Chapter 15.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 15.Pdf Ch. 15 - Oscillations Dan Finkenstadt, fi[email protected] November 19, 2015 Oscillations If you want to find the secrets of the universe, think in terms of energy, frequency and vibration. { Nikola Tesla period T in seconds, time to complete one cycle (2π) 1 frequency f = in s−1 or Hz T angular frequency ! = 2π=T = 2πf Simple Harmonic Oscillator Simple Harmonic Motion True for all simple harmonic motion: I Ingredients: F = ma and Fs = −kx x = A cos (!t + 'o) I Result: a differential equation v = −!A sin (!t + 'o) d2x k 2 = − x dt m 2 a = −! A cos (!t + 'o) Examples: Active Learning Exercise 2. Pendulum Problem: Draw! rg For a mass on a spring with k = 100 N=m and ! = m = 1:0 kg, suppose that it is set in motion with p ` an amplitude of 10 cm and zero phase constant (as cosine), draw and label one oscillation cycle of 1. Mass on spring 3. Physical pendulum its r r 1. position 4. kinetic energy k mgd !s = ! = 2. velocity 5. potential energy m pp I 3. acceleration 6. total mech. energy Solution: 4:8 cm Solution: Solution: 2:6 m=s 12 Hz Rosetta Stone Active Learning Exercise Using ! we can calculate 10 more quantities: ! Problem: A simple harmonic oscillator 1. frequency: f = 2π A simple harmonic oscillator consists of a block 2. Period: T = 1 = 2π f ! of mass 45 g attached to a spring of spring 3. Maximum Speed: v = !A max constant 240 N m−1, oscillating on a frictionless 2 4. Maximum Accel.: amax = ! A surface. If the block is given an initial velocity of 2 5. Maximum Force: Fmax = m ! A 3:5 m=s starting at the equilibrium position, what 6. Maximum K.E.: K = 1 m !2A2 2 is the maximum displacement of the block from 7. Maximum P.E.: U = 1 m !2A2 2 its equilibrium position? 1 2 2 8. Total Energy: E = 2 m ! A 9. phase at time t: φ = (!t + φo) x 10. phase constant: φ = cos−1 o o A Active Learning Exercise Active Learning Exercise Problem: A simple harmonic oscillator Problem: A simple harmonic oscillator A simple harmonic oscillator consists of a block of A simple harmonic oscillator consists of a block of mass 45 g attached to a spring of spring constant mass 45 g attached to a spring of spring constant 240 N m−1, oscillating on a frictionless surface. If 240 N m−1, oscillating on a frictionless surface. If the block is displaced 3:5 cm from its equilibrium the block is displaced 3:5 cm from its equilibrium position and released so that its initial velocity is position and released so that its initial velocity is zero, what is its maximum velocity? zero, what is its frequency of oscillation? Solution: 0:29 J Solution: 5:00 s Active Learning Exercise Wiley 15.14 { Big Hint Problem: A simple harmonic oscillator A simple harmonic oscillator consists of a block of mass 45 g attached to a spring of spring constant 240 N m−1, oscillating on a frictionless q surface. If the block is displaced 3:5 cm from its Solve for ! = k ; Solve simultaneously for A equilibrium position and released with an initial m and φ : velocity of 2:5 m=s, what is its total energy? o Solve : 0:136 = A cos (5:41 (0:55) + φo) 3:130 = −5:41 A sin (5:41 (0:55) + φo) Active Learning Exercise Active Learning Exercise Problem: Pendulum Problem: Physical Pendulum A simple pendulum has a natural period of 2:50 s. If the pendulum's length ` is increased by a mass m and the stick factor of four, the new period will be mass M, 1. Derive the magnitude of the distance d from the pivot to c.o.m. 2. Derive the rotational inertia I of the system. Given the red disk has 3. Go and do Wiley 15.41 after class! Damped Simple Harmonic Motion Why do we always ignore air resistance? I Oscillatory motion can be damped Fnet = ma I It means that in addition to spring like force: −kx − bv = ma ; or Fs = −kx mx¨ + bx_ + kx = 0 nd I there is also a resistance to velocity: It is a homogeneous 2 order linear differential equation with sol'n: x(t) = eκt Fd = −bv 2 κt κt κt 0 = mκ e + bκe + ke I We put them together and it diminishes the p −b ± b2 − 4mk perfect oscillatory behavior. κ = 2m Yes, there's more Finally Rearranging But that's only κ. Recall our actual answer is eκt s s b 2 k b k b 2 b κ = ± − − ±i − t − t 2m m 2m m 2m 2m |{z} | {z } decay x(t) = e this is !t s 2 k b b = Ae−bt=2m cos(!0t + φ) κ = ±i − − r m 2m 2m k b2 !0 = − m 4m2 Solution: p I ! = 120=:310 = 19:7 rad=s −1 I 1 cycle takes 2π! = 0:319 s, 29 cycles take 9:25 s Solution: −(b=2m)t Af = Aoe −¨1 −0:148¨s (9:25 ¡s) = Aoe = :254Ao Damped Simple Harmonic Motion Active Learning Exercise Damping: Problem: Exercise q 2 b2 A damped oscillator has mass 310 g, spring I ! ! ! − o 4m2 constant 120 N=m and damping coefficient −b t=2m I A ! Ao e b = 92 g=s. What is the ratio of the amplitude of −b t=m damped oscillations to the initial amplitude after I E ! Eo e 29 cycles? I Subscripted quantities represent the values that would occur without damping, e.g. I The \natural frequency": !o I The initial amplitude: Ao I The initial energy: Eo I The damping comes from dissipation: F = −b v Solution Continued Resonance I Most things vibrate at a natural frequency !o I When they are \driven" by an outside oscillatory force they vibrate in complicated ways I When the \drive" frequency !d is close to or at the natural frequency !o bad things can happen: https: //www.youtube.com/watch?v=BE827gwnnk4 Active Learning Exercise Problem: Simple Harmonic Motion In the lab Simple Harmonic Motion, the position x[m] vs. time t[s] for a mass at the end of a spring are measured by a motion sensor on the floor. The spring has a spring constant of 4:94 N=m, and the mass at the end of the spring is 0:5 kg. At t = 0, the mass is pulled up 0:1 m from the equilibrium position, x = 0, and released. Assume that the spring is massless, DRAW the best graph, including numbered tick marks on each axis, to predict the position vs. time for the mass. (As detected by a motion sensor on the floor.).
Recommended publications
  • The Swinging Spring: Regular and Chaotic Motion
    References The Swinging Spring: Regular and Chaotic Motion Leah Ganis May 30th, 2013 Leah Ganis The Swinging Spring: Regular and Chaotic Motion References Outline of Talk I Introduction to Problem I The Basics: Hamiltonian, Equations of Motion, Fixed Points, Stability I Linear Modes I The Progressing Ellipse and Other Regular Motions I Chaotic Motion I References Leah Ganis The Swinging Spring: Regular and Chaotic Motion References Introduction The swinging spring, or elastic pendulum, is a simple mechanical system in which many different types of motion can occur. The system is comprised of a heavy mass, attached to an essentially massless spring which does not deform. The system moves under the force of gravity and in accordance with Hooke's Law. z y r φ x k m Leah Ganis The Swinging Spring: Regular and Chaotic Motion References The Basics We can write down the equations of motion by finding the Lagrangian of the system and using the Euler-Lagrange equations. The Lagrangian, L is given by L = T − V where T is the kinetic energy of the system and V is the potential energy. Leah Ganis The Swinging Spring: Regular and Chaotic Motion References The Basics In Cartesian coordinates, the kinetic energy is given by the following: 1 T = m(_x2 +y _ 2 +z _2) 2 and the potential is given by the sum of gravitational potential and the spring potential: 1 V = mgz + k(r − l )2 2 0 where m is the mass, g is the gravitational constant, k the spring constant, r the stretched length of the spring (px2 + y 2 + z2), and l0 the unstretched length of the spring.
    [Show full text]
  • Dynamics of the Elastic Pendulum Qisong Xiao; Shenghao Xia ; Corey Zammit; Nirantha Balagopal; Zijun Li Agenda
    Dynamics of the Elastic Pendulum Qisong Xiao; Shenghao Xia ; Corey Zammit; Nirantha Balagopal; Zijun Li Agenda • Introduction to the elastic pendulum problem • Derivations of the equations of motion • Real-life examples of an elastic pendulum • Trivial cases & equilibrium states • MATLAB models The Elastic Problem (Simple Harmonic Motion) 푑2푥 푑2푥 푘 • 퐹 = 푚 = −푘푥 = − 푥 푛푒푡 푑푡2 푑푡2 푚 • Solve this differential equation to find 푥 푡 = 푐1 cos 휔푡 + 푐2 sin 휔푡 = 퐴푐표푠(휔푡 − 휑) • With velocity and acceleration 푣 푡 = −퐴휔 sin 휔푡 + 휑 푎 푡 = −퐴휔2cos(휔푡 + 휑) • Total energy of the system 퐸 = 퐾 푡 + 푈 푡 1 1 1 = 푚푣푡2 + 푘푥2 = 푘퐴2 2 2 2 The Pendulum Problem (with some assumptions) • With position vector of point mass 푥 = 푙 푠푖푛휃푖 − 푐표푠휃푗 , define 푟 such that 푥 = 푙푟 and 휃 = 푐표푠휃푖 + 푠푖푛휃푗 • Find the first and second derivatives of the position vector: 푑푥 푑휃 = 푙 휃 푑푡 푑푡 2 푑2푥 푑2휃 푑휃 = 푙 휃 − 푙 푟 푑푡2 푑푡2 푑푡 • From Newton’s Law, (neglecting frictional force) 푑2푥 푚 = 퐹 + 퐹 푑푡2 푔 푡 The Pendulum Problem (with some assumptions) Defining force of gravity as 퐹푔 = −푚푔푗 = 푚푔푐표푠휃푟 − 푚푔푠푖푛휃휃 and tension of the string as 퐹푡 = −푇푟 : 2 푑휃 −푚푙 = 푚푔푐표푠휃 − 푇 푑푡 푑2휃 푚푙 = −푚푔푠푖푛휃 푑푡2 Define 휔0 = 푔/푙 to find the solution: 푑2휃 푔 = − 푠푖푛휃 = −휔2푠푖푛휃 푑푡2 푙 0 Derivation of Equations of Motion • m = pendulum mass • mspring = spring mass • l = unstreatched spring length • k = spring constant • g = acceleration due to gravity • Ft = pre-tension of spring 푚푔−퐹 • r = static spring stretch, 푟 = 푡 s 푠 푘 • rd = dynamic spring stretch • r = total spring stretch 푟푠 + 푟푑 Derivation of Equations of Motion
    [Show full text]
  • Forced Mechanical Oscillations
    169 Carl von Ossietzky Universität Oldenburg – Faculty V - Institute of Physics Module Introductory laboratory course physics – Part I Forced mechanical oscillations Keywords: HOOKE's law, harmonic oscillation, harmonic oscillator, eigenfrequency, damped harmonic oscillator, resonance, amplitude resonance, energy resonance, resonance curves References: /1/ DEMTRÖDER, W.: „Experimentalphysik 1 – Mechanik und Wärme“, Springer-Verlag, Berlin among others. /2/ TIPLER, P.A.: „Physik“, Spektrum Akademischer Verlag, Heidelberg among others. /3/ ALONSO, M., FINN, E. J.: „Fundamental University Physics, Vol. 1: Mechanics“, Addison-Wesley Publishing Company, Reading (Mass.) among others. 1 Introduction It is the object of this experiment to study the properties of a „harmonic oscillator“ in a simple mechanical model. Such harmonic oscillators will be encountered in different fields of physics again and again, for example in electrodynamics (see experiment on electromagnetic resonant circuit) and atomic physics. Therefore it is very important to understand this experiment, especially the importance of the amplitude resonance and phase curves. 2 Theory 2.1 Undamped harmonic oscillator Let us observe a set-up according to Fig. 1, where a sphere of mass mK is vertically suspended (x-direc- tion) on a spring. Let us neglect the effects of friction for the moment. When the sphere is at rest, there is an equilibrium between the force of gravity, which points downwards, and the dragging resilience which points upwards; the centre of the sphere is then in the position x = 0. A deflection of the sphere from its equilibrium position by x causes a proportional dragging force FR opposite to x: (1) FxR ∝− The proportionality constant (elastic or spring constant or directional quantity) is denoted D, and Eq.
    [Show full text]
  • 14 Mass on a Spring and Other Systems Described by Linear ODE
    14 Mass on a spring and other systems described by linear ODE 14.1 Mass on a spring Consider a mass hanging on a spring (see the figure). The position of the mass in uniquely defined by one coordinate x(t) along the x-axis, whose direction is chosen to be along the direction of the force of gravity. Note that if this mass is in an equilibrium, then the string is stretched, say by amount s units. The origin of x-axis is taken that point of the mass at rest. Figure 1: Mechanical system “mass on a spring” We know that the movement of the mass is determined by the second Newton’s law, that can be stated (for our particular one-dimensional case) as ma = Fi, X where m is the mass of the object, a is the acceleration, which, as we know from Calculus, is the second derivative of the displacement x(t), a =x ¨, and Fi is the net force applied. What we know about the net force? This has to include the gravity, of course: F1 = mg, where g is the acceleration 2 P due to gravity (g 9.8 m/s in metric units). The restoring force of the spring is governed by Hooke’s ≈ law, which says that the restoring force in the opposite to the movement direction is proportional to the distance stretched: F2 = k(s + x), here minus signifies that the force is acting in the opposite − direction, and the distance stretched also includes s units. Note that at the equilibrium (i.e., when x = 0) and absence of other forces we have F1 + F2 = 0 and hence mg ks = 0 (this last expression − often allows to find the spring constant k given the amount of s the spring is stretched by the mass m).
    [Show full text]
  • The Spring-Mass Experiment As a Step from Oscillationsto Waves: Mass and Friction Issues and Their Approaches
    The spring-mass experiment as a step from oscillationsto waves: mass and friction issues and their approaches I. Boscolo1, R. Loewenstein2 1Physics Department, Milano University, via Celoria 16, 20133, Italy. 2Istituto Torno, Piazzale Don Milani 1, 20022 Castano Primo Milano, Italy. E-mail: [email protected] (Received 12 February 2011, accepted 29 June 2011) Abstract The spring-mass experiment is a step in a sequence of six increasingly complex practicals from oscillations to waves in which we cover the first year laboratory program. Both free and forced oscillations are investigated. The spring-mass is subsequently loaded with a disk to introduce friction. The succession of steps is: determination of the spring constant both by Hooke’s law and frequency-mass oscillation law, damping time measurement, resonance and phase curve plots. All cross checks among quantities and laws are done applying compatibility rules. The non negligible mass of the spring and the peculiar physical and teaching problems introduced by friction are discussed. The intriguing waveforms generated in the motions are analyzed. We outline the procedures used through the experiment to improve students' ability to handle equipment, to choose apparatus appropriately, to put theory into action critically and to practice treating data with statistical methods. Keywords: Theory-practicals in Spring-Mass Education Experiment, Friction and Resonance, Waveforms. Resumen El experimento resorte-masa es un paso en una secuencia de seis prácticas cada vez más complejas de oscilaciones a ondas en el que cubrimos el programa del primer año del laboratorio. Ambas oscilaciones libres y forzadas son investigadas. El resorte-masa se carga posteriormente con un disco para introducir la fricción.
    [Show full text]
  • Vibration and Sound Damping in Polymers
    GENERAL ARTICLE Vibration and Sound Damping in Polymers V G Geethamma, R Asaletha, Nandakumar Kalarikkal and Sabu Thomas Excessive vibrations or loud sounds cause deafness or reduced efficiency of people, wastage of energy and fatigue failure of machines/structures. Hence, unwanted vibrations need to be dampened. This article describes the transmis- sion of vibrations/sound through different materials such as metals and polymers. Viscoelasticity and glass transition are two important factors which influence the vibration damping of polymers. Among polymers, rubbers exhibit greater damping capability compared to plastics. Rubbers 1 V G Geethamma is at the reduce vibration and sound whereas metals radiate sound. Mahatma Gandhi Univer- sity, Kerala. Her research The damping property of rubbers is utilized in products like interests include plastics vibration damper, shock absorber, bridge bearing, seismic and rubber composites, and soft lithograpy. absorber, etc. 2R Asaletha is at the Cochin University of Sound is created by the pressure fluctuations in the medium due Science and Technology. to vibration (oscillation) of an object. Vibration is a desirable Her research topic is NR/PS blend- phenomenon as it originates sound. But, continuous vibration is compatibilization studies. harmful to machines and structures since it results in wastage of 3Nandakumar Kalarikkal is energy and causes fatigue failure. Sometimes vibration is a at the Mahatma Gandhi nuisance as it creates noise, and exposure to loud sound causes University, Kerala. His research interests include deafness or reduced efficiency of people. So it is essential to nonlinear optics, synthesis, reduce excessive vibrations and sound. characterization and applications of nano- multiferroics, nano- We can imagine how noisy and irritating it would be to pull a steel semiconductors, nano- chair along the floor.
    [Show full text]
  • What Is Hooke's Law? 16 February 2015, by Matt Williams
    What is Hooke's Law? 16 February 2015, by Matt Williams Like so many other devices invented over the centuries, a basic understanding of the mechanics is required before it can so widely used. In terms of springs, this means understanding the laws of elasticity, torsion and force that come into play – which together are known as Hooke's Law. Hooke's Law is a principle of physics that states that the that the force needed to extend or compress a spring by some distance is proportional to that distance. The law is named after 17th century British physicist Robert Hooke, who sought to demonstrate the relationship between the forces applied to a spring and its elasticity. He first stated the law in 1660 as a Latin anagram, and then published the solution in 1678 as ut tensio, sic vis – which translated, means "as the extension, so the force" or "the extension is proportional to the force"). This can be expressed mathematically as F= -kX, where F is the force applied to the spring (either in the form of strain or stress); X is the displacement A historical reconstruction of what Robert Hooke looked of the spring, with a negative value demonstrating like, painted in 2004 by Rita Greer. Credit: that the displacement of the spring once it is Wikipedia/Rita Greer/FAL stretched; and k is the spring constant and details just how stiff it is. Hooke's law is the first classical example of an The spring is a marvel of human engineering and explanation of elasticity – which is the property of creativity.
    [Show full text]
  • The Damped Harmonic Oscillator
    THE DAMPED HARMONIC OSCILLATOR Reading: Main 3.1, 3.2, 3.3 Taylor 5.4 Giancoli 14.7, 14.8 Free, undamped oscillators – other examples k m L No friction I C k m q 1 x m!x! = !kx q!! = ! q LC ! ! r; r L = θ Common notation for all g !! 2 T ! " # ! !!! + " ! = 0 m L 0 mg k friction m 1 LI! + q + RI = 0 x C 1 Lq!!+ q + Rq! = 0 C m!x! = !kx ! bx! ! r L = cm θ Common notation for all g !! ! 2 T ! " # ! # b'! !!! + 2"!! +# ! = 0 m L 0 mg Natural motion of damped harmonic oscillator Force = mx˙˙ restoring force + resistive force = mx˙˙ ! !kx ! k Need a model for this. m Try restoring force proportional to velocity k m x !bx! How do we choose a model? Physically reasonable, mathematically tractable … Validation comes IF it describes the experimental system accurately Natural motion of damped harmonic oscillator Force = mx˙˙ restoring force + resistive force = mx˙˙ !kx ! bx! = m!x! ! Divide by coefficient of d2x/dt2 ! and rearrange: x 2 x 2 x 0 !!+ ! ! + " 0 = inverse time β and ω0 (rate or frequency) are generic to any oscillating system This is the notation of TM; Main uses γ = 2β. Natural motion of damped harmonic oscillator 2 x˙˙ + 2"x˙ +#0 x = 0 Try x(t) = Ce pt C, p are unknown constants ! x˙ (t) = px(t), x˙˙ (t) = p2 x(t) p2 2 p 2 x(t) 0 Substitute: ( + ! + " 0 ) = ! 2 2 Now p is known (and p = !" ± " ! # 0 there are 2 p values) p t p t x(t) = Ce + + C'e " Must be sure to make x real! ! Natural motion of damped HO Can identify 3 cases " < #0 underdamped ! " > #0 overdamped ! " = #0 critically damped time ---> ! underdamped " < #0 # 2 !1 = ! 0 1" 2 ! 0 ! time ---> 2 2 p = !" ± " ! # 0 = !" ± i#1 x(t) = Ce"#t+i$1t +C*e"#t"i$1t Keep x(t) real "#t x(t) = Ae [cos($1t +%)] complex <-> amp/phase System oscillates at "frequency" ω1 (very close to ω0) ! - but in fact there is not only one single frequency associated with the motion as we will see.
    [Show full text]
  • VIBRATIONAL SPECTROSCOPY • the Vibrational Energy V(R) Can Be Calculated Using the (Classical) Model of the Harmonic Oscillator
    VIBRATIONAL SPECTROSCOPY • The vibrational energy V(r) can be calculated using the (classical) model of the harmonic oscillator: • Using this potential energy function in the Schrödinger equation, the vibrational frequency can be calculated: The vibrational frequency is increasing with: • increasing force constant f = increasing bond strength • decreasing atomic mass • Example: f cc > f c=c > f c-c Vibrational spectra (I): Harmonic oscillator model • Infrared radiation in the range from 10,000 – 100 cm –1 is absorbed and converted by an organic molecule into energy of molecular vibration –> this absorption is quantized: A simple harmonic oscillator is a mechanical system consisting of a point mass connected to a massless spring. The mass is under action of a restoring force proportional to the displacement of particle from its equilibrium position and the force constant f (also k in followings) of the spring. MOLECULES I: Vibrational We model the vibrational motion as a harmonic oscillator, two masses attached by a spring. nu and vee! Solving the Schrödinger equation for the 1 v h(v 2 ) harmonic oscillator you find the following quantized energy levels: v 0,1,2,... The energy levels The level are non-degenerate, that is gv=1 for all values of v. The energy levels are equally spaced by hn. The energy of the lowest state is NOT zero. This is called the zero-point energy. 1 R h Re 0 2 Vibrational spectra (III): Rotation-vibration transitions The vibrational spectra appear as bands rather than lines. When vibrational spectra of gaseous diatomic molecules are observed under high-resolution conditions, each band can be found to contain a large number of closely spaced components— band spectra.
    [Show full text]
  • Harmonic Oscillator with Time-Dependent Effective-Mass And
    Harmonic oscillator with time-dependent effective-mass and frequency with a possible application to 'chirped tidal' gravitational waves forces affecting interferometric detectors Yacob Ben-Aryeh Physics Department, Technion-Israel Institute of Technology, Haifa,32000,Israel e-mail: [email protected] ; Fax: 972-4-8295755 Abstract The general theory of time-dependent frequency and time-dependent mass ('effective mass') is described. The general theory for time-dependent harmonic-oscillator is applied in the present research for studying certain quantum effects in the interferometers for detecting gravitational waves. When an astronomical binary system approaches its point of coalescence the gravitational wave intensity and frequency are increasing and this can lead to strong deviations from the simple description of harmonic oscillations for the interferometric masses on which the mirrors are placed. It is shown that under such conditions the harmonic oscillations of these masses can be described by mechanical harmonic-oscillators with time- dependent frequency and effective-mass. In the present theoretical model the effective- mass is decreasing with time describing pumping phenomena in which the oscillator amplitude is increasing with time. The quantization of this system is analyzed by the use of the adiabatic approximation. It is found that the increase of the gravitational wave intensity, within the adiabatic approximation, leads to squeezing phenomena where the quantum noise in one quadrature is increased and in the other quadrature it is decreased. PACS numbers: 04.80.Nn, 03.65.Bz, 42.50.Dv. Keywords: Gravitational waves, harmonic-oscillator with time-dependent effective- mass 1 1.Introduction The problem of harmonic-oscillator with time-dependent mass has been related to a quantum damped oscillator [1-7].
    [Show full text]
  • 22.51 Course Notes, Chapter 9: Harmonic Oscillator
    9. Harmonic Oscillator 9.1 Harmonic Oscillator 9.1.1 Classical harmonic oscillator and h.o. model 9.1.2 Oscillator Hamiltonian: Position and momentum operators 9.1.3 Position representation 9.1.4 Heisenberg picture 9.1.5 Schr¨odinger picture 9.2 Uncertainty relationships 9.3 Coherent States 9.3.1 Expansion in terms of number states 9.3.2 Non-Orthogonality 9.3.3 Uncertainty relationships 9.3.4 X-representation 9.4 Phonons 9.4.1 Harmonic oscillator model for a crystal 9.4.2 Phonons as normal modes of the lattice vibration 9.4.3 Thermal energy density and Specific Heat 9.1 Harmonic Oscillator We have considered up to this moment only systems with a finite number of energy levels; we are now going to consider a system with an infinite number of energy levels: the quantum harmonic oscillator (h.o.). The quantum h.o. is a model that describes systems with a characteristic energy spectrum, given by a ladder of evenly spaced energy levels. The energy difference between two consecutive levels is ∆E. The number of levels is infinite, but there must exist a minimum energy, since the energy must always be positive. Given this spectrum, we expect the Hamiltonian will have the form 1 n = n + ~ω n , H | i 2 | i where each level in the ladder is identified by a number n. The name of the model is due to the analogy with characteristics of classical h.o., which we will review first. 9.1.1 Classical harmonic oscillator and h.o.
    [Show full text]
  • Industrial Spring Break Device
    Spring break device 25449 25549 299540 299541 Index 1. Overview 1. Overview ..................................................... 2 Description 2. Tools ............................................................ 3 A Shaft 3. Operation .................................................... 3 B Set srcews (M8 x 10) 4. Scope of application .................................. 3 C Blocking wheel 5. Installation .................................................. 4 D Blocking plate 6. Optional extras ........................................... 8 E Bolt (M10 x 30) 7. TÜV approval ............................................ 10 F Safety lock 8. Replacing (after a broken spring) ........... 11 G Blocking pawl 9. Maintenance ............................................. 11 H Safety spring 10. Supplier ..................................................... 11 I Base plate 11. Terms and conditions of supply ............. 11 J Bearing K Spacer L Spring plug M Nut (M10) N Torsion spring O Micro switch I E J K L M N F G H D C B A 2 3 4. Scope of application G D Spring break protection devices 25449 and 25549 are used in industrial sectional doors that are operated either manually, using a chain or C electrically. O • Type 25449 and 299540/299541 are used in sectional doors with a 1” (25.4mm) shaft with key way. • Type 25549 is used in sectional doors with a 1 ¼” (31.75mm) shaft with key way. 2. Tools • Spring heads to be fitted: 50mm spring head up to 152mm spring head When using a certain cable drum, the minimum number of spring break protection devices per door 5 mm may be calculated as follows: Mmax 4 mm = D 0,5 × d × g 16/17 mm Mmax Maximum torque (210 Nm) x 2 d Drum diameter (m) g Gravity (9,81 m/s2) D Door panel weight (kg) 3. Operation • D is the weight that dertermines if one or more IMPORTANT: spring break devices are needed.
    [Show full text]