Checklist of the Central European Mammal Species 6

Total Page:16

File Type:pdf, Size:1020Kb

Checklist of the Central European Mammal Species 6 Checklist of the Central European mammal species 6 Erinaceomorpha Erinaceidae Erinaceus roumanicus Barrett-Hamilton, 1900 – Northern White-breasted Hedgehog Erinaceus europaeus Linnaeus, 1758 – Western European Hedgehog Soricomorpha Soricidae Neomys anomalus Cabrera, 1907 – Miller’s Water Shrew Neomys fodiens (Pennant, 1771) – Eurasian Water Shrew Sorex alpinus Schinz, 1837 – Alpine Shrew Sorex araneus Linnaeus, 1758 – Common Shrew Sorex arunchi Lapini & Testone, 1998 – Udine Shrew Sorex coronatus Millet, 1828 – Crowned Shrew Sorex minutus Linnaeus, 1766 – Eurasian Pygmy Shrew Crocidura leucodon (Hermann, 1780) – Bicoloured white-toothed Shrew Crocidura russula (Hermann, 1780) Greater white-toothed Shrew Crocidura suaveolens (Pallas, 1811) – Lesser white-toothed Shrew Talpidae Talpa europaea Linnaeus, 1758 – Common Mole Chiroptera Rhinolophidae Rhinolophus blasii Peters, 1867 – Blasius’s Horseshoe Bat Rhinolophus euryale Blasius, 1853 – Mediterranean Horseshoe Bat Rhinolophus ferrumequinum (Schreber, 1774) – Greater Horshoe Bat Rhinolophus hipposideros (Bechstein, 1800) – Lesser Horseshoe Bat Rhinolophus mehelyi Matschie, 1901 – Mehely’s Horseshoe Bat Vespertilionidae Eptesicus nilssonii (Keyserling and Blasius, 1839) – Northern Bat Eptesicus serotinus (Schreber, 1774) – Serotine Pipistrellus kuhlii (Kuhl, 1817) – Kuhl’s Pipistrelle Pipistrellus nathusii (Keyserling and Blasius, 1839) – Nathusius’ Pipistrelle Pipistrellus pipistrellus (Schreber, 1774) – Common Pipistrelle Pipistrellus pygmaeus (Leach, 1825) – Soprano Pipistrelle Nyctalus lasiopterus (Schreber, 1780) – Greater Noctule Nyctalus leisleri (Kuhl, 1817) – Leisler’s Bat Nyctalus noctula (Schreber, 1774) – Noctule Myotis alcathoe Helversen and Heller, 2001 – Alcathoe Whiskered Bat Myotis aurascens Kuzjakin, 1935 – Steppe Whiskered Bat Myotis bechsteinii (Kuhl, 1817) – Bechstein’s Bat Myotis blythii (Tomes, 1857) – Lesser Mouse-eared Bat Myotis brandtii (Eversmann, 1845) – Brandt’s Bat Hair and fur atlas of Central European mammals 79 6. Checklist of Central European mammal species Myotis capaccinii (Bonaparte, 1837) – Long-fingered Bat Myotis dasycneme (Boie, 1825) – Pond Bat Myotis daubentonii (Kuhl, 1817) – Daubenton’s Bat Myotis emarginatus (Geoffroy, 1806) – Geoffroy’s Bat Myotis myotis (Borkhausen, 1797) – Greater Mouse-eared Bat Myotis mystacinus (Kuhl, 1817) – Whiskered Myotis Myotis nattereri (Kuhl, 1817) – Natterer’s Bat Plecotus auritus (Linnaeus, 1758) – Brown Long-eared Bat Plecotus austriacus (Fischer, 1829) – Grey Long-eared Bat Plecotus macrobullaris Kuzjakin, 1965 – Mountain Long-eared Bat Hypsugo savii (Bonaparte, 1837) – Savi’s Pipistrelle Barbastella barbastellus (Schreber, 1774) – Western Barbastelle Vespertilio murinus Linnaeus, 1758 – Particoloured Bat Miniopteridae Miniopterus schreibersii (Kuhl, 1817) – Schreiber‘s Bent-winged Bat Molossidae Tadarida teniotis (Rafinesque, 1814) – European Free-tailed Bat Lagomorpha Leporidae Lepus europaeus Pallas, 1778 – European Hare Lepus timidus Linnaeus, 1758 – Mountain Hare Oryctolagus cuniculus (Linnaeus, 1758) – European Rabbit Rodentia Sciuridae Sciurus vulgaris Linnaeus, 1758 – Red Squirrel Eutamias sibiricus (Laxmann, 1769) – Siberian Chipmunk Spermophilus citellus (Linnaeus, 1766) – European Ground Squirrel Spermophilus suslicus (Güldenstaedt, 1770) – Speckled Ground Squirrel Marmota marmota (Linnaeus, 1758) – Alpine Marmot Gliridae Eliomys quercinus (Linnaeus, 1766) – Garden Dormouse Dryomys nitedula (Pallas, 1778) – Forest Dormouse Glis glis (Linnaeus, 1766) – Edible Dormouse Muscardinus avellanarius (Linnaeus, 1758) – Hazel Dormouse Dipodidae Sicista betulina (Pallas, 1779) – Northern Birch Mouse Sicista subtilis (Pallas, 1773) – Southern Birch Mouse 80 Hair and fur atlas of Central European mammals 6. Checklist of Central European mammal species Muridae Apodemus agrarius (Pallas, 1771) – Striped Field Mouse Apodemus alpicola (Heinrich, 1952) – Alpine Field Mouse Apodemus flavicollis (Melchior, 1834) – Yellow-necked Field Mouse Apodemus sylvaticus (Linnaeus, 1758) – Wood Mouse Apodemus uralensis (Pallas, 1881) – Pygmy Field Mouse Micromys minutus (Pallas, 1771) – Eurasian Harvest Mouse Mus musculus Linnaeus, 1758 – House Mouse Mus spicilegus Petényi, 1882 – Steppe Mouse Rattus norvegicus (Berkenhout, 1769) – Brown Rat Rattus rattus (Linnaeus, 1758) – Black Rat Spalacidae Nannospalax (superspecies) leucodon Nordmann, 1840 – Lesser Blind Mole Rat Spalax antiquus Méhely, 1909 – Mehely’s Blind Mole Rat Spalax zemni (Erxleben, 1777) – Podolian Blind Mole Rat Spalax graecus Nehring, 1898 – Balkan Blind Mole Rat Cricetidae Cricetus cricetus (Linnaeus, 1758) – Common Hamster Arvicola amphibius (Linnaeus, 1758) – Eurasian Water Vole Arvicola scherman (Shaw, 1801) – Montane Water Vole Myodes glareolus (Schreber, 1780) – Bank Vole Chionomys nivalis (Martins, 1842) – European Snow Vole Dinaromys bogdanovi (Martino, 1922) – Balkan Snow Vole Microtus agrestis (Linnaeus, 1761) – Field Vole Microtus arvalis (Pallas, 1778) – Common Vole Microtus bavaricus (König, 1962) – Bavarian Vole Microtus levis Miller, 1908 – East European Vole Microtus liechtensteini (Wettstein, 1927) – Liechtenstein’s Pine Vole Microtus oeconomus (Pallas, 1776) – Root Vole Microtus subterraneus (de Sélys-Longchamps, 1836) – Common Pine Vole Microtus tatricus Kratochvíl, 1952 – Tatra Vole Ondatra zibethicus (Linnaeus, 1766) – Muskrat Castoridae Castor fiber Linnaeus, 1758 – Eurasian Beaver Myocastoridae Myocastor coypus (Molina, 1782) – Nutria Carnivora Canidae Canis lupus Linnaeus, 1758 – Grey Wolf Canis aureus Linnaeus, 1758 – Golden Jackal Vulpes vulpes (Linnaeus, 1758) – Red Fox Hair and fur atlas of Central European mammals 81 6. Checklist of Central European mammal species Nyctereutes procyonoides (Gray, 1834) – Raccoon Dog Ursidae Ursus arctos Linnaeus, 1758 – Brown Bear Procyonidae Procyon lotor (Linnaeus, 1758) – Northern Raccoon Mustelidae Mustela erminea Linnaeus, 1758 – Stoat Mustela nivalis Linnaeus, 1766 – Weasel Mustela lutreola (Linnaeus, 1761) – European Polecat Neovison vison (Schreber, 1777) – American Mink Mustela putorius Linnaeus, 1758 – European Polecat Mustela eversmanii Lesson, 1827 – Steppe Polecat Vormela peregusna (Güldenstädt, 1770) – Marbled Polecat Martes martes (Linnaeus, 1758) – Pine Marten Martes foina (Erxleben, 1777) – Stone Marten Lutra lutra (Linnaeus, 1758) – European Otter Meles meles (Linnaeus, 1758) – European Badger Felidae Felis silvestris (Schreber, 1775) – Wild Cat Lynx lynx (Linnaeus, 1758) – Eurasian Lynx Artiodactyla Suidae Sus scrofa (Linnaeus, 1758) – Wild Boar Bovidae Bison bonasus (Linnaeus, 1758) – European Bison Ovis orientalis Gmelin, 1774 – Mouflon Capra ibex Linnaeus, 1758 – Alpine Ibex Rupicapra rupicapra Linnaeus, 1758 – Alpine Chamois Cervidae Cervus elaphus Linnaeus, 1758 – Red Deer Cervus nippon Temminck, 1838 – Sika Deer Odocoileus virginianus (Zimmermann, 1780) – White-tailed Deer Dama dama (Linnaeus, 1758) – Fallow Deer Alces alces (Linnaeus, 1758) – Moose Capreolus capreolus (Linnaeus, 1758) – European Roe Deer Perissodactyla Equidae Equus ferus ssp. przewalskii Poliakov, 1881 – Przewalski’s Horse 82 Hair and fur atlas of Central European mammals.
Recommended publications
  • Decayed Trees As Resting Places for Japanese Dormouse, Glirulus Japanicus During the Active Period
    Decayed trees as resting places for Japanese dormouse, Glirulus japanicus during the active period HARUKA AIBA, MANAMI IWABUCHI, CHISE MINATO, ATUSHI KASHIMURA, TETSUO MORITA AND SHUSAKU MINATO Keep Dormouse Museum, 3545 Kiyosato, Takane-cho, Hokuto-city, Yamanashi, 407-0301, Japan Decayed trees were surveyed for their role as a resting place for non-hibernating dormice at two sites, at southwest of Mt. Akadake in Yamanashi Prefecture (35°56’N, 138°25’E). A telemeter located three dormice, which frequently used decayed trees in the daytime, with two at more than 50% of the times. The survey also showed decayed trees made up only about one fourth of all trees present in various conditions in habitat forests. These two data indicated that decayed trees are an important resting place for non-hibernating dormice in the daytime and provide favorable environmental conditions for inhabitation. Using national nut hunt surveys to find protect and raise the profile of hazel dormice throughout their historic range NIDA AL FULAIJ People’s Trust for Endangered Species (list of authors to come) The first Great Nut Hunt (GNH), launched in 1993 had 6500 participants, identifying 334 new sites and thus confirming the presence of dormice in 29 counties in England and Wales. In 2001, 1200 people found 136 sites with positive signs of hazel dormice. The third GNH started in 2009. Over 4000 people registered and to date almost 460 woodland or hedgerow surveys have been carried out, in conjunction with a systematic survey of 286 woodlands on the Isle of Wight. Of the 460 surveys carried out by the general public, 74 found evidence of dormice.
    [Show full text]
  • Diet and Microhabitat Use of the Woodland Dormouse Graphiurus Murinus at the Great Fish River Reserve, Eastern Cape, South Africa
    Diet and microhabitat use of the woodland dormouse Graphiurus murinus at the Great Fish River Reserve, Eastern Cape, South Africa by Siviwe Lamani A dissertation submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE (ZOOLOGY) in the Faculty of Science and Agriculture at the University of Fort Hare 2014 Supervisor: Ms Zimkitha Madikiza Co-supervisor: Prof. Emmanuel Do Linh San DECLARATION I Siviwe Lamani , student number 200604535 hereby declare that this dissertation titled “Diet and microhabitat use of the woodland dormouse Graphiurus murinus at the Great Fish River Reserve , Eastern Cape, South Africa” submitted for the award of the Master of Science degree in Zoology at the University of Fort Hare, is my own work that has never been submitted for any other degree at this university or any other university. Signature: I Siviwe Lamani , student number 200604535 hereby declare that I am fully aware of the University of Fort Hare policy on plagiarism and I have taken every precaution on complying with the regulations. Signature: I Siviwe Lamani , student number 200604535 hereby declare that I am fully aware of the University of Fort Hare policy on research ethics and have taken every precaution to comply with the regulations. The data presented in this dissertation were obtained in the framework of another project that was approved by the University Ethics committee on 31 May 2013 and is covered by the ethical clearance certificate # SAN05 1SGB02. Signature: ii SUPERVISOR’S FOREWORD The format of this Master’s dissertation (abstract, general introduction and two independent papers) has been chosen with two purposes in mind: first, to train the MSc candidate to the writing of scientific papers, and second, to secure and allow for a quicker dissemination of the scientific knowledge.
    [Show full text]
  • Mammals of Jordan
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Mammals of Jordan Z. AMR, M. ABU BAKER & L. RIFAI Abstract: A total of 78 species of mammals belonging to seven orders (Insectivora, Chiroptera, Carni- vora, Hyracoidea, Artiodactyla, Lagomorpha and Rodentia) have been recorded from Jordan. Bats and rodents represent the highest diversity of recorded species. Notes on systematics and ecology for the re- corded species were given. Key words: Mammals, Jordan, ecology, systematics, zoogeography, arid environment. Introduction In this account we list the surviving mammals of Jordan, including some reintro- The mammalian diversity of Jordan is duced species. remarkable considering its location at the meeting point of three different faunal ele- Table 1: Summary to the mammalian taxa occurring ments; the African, Oriental and Palaearc- in Jordan tic. This diversity is a combination of these Order No. of Families No. of Species elements in addition to the occurrence of Insectivora 2 5 few endemic forms. Jordan's location result- Chiroptera 8 24 ed in a huge faunal diversity compared to Carnivora 5 16 the surrounding countries. It shelters a huge Hyracoidea >1 1 assembly of mammals of different zoogeo- Artiodactyla 2 5 graphical affinities. Most remarkably, Jordan Lagomorpha 1 1 represents biogeographic boundaries for the Rodentia 7 26 extreme distribution limit of several African Total 26 78 (e.g. Procavia capensis and Rousettus aegypti- acus) and Palaearctic mammals (e. g. Eri- Order Insectivora naceus concolor, Sciurus anomalus, Apodemus Order Insectivora contains the most mystacinus, Lutra lutra and Meles meles). primitive placental mammals. A pointed snout and a small brain case characterises Our knowledge on the diversity and members of this order.
    [Show full text]
  • The Status and Distribution of Mediterranean Mammals
    THE STATUS AND DISTRIBUTION OF MEDITERRANEAN MAMMALS Compiled by Helen J. Temple and Annabelle Cuttelod AN E AN R R E IT MED The IUCN Red List of Threatened Species™ – Regional Assessment THE STATUS AND DISTRIBUTION OF MEDITERRANEAN MAMMALS Compiled by Helen J. Temple and Annabelle Cuttelod The IUCN Red List of Threatened Species™ – Regional Assessment The designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of IUCN or other participating organizations, concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland and Cambridge, UK Copyright: © 2009 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Red List logo: © 2008 Citation: Temple, H.J. and Cuttelod, A. (Compilers). 2009. The Status and Distribution of Mediterranean Mammals. Gland, Switzerland and Cambridge, UK : IUCN. vii+32pp. ISBN: 978-2-8317-1163-8 Cover design: Cambridge Publishers Cover photo: Iberian lynx Lynx pardinus © Antonio Rivas/P. Ex-situ Lince Ibérico All photographs used in this publication remain the property of the original copyright holder (see individual captions for details).
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • Checklist of Rodents and Insectivores of the Mordovia, Russia
    ZooKeys 1004: 129–139 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.1004.57359 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Checklist of rodents and insectivores of the Mordovia, Russia Alexey V. Andreychev1, Vyacheslav A. Kuznetsov1 1 Department of Zoology, National Research Mordovia State University, Bolshevistskaya Street, 68. 430005, Saransk, Russia Corresponding author: Alexey V. Andreychev ([email protected]) Academic editor: R. López-Antoñanzas | Received 7 August 2020 | Accepted 18 November 2020 | Published 16 December 2020 http://zoobank.org/C127F895-B27D-482E-AD2E-D8E4BDB9F332 Citation: Andreychev AV, Kuznetsov VA (2020) Checklist of rodents and insectivores of the Mordovia, Russia. ZooKeys 1004: 129–139. https://doi.org/10.3897/zookeys.1004.57359 Abstract A list of 40 species is presented of the rodents and insectivores collected during a 15-year period from the Republic of Mordovia. The dataset contains more than 24,000 records of rodent and insectivore species from 23 districts, including Saransk. A major part of the data set was obtained during expedition research and at the biological station. The work is based on the materials of our surveys of rodents and insectivo- rous mammals conducted in Mordovia using both trap lines and pitfall arrays using traditional methods. Keywords Insectivores, Mordovia, rodents, spatial distribution Introduction There is a need to review the species composition of rodents and insectivores in all regions of Russia, and the work by Tovpinets et al. (2020) on the Crimean Peninsula serves as an example of such research. Studies of rodent and insectivore diversity and distribution have a long history, but there are no lists for many regions of Russia of Copyright A.V.
    [Show full text]
  • Multiannual Dynamics of Shrew (Mammalia, Soricomorpha, Soricidae) Communities in the Republic of Moldova
    Muzeul Olteniei Craiova. Oltenia. Studii úi comunicări. ùtiinĠele Naturii. Tom. 27, No. 2/2011 ISSN 1454-6914 MULTIANNUAL DYNAMICS OF SHREW (MAMMALIA, SORICOMORPHA, SORICIDAE) COMMUNITIES IN THE REPUBLIC OF MOLDOVA NISTREANU Victoria Abstract. The paper is based on the existing bibliographical data, on the collection of vertebrate animals of the Institute of Zoology of AùM and on personal studies performed in the last years on the whole territory of Moldova. During the last 50 years considerable modification of shrew communities in various types of ecosystems on the whole territory of Moldova were registered. The most well adapted species is the common shrew, being dominant in the majority of the studied periods. The bicolour shrew, which was a rare, endangered species, introduced in the Red Book of Moldova, 2nd edition, became one of the most common among shrews in the last few years, while the Mediterranean water shrew that was one of the most abundant in the past century, at present became very rare, because of the pollution and transformation of wet and water habitats. The pygmy shrew is wide spread in various types of ecosystems, but its abundance is always below 25%. The lesser shrew is the most synanthropic species among shrews, its frequency in urban and rural area reaching 80%. The shrew species are good ecological indicators. Further measures on the protection of natural and water habitats must be taken. Keywords: shrew, dynamics, natural and anthropogenic ecosystems. Rezumat. Dinamica multianuală a comunităĠilor de chiĠcani (Mammalia, Soricomorpha, Soricidae) în Republica Moldova. Articolul are la bază datele bibliografice existente, colecĠia de vertebrate terestre a Institutului de Zooogie al AùM úi cercetările personale ale autorului efectuate pe tot teritoriul Moldovei în ultimii ani.
    [Show full text]
  • Species Examined.Xlsx 8:17 PM 5/31/2011
    8:17 PM 5/31/2011 Names Accepted Binomial Name, Family Page Binomial Name, Page Common Name as of 2011, as given in Sperber if different than in Sperber Monotremata 264 Duckbilled Platypus Ornithorhynchus anatinus 264 Marsupialia 266 Slender‐tailed Dunnart Sminthopsis murina 266 Kultarr Antechinomys laniger 268 Gray Four‐eyed Opossum Philander opossum Didelphys opossum 269 (or possibly Virginia Opossum) ( or Didelphis virginiana) Eastern Grey Kangaroo Macropus giganteus 269 Insectivora 272 Elephant Shrew Macroscelides sp. 272 Hedgehog Erinaceus europaeus 273 Eurasian Pygmy Shrew Sorex minutus 274 Eurasian Water Shrew Neomys fodiens 279 Pygmy White Toothed Suncus etruscus Pachyura etrusca 280 (or Etruscan ) Shrew Russian Desman Desmana moschata 280 Chiroptera 281 Greater Flying Fox Pteropus vampyrus Pteropus edulis 281 (Kalong, Kalang) Northern Bat Eptesicus nilssonii Pipistrellus nilssoni 283 Particoloured Bat Vespertilio murinus 285 Xenarthra 287 and Pholidota Armadillos, anteaters and pangolins: Review of the literature only Rodentia 288 European Rabbit Oryctolagus cuniculus 288 Eurasian Red Squirrel Sciurus vulgaris 293 Eurasian Beaver Castor fiber 294 Agile Kangaroo Rats Dipodomys agilis Perodipus agilis 296 Fresno Kangaroo Rat Dipodomys nitratoides exilis Dipodomys meriami exilis 297 Lesser Egyptian Jerboa Jaculus jaculus 298 Field (or Short‐tailed) Vole Microtus agrestis 299 Bank Vole Myodes glareolus Evotomys glareolus 303 European (or Northern) Water Arvicola terrestris 303 Vole Black Rat Rattus Rattus Epimys rattus 303 House Mouse
    [Show full text]
  • Network for Wildlife Health Surveillance in Europe
    1 Network for wildlife health surveillance in Europe Diagnosis Card Lymphocytic Choriomeningitis Virus Infection Author(s) (*corresponding author) Rainer G. Ulrich, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Novel and Emerging Infectious Diseases, Riems, Germany; [email protected] Stephan Drewes, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute for Novel and Emerging Infectious Diseases, Riems, Germany; [email protected] Reviewers Stephan Günther, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany; guenther@bni- hamburg.de Remi Charrel, Aix Marseille Université, [email protected] Last update 01.12.2015 Etiology Lymphocytic choriomeningitis virus (LCMV) is a member of the genus Arenavirus within the family Arenaviridae. These enveloped viruses contain a single stranded, two-segmented RNA genome of negative polarity with ambisense coding strategy. According to their geographical distribution and phylogenetic relationships arenaviruses can be differentiated into the New World, e.g. Junin and Machupo virus, and Old World, e.g. LCMV and Lassa virus. The small (S) RNA segment codes for the nucleocapsid protein in the negative sense and glycoprotein precursor (GPc) in the opposite sense. The large (L) RNA segment encodes the RNA-dependent RNA polymerase (L protein) on one strand and the matrix (Z) protein on the other strand. Affected species (wildlife, domestic animals, humans) Wildlife: Rodents are the natural reservoirs of LCMV and the other arenaviruses. The infection of adult immunocompetent mice results in viral clearance within two weeks; only under certain circumstances a persistent infection will be established. Based on their phylogenetic relationship, host association and geographic distribution four genetic lineages I-IV have been defined.
    [Show full text]
  • Wildlife Regulation
    Province of Alberta WILDLIFE ACT WILDLIFE REGULATION Alberta Regulation 143/1997 With amendments up to and including Alberta Regulation 148/2013 Office Consolidation © Published by Alberta Queen’s Printer Alberta Queen’s Printer 5th Floor, Park Plaza 10611 - 98 Avenue Edmonton, AB T5K 2P7 Phone: 780-427-4952 Fax: 780-452-0668 E-mail: [email protected] Shop on-line at www.qp.alberta.ca Copyright and Permission Statement Alberta Queen's Printer holds copyright on behalf of the Government of Alberta in right of Her Majesty the Queen for all Government of Alberta legislation. Alberta Queen's Printer permits any person to reproduce Alberta’s statutes and regulations without seeking permission and without charge, provided due diligence is exercised to ensure the accuracy of the materials produced, and Crown copyright is acknowledged in the following format: © Alberta Queen's Printer, 20__.* *The year of first publication of the legal materials is to be completed. Note All persons making use of this consolidation are reminded that it has no legislative sanction, that amendments have been embodied for convenience of reference only. The official Statutes and Regulations should be consulted for all purposes of interpreting and applying the law. (Consolidated up to 148/2013) ALBERTA REGULATION 143/97 Wildlife Act WILDLIFE REGULATION Table of Contents Interpretation and Application 1 Establishment of certain provisions by Lieutenant Governor in Council 2 Establishment of remainder by Minister 3 Interpretation 4 Interpretation for purposes of the Act 5 Exemptions and exclusions from Act and Regulation 6 Prevalence of Schedule 1 7 Application to endangered animals Part 1 Administration 8 Terms and conditions of approvals, etc.
    [Show full text]
  • Numerical Response of Predators to Large Variations of Grassland Vole Abundance, Long-Term Community Change and Prey Switches
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.25.007633; this version posted March 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Numerical response of predators to large variations of grassland vole abundance, long-term community change and prey switches Patrick Giraudoux1,*, Aurélien Levret2, Eve Afonso1, Michael Coeurdassier1, Geoffroy Couval1,2 1 Chrono-environnement, Université de Bourgogne Franche-Comté/CNRS usc INRA, 25030, Besançon Cedex, France. 2 FREDON Bourgogne Franche-Comté, 12 rue de Franche-Comté, 25480, Ecole-Valentin, France. * [email protected] Abstract Voles can reach high densities with multi-annual population fluctuations of large amplitude, and they are at the base of large and rich communities of predators in temperate and arctic food webs. This places them at the heart of management conflicts where crop protection and health concerns are often raised against conservation issues. Here, a 20-year survey describes the effects of large variations of grassland vole populations on the densities and the daily theoretical food intakes (TFI) of vole predators based on road-side counts. Our results show how the predator community responds to prey variations of large amplitude and how it reorganized with the increase of a dominant predator, here the red fox, which likely impacted negatively hare, European wildcat and domestic cat populations. They also indicate which subset of the predator species can be expected to have a key-role in vole population control in the critical phase of low density of grassland voles.
    [Show full text]
  • ADAPTAÇÃO AO HÁBITO FOSSORIAL EM MAMÍFEROS: Uma Análise Comparativa Entre Riograndia Guaibensis E Ctenomys Torquatus
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL TRABALHO DE CONCLUSÃO DE CURSO BACHARELADO EM CIÊNCIAS BIOLÓGICAS ADAPTAÇÃO AO HÁBITO FOSSORIAL EM MAMÍFEROS: Uma análise comparativa entre Riograndia guaibensis e Ctenomys torquatus. Autor: Fabrício Sehn Orientador: Prof. Dr. Cesar Leandro Schultz Porto Alegre, dezembro de 2013 2 Sumário Sumário 2 Lista de Figuras 3 1 Introdução 4 1.1 O Comportamento de Escavar 8 2 Adaptações dos Mamíferos Subterrâneos 12 2.1 Morfologia 14 2.1.1 Corpo 15 2.1.2 Cauda 15 2.1.3 Cor da Pelagem 15 2.1.4 Cabeça 16 2.1.5 Ouvido e Pina 19 2.1.6 Olhos 20 2.1.7 Dentição 21 2.1.8 Membros Anteriores e Posteriores 28 2.2 Sistema Sensorial 29 3 A Possibilidade da Presença de Hábito Fossorial/ Subterrâneo em Cinodontes Triássicos 31 4 Referências Bibliográficas 40 3 Lista de Figuras Figura 1. Mecanismo da escavação por rotação umeral........................................................9 Figura 2. Mecanismo da escavação com dentes em cinzel.................................................10 Figura 3. Mecanismo da escavação por elevação da cabeça...............................................11 Figura 4. Ângulo dos dentes incisivos e borda de corte......................................................22 Figura 5. Índice incisivo......................................................................................................23 Figura 6. Comparação da procumbência dos incisivos em roedores..................................24 Figura 7. Crânio e mandíbula de Riograndia guaibensis....................................................32
    [Show full text]