Software engineer Data engineer Descriptive analyst @quaesita Data Analyst Models Decisions Y or N ? Is it tasty? Karl Friedrich Gauss 1777-1855 Y or N ? Florence Nightingale 1820-1910 Ingredients Expert Recipes Outputs @quaesita Meet the team Decision-maker Software engineer Data engineer Descriptive analyst Machine learning engineer @quaesita Data Algorithms Models Decisions Y or N ? Is it tasty? Y or N ? Y or N ? Ingredients Tools Recipes Outputs @quaesita Data Algorithms Models Decisions
    [Show full text]