Hindawi Publishing Corporation Shock and Vibration Volume 2014, Article ID 203709, 32 pages http://dx.doi.org/10.1155/2014/203709 Research Article 3 DOF Spherical Pendulum Oscillations with a Uniform Slewing Pivot Center and a Small Angle Assumption Alexander V. Perig,1 Alexander N. Stadnik,2 Alexander I. Deriglazov,2 and Sergey V. Podlesny2 1 Manufacturing Processes and Automation Engineering Department, Engineering Automation Faculty, Donbass State Engineering Academy, Shkadinova 72, Donetsk Region, Kramatorsk 84313, Ukraine 2 Department of Technical Mechanics, Engineering Automation Faculty, Donbass State Engineering Academy, Shkadinova72,DonetskRegion,Kramatorsk84313,Ukraine Correspondence should be addressed to Alexander V. Perig;
[email protected] Received 11 February 2014; Revised 7 May 2014; Accepted 21 May 2014; Published 4 August 2014 Academic Editor: Mickael¨ Lallart Copyright © 2014 Alexander V. Perig et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The present paper addresses the derivation of a 3 DOF mathematical model of a spherical pendulum attached to a crane boom tip for uniform slewing motion of the crane. The governing nonlinear DAE-based system for crane boom uniform slewing has been proposed, numerically solved, and experimentally verified. The proposed nonlinear and linearized models have been derived with an introduction of Cartesian coordinates. The linearizedodel m with small angle assumption has an analytical solution. The relative and absolute payload trajectories have been derived. The amplitudes of load oscillations, which depend on computed initial conditions, have been estimated. The dependence of natural frequencies on the transport inertia forces and gravity forces has been computed.