Depositional Facies Analysis Using Core Samples from Greater Ughelli Depobelt, Niger Delta Basin Nigeria *MAJU-OYOVWIKOWHE

Total Page:16

File Type:pdf, Size:1020Kb

Depositional Facies Analysis Using Core Samples from Greater Ughelli Depobelt, Niger Delta Basin Nigeria *MAJU-OYOVWIKOWHE Full-text Available Online at J. Appl. Sci. Environ. Manage. PRINT ISSN 1119-8362 Electronic ISSN 1119-8362 https://www.ajol.info/index.php/jasem Vol. 23 (6) 1137-1146 June 2019 http://ww.bioline.org.br/ja Depositional Facies Analysis Using Core Samples from Greater Ughelli Depobelt, Niger Delta Basin Nigeria *MAJU-OYOVWIKOWHE, GE; LUCAS, FA Department of Geology, University of Benin, Benin City. Nigeria *Corresponding Author Email: [email protected] ABSTRACT: Sedimentological analysis of core samples from Well XY-62 located within the greater Ughelli depobelt of the Niger Delta basin was carried out. Some physical deterioration had set in and some gaps had reduced the total core length available to 316 .90ft. The cores contain three sandstone and one mudrock lithofacies: Fine-grained mm- scale laminated sandstone (Sl.f) 40.83%, medium to coarse-grained cm-scale cross-bedded sandstone (Sx.m) 35.34%, pebbly Sandstone (PS) 4.39%, bedded Mudstone (Mb) 19.44%. The sandstone lithofacies differ from one another mainly in grain size, as appears obvious, otherwise they are largely texturally, compositionally, diagenetically and structurally broadly similar. They are generally clean (zero to 20% clay content), moderately well to well sorted, pebbly, and texturally mature. Quartz appears to be the sole framework component, making the sandstones mineralogically mature i.e. quartz arenites and quartz wackes. Being generally weakly consolidated and scantily cemented, the sandstones are all in the early stages of diagenesis, an attribute that has had a desirable effect on their reservoir quality. The bedded mudstone lithofacies contains laminated claystones and fissile shales which are all thought to have compartmentalized the sand reservoirs rather than sealed them. Depositional environments have been inferred to be the foreshore setting, with lagoon subenvironments that favoured mudrock accumulation landward of a barrier bar complex. The overall motif read from both the strip log and the wireline logs indicate neither clear progradation nor unequivocal retrogradation of the lithofacies. It is therefore concluded that the XY- 62 cores were cut from an aggradational depositional setting. DOI: https://dx.doi.org/10.4314/jasem.v23i6.22 Copyright: Copyright © 2019 Maju-Oyovwikowhe and Lucas. This is an open access article distributed under the Creative Commons Attribution License (CCL), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Dates: Received: 01 April 2019; Revised: 09 May 2019; Accepted 21 June 2019 Keywords: Cores, Sediment analysis, Depositional environments, Niger Delta The concept of interpreting rocks in terms of modern sedimentary rocks and can be compared to ripples processes dates back to the 18th and 19th centuries (the forming today, either in natural environments or in a present is the key to the past). The nature of laboratory tank. Assuming that the laws that govern sedimentary material is very varied in origin, size, physical and chemical processes have not changed shape and composition. Particles such as grains and through time, detailed measurements of sedimentary pebbles may be derived from the erosion of older rocks rocks can be used to make estimates (to varying or directly ejected from volcanoes. Organisms form a degrees of accuracy) of the physical, chemical and very important source of material, ranging from biological conditions that existed at the time of microbial filaments encrusted with calcium carbonate sedimentation. These conditions may include the to whole or broken shells, coral reefs, bones and plant salinity, depth and flow velocity in lake or seawater, debris. Direct precipitation of minerals from solution the strength and direction of the wind in a desert and in water also contributes to sediments in some the tidal range in a shallow marine setting. A situations. Formation of a body of sediment involves depositional environment describes the combination of either the transport of particles to the site of deposition physical, chemical and biological processes associated by gravity, water, air, ice or mass flows or the chemical with the deposition of a particular type of sediment and or biological growth of the material in place. therefore the type of rock that forms after lithification. Accumulation of sediments in place is largely Therefore environment at any point on the land or influenced by the chemistry, temperature and under the sea can be characterized by the physical and biological character of the setting. The processes of chemical processes that are active there and the transport and deposition can be determined by looking organisms that live under those conditions at that time. at individual layers of sediment. The size, shape and In the description of sedimentary rocks in terms of distribution of particles all provide clues to the way in depositional environments, the term ‘facies’ is often which the material was carried and deposited. used. A rock facies is a body of rock with specified Sedimentary structures such as ripples can be seen in characteristics that reflect the conditions under which *Corresponding Author Email: [email protected] Depositional Facies Analysis Using Core Samples….. 1138 it was formed (Reading and Levell 1996). Describing relationship of layered rocks with time. The the facies of a body of sediment involves documenting stratigrapher is concerned with the observation, all the characteristics of its lithology, texture, description and interpretation of direct and tangible sedimentary structures and fossil content that can aid evidence in rocks to determine the history of such a in determining the processes of formation. By rock. A merging of Sedimentology and stratigraphy recognizing associations of facies it is possible to allows us to build up pictures of the Earth’s surface at establish the combinations of processes that were different times in different places and relate them to dominant; the characteristics of a depositional each other. The objective of this study is to identify environment are determined by the processes that are sedimentary facies based on their physical properties present, and hence there is a link between facies and determine the energy regime during deposition of associations and environments of deposition. Every sediments. depositional environment has a unique combination of processes, and the products of these processes, the MATERIALS AND METHODS sedimentary rocks, will be a similarly unique Description of study area: Well XY-62 was drilled assemblage and by objectively considering each bed in within OML 30 located in the Greater Ughelli depobelt terms of physical, chemical and biological processes, of the Niger Delta. It is a vertical development well it is always possible to provide some indication of with a TD of 10105 ft subsea. The cores were cut where and how a sedimentary rock was formed. between 7015 and 9678 ft with long uncored intervals. Stratigraphy on the other hand has to do with the Fig 1: Section map of Nigeria showing the study area (dark blue square) and Depobelts that make up the Niger Delta Basin (modified from Nwozor et al., 2012) Geological Review of the Niger Delta Basin: The lies in the South-Western part of a larger tectonic Niger Delta Basin is also known as the Niger Delta structure, the Benue Trough. The other side is bounded province. It is an extensional rift basin located between by the Cameroon Volcanic Line and the Transform, the Niger Delta and the Gulf of Guinea on the Passive Passive Continental Margin. The sedimentation Continental Margin near the Western Coast of Nigeria pattern in the Niger Delta basin has been a site of with suspected access to Cameroon, Equatorial Guinea cyclic sedimentation. The tertiary paralic sediments and Sao Tome and Principe. The Basin is very are composed of several depositional cycles with complex and carries very high economic value as it thickness ranging from 50-300ft, although cycles contains a very productive petroleum system. The exceeding 300ft are less common. The Complete cycle Niger Delta Basin is one of the largest subarea basins consists of thin fossiliferous transgressive marine sand in Africa. It has a subarea of about 75,00km2, a total followed by an offlap sequence of marine shale and area of 300,000km2 and a sediment fill of about laminated fluviomarine sediments (Weber 1971). 500,000km3, a depth of about 9 to 12km. It is composed of several different geologic formations that Stratigraphy of the Niger Delta Basin: The indicate how the basin could have been formed as well stratigraphy of the southern Nigeria basin has been as the regional tectonic of the area. The Niger-Delta described in some detail by Short and Stauble (1967) MAJU-OYOVWIKOWHE, GE; LUCAS, FA Depositional Facies Analysis Using Core Samples….. 1139 and Reyment (1965). The deposits were laid down Agbada Formation: The Agbada Formation is a during a predominantly marine depositional cycle. The sequence of sandstone and shales and consists of first phase was concluded by a phase of folding, paralicsiliciclastics over 3700meters thick and faulting and uplift occurring during the Santonian time represents the actual deltaic portion of the sequence. It and affecting in general, the Abakaliki Anticlinorium. consists of an upper predominantly sandy unit with During the Campanian to Maastrichtian, a second minor shale intercalations and a lower shale unit which depositional cycle during with the formation of the is thicker than the upper than the upper sandy unit. The Proto Niger Delta took place. Locally, the deltaic formation is rich in micro fauna at the base decreasing conditions of deposition may have lasted into the upward and thus indicating an increase rate of Paleocene. This second cycle ended with a major deposition in the delta front. A fluviatile origin is Paleocene transgression which terminated the advance indicated by the coarseness of the grains and poor of the Proto Delta, thus separating it stratigraphically sorting. The sequence is associated with sedimentary from the modern delta.
Recommended publications
  • The Sea Floor an Introduction to Marine Geology 4Th Edition Ebook
    THE SEA FLOOR AN INTRODUCTION TO MARINE GEOLOGY 4TH EDITION PDF, EPUB, EBOOK Eugen Seibold | 9783319514116 | | | | | The Sea Floor An Introduction to Marine Geology 4th edition PDF Book Darwin drew his inspiration from observations on island life made during the voyage of the Beagle , and his work gave strong impetus to the first global oceanographic expedition, the voyage of HMS Challenger Resources from the Ocean Floor. This textbook deals with the most important items in Marine Geology, including some pioneer work. Outline of geology Glossary of geology History of geology Index of geology articles. About this Textbook This textbook deals with the most important items in Marine Geology, including some pioneer work. This should come as no surprise. Geologist Petroleum geologist Volcanologist. Geology Earth sciences Geology. They also are the deepest parts of the ocean floor. Stratigraphy Paleontology Paleoclimatology Palaeogeography. Origin and Morphology of Ocean Basins. Back Matter Pages It seems that you're in Germany. Add to Wishlist. Marine geology has strong ties to geophysics and to physical oceanography. Some of these notions were put forward earlier in this century by A. Springer Berlin Heidelberg. They should allow the reader to comment on new results about plate tectonics, marine sedimentation from the coasts to the deep sea, climatological aspects, paleoceanology and the use of the sea floor. Uh-oh, it looks like your Internet Explorer is out of date. Back Matter Pages Coastal Ecology marine geology textbook plate tectonics Oceanography Environmental Sciences sea level. Seibold and W. The deep ocean floor is the last essentially unexplored frontier and detailed mapping in support of both military submarine objectives and economic petroleum and metal mining objectives drives the research.
    [Show full text]
  • A Guide to the Geology of Rocky Mountain National Park, Colorado
    A Guide to the Geology of ROCKY MOUNTAIN NATIONAL PARK COLORADO For sale by the Superintendent of Documents, Washington, D. C. Price 15 cents A Guide to the Geology of ROCKY MOUNTAIN NATIONAL PARK [ COLORADO ] By Carroll H. Wegemann Former Regional Geologist, National Park Service UNITED STATES DEPARTMENT OF THE INTERIOR HAROLD L. ICKES, Secretary NATIONAL PARK SERVICE . NEWTON B. DRURY, Director UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1944 Table of Contents PAGE INTRODUCTION in BASIC FACTS ON GEOLOGY 1 THE OLDEST ROCKS OF THE PARK 2 THE FIRST MOUNTAINS 3 The Destruction of the First Mountains 3 NATURE OF PALEOZOIC DEPOSITS INDICATES PRESENCE OF SECOND MOUNTAINS 4 THE ROCKY MOUNTAINS 4 Time and Form of the Mountain Folding 5 Erosion Followed by Regional Uplift 5 Evidences of Intermittent Uplift 8 THE GREAT ICE AGE 10 Continental Glaciers 11 Valley Glaciers 11 POINTS OF INTEREST ALONG PARK ROADS 15 ROAD LOGS 18 Thompson River Entrance to Deer Ridge Junction 18 Deer Ridge Junction to Fall River Pass via Fall River .... 20 Fall River Pass to Poudre Lakes 23 Trail Ridge Road between Fall River Pass and Deer Ridge Junction 24 Deer Ridge Junction to Fall River Entrance via Horseshoe Park 29 Bear Lake Road 29 ILLUSTRATIONS LONGS PEAK FROM BEAR LAKE Front and back covers CHASM FALLS Inside back cover FIGURE PAGE 1. GEOLOGIC TIME SCALE iv 2. LONGS PEAK FROM THE EAST 3 3. PROFILE SECTION ACROSS THE ROCKY MOUNTAINS 5 4. ANCIENT EROSIONAL PLAIN ON TRAIL RIDGE 6 5. ANCIENT EROSIONAL PLAIN FROM FLATTOP MOUNTAIN ... 7 6. VIEW NORTHWEST FROM LONGS PEAK 8 7.
    [Show full text]
  • Sequence Stratigraphy of Niger Delta, Robertkiri
    SEQUENCE STRATIGRAPHY OF NIGER DELTA, ROBERTKIRI FIELD, ONSHORE NIGERIA A Thesis by OLUSOLA AKINTAYO MAGBAGBEOLA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2005 Major Subject: Geology SEQUENCE STRATIGRAPHY OF NIGER DELTA, ROBERTKIRI FIELD, ONSHORE NIGERIA A Thesis by OLUSOLA AKINTAYO MAGBAGBEOLA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Brian J. Willis Committee Members, Steven L. Dorobek William. Bryant Head of Department, Richard F. Carlson December 2005 Major Subject: Geology iii ABSTRACT Sequence Stratigraphy of Niger Delta, Robertkiri Field, Onshore Nigeria. (December 2005) Olusola Akintayo Magbagbeola, B.Sc. (Honors); University of Ilorin, Ilorin, Nigeria; M.Sc., University of Ibadan, Ibadan, Nigeria Chair of Advisory Committee: Dr. Brian J. Willis Deposits of Robertkiri field, in the central offshore area of Niger Delta, comprise a 4 km thick succession of Pliocene to Miocene non-marine and shallow marine deposits. A sequence stratigraphic framework for Robertkiri field strata was constructed by combining data from 20 well logs and a seismic volume spanning 1400 km2. Major sequences, hundreds of meters thick, define layers of reservoir and sealing strata formed during episodic progradation and retrogradation of deltaic shorelines. These deposits progress upward from fine-grained prodelta and deep water shales of the Akata Formation through paralic sandstone-shale units of the Agbada Formation and finally to sandy non-marine deposits of the Benin Formation.
    [Show full text]
  • The Indonesian Sedimentologists Forum (FOSI) the Sedimentology Commission - the Indonesian Association of Geologists (IAGI)
    Berita Sedimentologi SUMATERA RReevviiieeww oofff ttthhee PPaalllaaeeoozzooiiicc SStttrraatttiiiggrraapphhyy oofff ttthhee LLaannggkkaawwiii IIsslllaannddss,,, MMaalllaayyssiiiaa ppaaggee 55 AA FFiiieellldd TTrriiipp tttoo ttthhee SSyynn---RRiiifffttt PPeetttrroollleeuumm SSyyssttteemmss oofff CCeenntttrraalll SSuummaattteerraa ppaaggee 1188 SStttuuddeennttt aarrtttiiicclllee::: EEccoonnoommiiicc vvss FFrraacctttuurreedd BBaasseemmeennttt::: AA CCaassee SStttuuddyy fffrroomm NNoorrttthh SSuummaatttrraa BBaassiiinn ppaaggee 2211 Published by The Indonesian Sedimentologists Forum (FOSI) The Sedimentology Commission - The Indonesian Association of Geologists (IAGI) Number 27 –August 2013 Page 1 of 31 Berita Sedimentologi SUMATERA Editorial Board Advisory Board Herman Darman Prof. Yahdi Zaim Chief Editor Quaternary Geology Shell International Exploration and Production B.V. Institute of Technology, Bandung P.O. Box 162, 2501 AN, The Hague – The Netherlands Fax: +31-70 377 4978 Prof. R. P. Koesoemadinata E-mail: [email protected] Emeritus Professor Institute of Technology, Bandung Minarwan Deputy Chief Editor Wartono Rahardjo Mubadala Petroleum (Thailand) Ltd. University of Gajah Mada, Yogyakarta, Indonesia st 31 Floor, Shinawatra Tower 3, 1010 Viphavadi Rangsit Rd. Ukat Sukanta Chatuchak, Bangkok 10900, Thailand ENI Indonesia E-mail: [email protected] Mohammad Syaiful Fuad Ahmadin Nasution Exploration Think Tank Indonesia Total E&P Indonesie Jl. Yos Sudarso, Balikpapan 76123 E-mail: [email protected] F. Hasan Sidi Woodside, Perth, Australia Fatrial Bahesti PT. Pertamina E&P NAD-North Sumatra Assets Prof. Dr. Harry Doust Standard Chartered Building 23rd Floor Faculty of Earth and Life Sciences, Vrije Universiteit Jl Prof Dr Satrio No 164, Jakarta 12950 - Indonesia De Boelelaan 1085 E-mail: [email protected] 1081 HV Amsterdam, The Netherlands E-mails: [email protected]; Wayan Heru Young [email protected] University Link coordinator Legian Kaja, Kuta, Bali 80361, Indonesia Dr.
    [Show full text]
  • 'X' Field in Eastern Offshore of Niger Delta, Nigeria
    Vol. 12(2), pp. 65-79, April-June, 2020 DOI: 10.5897/JGMR2019.0322 Article Number: 8A836E963905 ISSN 2006-9766 Copyright©2020 Journal of Geology and Mining Author(s) retain the copyright of this article http://www.academicjournals.org/JGMR Research Full Length Research Paper Sequence stratigraphic study of ‘X’ field in eastern offshore of Niger Delta, Nigeria Abraham Christopher Udoh1*, Clement Edem Bassey1, Anietie Ekong Ekot1 and Monday Udofia Udoh2 1Department of Geology, Faculty of Physical Sciences, Akwa Ibom State University, Mkpat Enin, P. M. B.1167 Uyo, Nigeria. 2Pioneer -Alfa Petroleum Services Ltd, Benin City, Edo State. Nigeria. Received 31 July 2019; Accepted 30 March, 2020 An integrated approach to Seismic interpretation that combines techniques of sequence stratigraphic analysis, seismic facies analysis and attribute analysis is one of the most effective approaches for hydrocarbon exploration in growth-faulted deltaic strata of offshore eastern Niger Delta. These strata are generally thick paralic/marine units deposited along an unstable progradational continental margin. Here, shale ridges, toe thrusts and diapirism are common features. Thus, system tracts along this margin differ significantly from those described for classic stable progradational continental margins. Development of good reservoir sands, on the shales of the upper transgressive systems tract form barriers which are good, particularly on the outer shelf where high stand systems tract sediments accumulate. Alternation of the high stand systems tract sands and transgressive systems tract shales provides a bridge linking reservoir facies with the shales or seals of TST which is essential for hydrocarbon accumulation and its stratigraphic trapping in the study field.
    [Show full text]
  • Outline of Occurrence of Ground Water in Alabama
    • OF OCaiRROCE C? GROUND WATXR IN &LLAMA 9,7r P. N. Lalloreaux Introdc-Ition This pacer -resents an outline of the geology of Alabama and contains information relative to the occurrence of ground water in the major physiographic divisions of the State. It was written at the reouest of Col. K. H. Shrive?, Senior Planning Technician, Alabama State Planning Board. It is hoped that this report will result in a better understanding of the geology and hydrology s they affect the development of ground water for private, industrial, and municipal use in the State. Al bama for the most part is richly blessed with this most important nfltural resource, an abundant ground-water supnly. The water-bearing f orma- tf ;ne or aquifers in tie State are being continually recharged by an average )reelrilttion of 50 to 60 inches. These ground-water sunnlies, if used r7 pull -)roperly, -Iould he adeouate to meet most demands placed upon them. .1,xcessiv ::.. r'd 441 li ifro. of gmun6 water and especially waste should be disccumged. To use our Itt71 C4 wrtt,:r re..purces in an intelligent and conservative manner is a public resPons L._ p„,1-o --. je► 4 It."1 ....Z bilit7 to be borne by each individual. I' 4 Z cr . History o' ground-Water Investigations in Alabama 10.-4 "he U. S. Geolo,,ical Survey began in 1E9g a study of the water resources C) 10-'40 of the State. In 104 and 1105 two preliminary Rapers by the State Geologist. Dr. &ugene A. Smith, were published by the U.
    [Show full text]
  • Tennessee Geological Survey
    Catalogue of Publications Tennessee Geological Survey State of Tennessee Department of Environment and Conservation Nashville, TN 2017 Tennessee Geological Survey Catalogue of Publications The Tennessee Geological Survey conducts research on the geology and mineral resources of Tennessee and makes the resulting scientific and technical information available to the public in the maps and publications listed in this pamphlet. Additional information and services are available through conferences and correspondence. STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION Nashville, Tennessee 2017 STATE OF TENNESSEE William E. Haslam Governor DEPARTMENT OF ENVIRONMENT AND CONSERVATION Robert J. Martineau, Jr. Commissioner Tennessee Geological Survey Ronald P. Zurawski State Geologist ii CONTENTS Page Page Tennessee Geological Survey Staff ................................ iv Base Maps of Tennessee ........................................... 15 Ordering Instructions ........................................................ v County Base Maps ..................................................... 15 Discounts .......................................................................... vi Property Line Maps .................................................... 15 Public Information Series ............................................... vii Mineral Resources Maps ........................................... 15 Out of Print Publications Available for Download ......... vii Miscellaneous Charts ................................................ 15
    [Show full text]
  • Stratigraphy, Structure, and Graptolites of an Ordovician and Silurian Sequence in the Terra Cotta Mountains, Alaska Range, Alaska
    Stratigraphy, Structure, And Graptolites of an Ordovician and Silurian Sequence in the Terra Cotta Mountains, Alaska Range, Alaska By Michael Churkin, Jr., and Claire Carter Geology and paleontology of three newly named Paleozoic formations and descriptions of six new graptolites UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1996 U.S.DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Text and illustrations edited by Mary Lou Callas Camera lucida fossil illustrations by Claire Carter Other illustrations by Michelle Coveau Layout by Mary Lou Callas Library of Congress Cataloging-in-Publication Data Churkin, Michael. Stratigraphy, structure, and graptolites of an Ordovician and Silurian sequence in the Terra Cotta Mountains, Alaska Range, Alaska I by Michael Churkin, Jr., and Claire Carter. p. cm. - (U.S. Geological Survey professional paper ; 1555) Includes bibliographical references and index. Supt. of Docs. no.: 119.16: 1555 1. Graptolites-Alaska-Terra Cotta Mountains. 2. Paleontology-Ordovician. 3. Paleontology-Silurian. 4. Animals, Fossil-Alaska-Terra Cotta Mountains. 5. Geology-Alaska-Terra Cotta Mountains. 6. Geology, Stratigraphic-Ordovician. 7, Geology, Stratigraphic-Silurian. I. Carter, Claire. I1 Title. I11 Series. QE840.5.C48
    [Show full text]
  • Geological Survey
    DEPARTMENT OF THE IHTBEIOE BULLETIN OF THE UNITED STATES GEOLOGICAL SURVEY WASHINGTON G-UVEltNMENT PRINTING OFFICE 1900 [JOTTED STATES GEOLOGICAL StJKVEY (JHAKLES D. WALCOTT. DIEECTOK BIBLIOGRAPHY AND INDEX OF AND MI FOR THE YEA.R 1899 BY FRED BOTJGHTON WEEKS WASHINGTON GOVERNMENT PRINTING OFFICE 1900 CONTENTS. Page. Letter of transmittal...................................................... 7 Introduction............................................................. 9 List of publications examined ...............'.......................;...... 11 Bibliography............................................................. 15 Addenda to bibliographies for previous years............................... 90 Classified key to the index................................................ 91 Index................................................................... 97 LETTER OF TRANSMITTAL. DEPARTMENT OF THE INTERIOR, UNITED STATES GEOLOGICAL SURVEY, DIVISION OF GEOLOGY, Washmgton, D. <?., June 1%, 1900. SIR: I have the honor to transmit herewith the manuscript of a Bibliography and Index of North American Geology, Paleontology, Petrology, and Mineralogy for the Year 1899, and to request that it l)e published as a bulletin of the Survey. Very respectfully, F. B. WEEKS. Hon. CHARLES D. WALCOTT, Directs United States Geological Survey. 7 BIBLIOGRAPHY AND INDEX OF NORTH AMERICAN GEOLOGY, PALEONTOLOGY, PETROLOGY, AND MINERALOGY FOR THE YEAR 1899. By FEED BOUGHTON WEEKS. INTRODUCTION. The method of preparing and arranging the material of the Bibliog­ raphy
    [Show full text]
  • Sedimentary Facies and Paleoenvironment of the Lower Pleistocene Sogwipo Formation, Cheju Island, Korea
    Mar.1995 第 四 紀 研 究(The Quaternary Research) 34 (1)p. 19-38 Sedimentary Facies and Paleoenvironment of the Lower Pleistocene Sogwipo Formation, Cheju Island, Korea Soon-Seok Kang* The Sogwipo Formation is distributed along the southern coast of Cheju Island, Korea, and is covered by Middle Pleistocene volcanic lava flows. These sediments are composed of mainly light grey fine to medium sandstones, muddy sandstones, mudstones, volcanic ashes and vol- canic clasts with characteristic shell beds and trace fossils. This formation contains the mol- luscan fossils of the Omma-Manganzian fauna. The deposits can be divided into eleven sedimentary facies associations which are made in a grouping of nine sedimentary lithofacies and six sedimentary biofacies. On the basis of facies analysis, it is determined that all sedimentary facies associations were deposited at the inner shelf to foreshore and bay environments and that they were formed in a open sea to bay fluc- tuation system, controlled by glacio-eustatic sea level change. The depositional process of the Sogwipo Formation is summarized on transgression, gradual regression and transgression stages with a ravinement surface ascendant upwards. The trans- gression stage mainly consists of massive shoreface sands within a channelized compact shell bed. The gradual regression stage showed change from a open shelf to a beach system grad- ually, while the transgression stage with transgressive conglomerate is indicated in shoreface to bay system produced by geographic changes of the sedimentary basin as the shoreline re- treated during the transgression. It consists of lower shoreface shell beds and tuffaceous silt- stone. The uppermost bay sediment suggests that the sedimentary basin was buried in rapid sedimentation by strong volcanic activity.
    [Show full text]
  • Proceedings of First & Second International Conferences Of
    ISBN: 978-978-968-294-2 Proceedings of First & Second International Conferences of the Nigerian Association for Engineering Geology and the Environment (NAEGE), A LEAD PAPER (2016) Lagos, Nigeria, 2016 & 2017 (Vol. 1), 2018. Sustainability of Structures and Environment: Challenges for Engineering Geology Profession in the 21st Century Akpokodje E.G. Department of Geology, University of Port Harcourt, Port Harcourt, Nigeria. Corresponding E-mail: [email protected] Abstract The concepts of sustainable development and sustainability stipulate that human economic and social development should take place without irreversible damages to the carrying capacity of the Earth's natural environment and significant depletion of non-renewable resources. The sustainable management of the Earth's finite natural resources in the face of unprecedented global population growth and climate change is one of the most profound challenges facing human society in the 21st century. Although an integrated and holistic resource management approach encompassing all disciplines has been recognized and recommended, sectoral and disciplinary approaches are still prevalent in practice. In order to enable engineering geologists play a more active role in the trans-disciplinary resource management approach and contribute meaningfully to the sustainability of engineering structures and the environment, a paradigm shift from the traditional study of planet earth as isolated discrete components to the concept of integrated whole earth system approach (Earth System Science) is imperative. This involves knowledge of the interactions between all the components of the earth system (atmosphere, hydrosphere, biosphere, cryosphere, and geosphere) and embraces a systems thinking approach. Engineering geologists should not only focus on the geological factors controlling the structural stability of civil engineering structures, but also on the present and future environmental, economic and social issues including decision-making, policy, and governance.
    [Show full text]
  • INSTOC Library Catalog
    INSTOC Library Catalog Author(s)/Editor(s) Title AAAS Handbook (1986-1987) AAAS The Liberal Art of Science: Agenda for Action AAPG Continuing Education Course Note Series #5: Geology of Continental Margins AAPG Seismic Stratigraphy--Applications to Hydrocarbon Exploration Abelson (ed) Researches in Geochemistry Abramowitz, Stegun Handbook of Mathematical Functions Academia Sinica Proceedings of Symposium on Tibet Plateau Adams Statistical Seismology Adams Moon, Mars, and Meteorites Adams The Birth and Development of the Geological Sciences Adams, White Analytic Geometry and Calculus Ager Principles of Paleoecology Ager The Geology of Europe AGI Summary: North American Survey of Geoscientists AGU The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2 AGU The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands AGU Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System AGU Geophysics and Igy AGU The Geophysics of the Pacific Ocean Basin and Its Margin AGU The Use of Artificial Satellites for Geodesy AGU Flow and Fracture of Rocks AGU The Mantle Sample: Inclusions in Kimberlites and Other Volcanics AGU Terrestrial Heat Flow AGU Kimberlites, Diatremes, and Diamonds: Their Geology, Petrology, and Geochemistry Ahrens, Press, Rankama, Runcorn Physics and Chemistry of the Earth (vol 3) Ahrens, Press, Rankama, Runcorn Physics and Chemistry of the Earth (vol 4) Ahrens, Press, Runcorn Physics and Chemistry of the Earth (vol 5) Ahrens, Press, Runcorn, Urey Physics and Chemistry of the Earth
    [Show full text]