Quantitative Model for Choosing Programming Language for Online Instruction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fortran Isolates the CSE Community
Fortran Isolates the CSE Community Roscoe A. Bartlett, Oak Ridge National Laboratory 10/08/2013 Introduction testing and test-driven development (TDD) by Fortran-only developers. While the research and The continued usage of Fortran as a dominant data supporting the effectiveness of unit testing and programming language isolates the computational TDD has been around for many years [10, 3, 12, 7], science & engineering (CSE) community and hinders the usage of these very successful approaches is very the learning and adoption of modern software low in the Fortran CSE development community. engineering methods. The issue is not primarily that This claim is backed up by personal experience, web Fortran is not suitable for developing many different posts, web searches, and observations by other types of software. Indeed, the are many examples of authors. One interesting data point is that a Google quality CSE software written in Fortran that can search of \Fortran Unit Test" (on 10/4/2013) brings legitimately be considered to be \self-sustaining up a limited number of relevant search results but software" (i.e. clean design and code, well tested, the top result is for the FRUIT Fortran Unit Test minimal controlled dependencies, etc., see [1]). framework [5] (written in Ruby). Right on the main The problem is that there are many CSE page for FRUIT is a quote from FRUIT's author development groups and communities that only Andrew Hang Chen which states: know Fortran and are therefore isolated from the broader software development community where Most of the FORTRAN are important Fortran usage is extremely low (ranked 24th in the in nature, used in nuclear and aerospace TIOBE Index from Nov. -
PHP Programming Cookbook I
PHP Programming Cookbook i PHP Programming Cookbook PHP Programming Cookbook ii Contents 1 PHP Tutorial for Beginners 1 1.1 Introduction......................................................1 1.1.1 Where is PHP used?.............................................1 1.1.2 Why PHP?..................................................2 1.2 XAMPP Setup....................................................3 1.3 PHP Language Basics.................................................5 1.3.1 Escaping to PHP...............................................5 1.3.2 Commenting PHP..............................................5 1.3.3 Hello World..................................................6 1.3.4 Variables in PHP...............................................6 1.3.5 Conditional Statements in PHP........................................7 1.3.6 Loops in PHP.................................................8 1.4 PHP Arrays...................................................... 10 1.5 PHP Functions.................................................... 12 1.6 Connecting to a Database............................................... 14 1.6.1 Connecting to MySQL Databases...................................... 14 1.6.2 Connecting to MySQLi Databases (Procedurial).............................. 14 1.6.3 Connecting to MySQLi databases (Object-Oriented)............................ 15 1.6.4 Connecting to PDO Databases........................................ 15 1.7 PHP Form Handling................................................. 15 1.8 PHP Include & Require Statements......................................... -
Object-Oriented Programming Basics with Java
Object-Oriented Programming Object-Oriented Programming Basics With Java In his keynote address to the 11th World Computer Congress in 1989, renowned computer scientist Donald Knuth said that one of the most important lessons he had learned from his years of experience is that software is hard to write! Computer scientists have struggled for decades to design new languages and techniques for writing software. Unfortunately, experience has shown that writing large systems is virtually impossible. Small programs seem to be no problem, but scaling to large systems with large programming teams can result in $100M projects that never work and are thrown out. The only solution seems to lie in writing small software units that communicate via well-defined interfaces and protocols like computer chips. The units must be small enough that one developer can understand them entirely and, perhaps most importantly, the units must be protected from interference by other units so that programmers can code the units in isolation. The object-oriented paradigm fits these guidelines as designers represent complete concepts or real world entities as objects with approved interfaces for use by other objects. Like the outer membrane of a biological cell, the interface hides the internal implementation of the object, thus, isolating the code from interference by other objects. For many tasks, object-oriented programming has proven to be a very successful paradigm. Interestingly, the first object-oriented language (called Simula, which had even more features than C++) was designed in the 1960's, but object-oriented programming has only come into fashion in the 1990's. -
The Machine That Builds Itself: How the Strengths of Lisp Family
Khomtchouk et al. OPINION NOTE The Machine that Builds Itself: How the Strengths of Lisp Family Languages Facilitate Building Complex and Flexible Bioinformatic Models Bohdan B. Khomtchouk1*, Edmund Weitz2 and Claes Wahlestedt1 *Correspondence: [email protected] Abstract 1Center for Therapeutic Innovation and Department of We address the need for expanding the presence of the Lisp family of Psychiatry and Behavioral programming languages in bioinformatics and computational biology research. Sciences, University of Miami Languages of this family, like Common Lisp, Scheme, or Clojure, facilitate the Miller School of Medicine, 1120 NW 14th ST, Miami, FL, USA creation of powerful and flexible software models that are required for complex 33136 and rapidly evolving domains like biology. We will point out several important key Full list of author information is features that distinguish languages of the Lisp family from other programming available at the end of the article languages and we will explain how these features can aid researchers in becoming more productive and creating better code. We will also show how these features make these languages ideal tools for artificial intelligence and machine learning applications. We will specifically stress the advantages of domain-specific languages (DSL): languages which are specialized to a particular area and thus not only facilitate easier research problem formulation, but also aid in the establishment of standards and best programming practices as applied to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the most comprehensive Lisp dialect, which is commonly referred to as the “programmable programming language.” We are convinced that Lisp grants programmers unprecedented power to build increasingly sophisticated artificial intelligence systems that may ultimately transform machine learning and AI research in bioinformatics and computational biology. -
Preview Fortran Tutorial (PDF Version)
Fortran i Fortran About the Tutorial Fortran was originally developed by a team at IBM in 1957 for scientific calculations. Later developments made it into a high level programming language. In this tutorial, we will learn the basic concepts of Fortran and its programming code. Audience This tutorial is designed for the readers who wish to learn the basics of Fortran. Prerequisites This tutorial is designed for beginners. A general awareness of computer programming languages is the only prerequisite to make the most of this tutorial. Copyright & Disclaimer Copyright 2017 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at [email protected] i Fortran Table of Contents About the Tutorial ····································································································································i Audience ··················································································································································i -
Python - the Most Attractive & Fastest-Growing Programming Language for Developers
Vol-6 Issue-5 2020 IJARIIE-ISSN(O)-2395-4396 Python - The Most Attractive & Fastest-growing Programming Language for Developers Vishwa Prakash (SRKUMTSE1804) M-Tech, Department of Software Engineering, R.K.D.F. Institute of Science & Technology, Bhopal, M.P., India ABSTRACT Python is a very suitable and easy language for both learning and real-world programming. It is a powerful and high-level object-oriented programming language and created by Guido van Rossum. It is a very good choice for those who are learning programming for the first time because of its simple syntax. It has various standard libraries so it using by a developer in vast range and its capacity to integrate with other languages and use their features attract developers too. In this paper, we describe the main characteristics and features of Python programming. We also discuss the reasons behind python being credited as the most fastest-growing high-level object orient language. We collected the contents of the research done over the articles procured from various magazines and popular websites. This paper then discusses applications of Python programming. To end with we will see a few good examples where python programming is being used. Keyword : - Python, programming languages, object-oriented, open-source, interoperability, Real-world. etc… 1. INTRODUCTION In the late 1980s, Python was conceived, while its implementation began in late 1989 by Guido van Rossum in the Netherlands atCWI (Centrum Wiskunde & Informatica). It was implemented as a successor of ABC language and capable of interfacing and exception handling with the operating system Amoeba. Author Van Rossum is Python's principal and his continuing central role in deciding the road to the development of Python. -
Php Tutorial
PHP About the Tutorial The PHP Hypertext Preprocessor (PHP) is a programming language that allows web developers to create dynamic content that interacts with databases. PHP is basically used for developing web-based software applications. This tutorial will help you understand the basics of PHP and how to put it in practice. Audience This tutorial has been designed to meet the requirements of all those readers who are keen to learn the basics of PHP. Prerequisites Before proceeding with this tutorial, you should have a basic understanding of computer programming, Internet, Database, and MySQL. Copyright & Disclaimer © Copyright 2016 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at [email protected] i PHP Table of Contents About the Tutorial ........................................................................................................................................... -
The First Programming Language and Freshman Year in Computer Science: Characterization and Tips for Better Decision Making
The first programming language and freshman year in computer science: characterization and tips for better decision making Sónia Rolland Sobral [0000-0002-5041-3597] 1 REMIT, Universidade Portucalense, Porto, Portugal [email protected] Abstract. The ability to program is the “visible” competency to acquire in an introductory unit in com- puter science. However, before a student is able to write a program, he needs to understand the problem: before formalizing, the student must have to (be able) to think, (be able) to solve and (be able) to define. At an early stage of learning there are no significant differences between programming languages. The discussion of the early programming language continues: probably never will be a consensus among academics. The Association for Computing Machinery (ACM) and Institute of Electrical and Electronics Engineers (IEEE) computer science curriculum recommendations haven't clearly defined which programming language to adopt: it is the course directors and teachers who must make this choice, consciously and not only following the trends. This article presents a set of items that should be considered when you make a programming lan- guage choice for the first programming unit in higher education computer science courses. Keywords: Programming Languages, Undergraduate Studies; Introduction to Programming. 1 Introduction Programmability is the “visible” skill to be acquired in an introductory unit in computer science. Program- ming can be considered an art [1], a science [2], a discipline [3] or even the science of abstraction [4]. However, using a programming language is no more than a method for the programmer can communicate instructions to the computer. -
Teach Yourself Perl 5 in 21 Days
Teach Yourself Perl 5 in 21 days David Till Table of Contents: Introduction ● Who Should Read This Book? ● Special Features of This Book ● Programming Examples ● End-of-Day Q& A and Workshop ● Conventions Used in This Book ● What You'll Learn in 21 Days Week 1 Week at a Glance ● Where You're Going Day 1 Getting Started ● What Is Perl? ● How Do I Find Perl? ❍ Where Do I Get Perl? ❍ Other Places to Get Perl ● A Sample Perl Program ● Running a Perl Program ❍ If Something Goes Wrong ● The First Line of Your Perl Program: How Comments Work ❍ Comments ● Line 2: Statements, Tokens, and <STDIN> ❍ Statements and Tokens ❍ Tokens and White Space ❍ What the Tokens Do: Reading from Standard Input ● Line 3: Writing to Standard Output ❍ Function Invocations and Arguments ● Error Messages ● Interpretive Languages Versus Compiled Languages ● Summary ● Q&A ● Workshop ❍ Quiz ❍ Exercises Day 2 Basic Operators and Control Flow ● Storing in Scalar Variables Assignment ❍ The Definition of a Scalar Variable ❍ Scalar Variable Syntax ❍ Assigning a Value to a Scalar Variable ● Performing Arithmetic ❍ Example of Miles-to-Kilometers Conversion ❍ The chop Library Function ● Expressions ❍ Assignments and Expressions ● Other Perl Operators ● Introduction to Conditional Statements ● The if Statement ❍ The Conditional Expression ❍ The Statement Block ❍ Testing for Equality Using == ❍ Other Comparison Operators ● Two-Way Branching Using if and else ● Multi-Way Branching Using elsif ● Writing Loops Using the while Statement ● Nesting Conditional Statements ● Looping Using -
The Power of Interoperability: Why Objects Are Inevitable
The Power of Interoperability: Why Objects Are Inevitable Jonathan Aldrich Carnegie Mellon University Pittsburgh, PA, USA [email protected] Abstract 1. Introduction Three years ago in this venue, Cook argued that in Object-oriented programming has been highly suc- their essence, objects are what Reynolds called proce- cessful in practice, and has arguably become the dom- dural data structures. His observation raises a natural inant programming paradigm for writing applications question: if procedural data structures are the essence software in industry. This success can be documented of objects, has this contributed to the empirical success in many ways. For example, of the top ten program- of objects, and if so, how? ming languages at the LangPop.com index, six are pri- This essay attempts to answer that question. After marily object-oriented, and an additional two (PHP reviewing Cook’s definition, I propose the term ser- and Perl) have object-oriented features.1 The equiva- vice abstractions to capture the essential nature of ob- lent numbers for the top ten languages in the TIOBE in- jects. This terminology emphasizes, following Kay, that dex are six and three.2 SourceForge’s most popular lan- objects are not primarily about representing and ma- guages are Java and C++;3 GitHub’s are JavaScript and nipulating data, but are more about providing ser- Ruby.4 Furthermore, objects’ influence is not limited vices in support of higher-level goals. Using examples to object-oriented languages; Cook [8] argues that Mi- taken from object-oriented frameworks, I illustrate the crosoft’s Component Object Model (COM), which has unique design leverage that service abstractions pro- a C language interface, is “one of the most pure object- vide: the ability to define abstractions that can be ex- oriented programming models yet defined.” Academ- tended, and whose extensions are interoperable in a ically, object-oriented programming is a primary focus first-class way. -
Comparing Languages for Engineering Server Software: Erlang, Go, and Scala with Akka
Comparing Languages for Engineering Server Software: Erlang, Go, and Scala with Akka Ivan Valkov, Natalia Chechina, and Phil Trinder School of Computing Science, University of Glasgow G12 8RZ, United Kingdom [email protected], {Natalia.Chechina, Phil.Trinder}@glasgow.ac.uk Abstract functional or object-oriented, with high-level coordination models, Servers are a key element of current IT infrastructures, and must e.g. actors as in Erlang [2] or a process algebra as in Go [6]. Indeed, often deal with large numbers of concurrent requests. The program- the success of some server-based companies is even attributed to ming language used to construct the server has an important role their use of specific languages. As examples WhatsApp’s success in engineering efficient server software, and must support massive is attributed to their use of Erlang [27]; the video streaming leader concurrency on multicore machines with low communication and Twitch uses Go to serve millions of users a day [13]. Research synchronisation overheads. contributions of this paper include the following: This paper investigates 12 highly concurrent programming lan- • A survey of programming language characteristics relevant for guages suitable for engineering servers, and analyses three repre- servers (Section 2.1). sentative languages in detail: Erlang, Go, and Scala with Akka. • The design and implementation of three benchmarks to analyse We have designed three server benchmarks that analyse key per- the multicore server capabilities of Erlang, Go, and Scala with formance characteristics of the languages. The benchmark results Akka (Section 3). suggest that where minimising message latency is crucial, Go and Erlang are best; that Scala with Akka is capable of supporting the • An evaluation of Erlang, Go, and Scala with Akka for key largest number of dormant processes; that for servers that frequently server capabilities, i.e. -
Programming Languages: a Survey
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 5 Issue: 5 307 – 313 _______________________________________________________________________________________________ Programming Languages: A Survey Krishan Kumar1, Sonal Dahiya2 Assistant professor, ASET, Amity University Haryana, Gurgaon, Haryana, India1,2 [email protected], [email protected] Abstract— The world of Programming Languages is very dynamic. Every company is launching their own programming language which can cater their specific demand and requirement. In this paper, we discussed various popular rankings proposed by different organizations to decide most popular language on basis of various factors like number of Google Trends searches, number of job advertisements, and number of books sold for that language and many more factors. Keywords— Java Programming, Python, Ruby, C. __________________________________________________*****_________________________________________________ I. INTRODUCTION It is difficult to decide which programming languages are most widely used. One language may occupy the greater number of programmer hours, a different one have more lines of code, a third may utilize the most CPU time, and so on. Some languages are very popular for particular kind of applications. For example, COBOL is still strong in the corporate data center, often on large mainframes; FORTRAN in engineering applications; C in embedded applications and operating systems; and other languages are regularly used to write much different kind of applications. Various methods of measuring language popularity has been used, i.e; A. Counting the number of times the language name is mentioned in web searches, such as is done by Google Trends. B. counting the number of job advertisements that mention the language [1][2] C.