mathematics Article Some Metrical Properties of Lattice Graphs of Finite Groups Jia-Bao Liu 1,2 , Mobeen Munir 3,* , Qurat-ul-Ain Munir 4 and Abdul Rauf Nizami 5 1 School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China;
[email protected] 2 School of Mathematics, Southeast University, Nanjing 210096, China 3 Department of Mathematics, Division of Science and Technology, University of Education, Lahore 54000, Pakistan 4 Department of Mathematics, COMSATS University Islamabad, Lahore Campus 54000, Pakistan;
[email protected] 5 Faculty of Information Technology, University of Central Punjab, Lahore 54000, Pakistan;
[email protected] * Correspondence:
[email protected] Received: 20 March 2019; Accepted: 24 April 2019; Published: 2 May 2019 Abstract: This paper is concerned with the combinatorial facts of the lattice graphs of Zp p pm , 1× 2×···× m m m m Z 1 2 , and Z 1 2 1 . We show that the lattice graph of Zp1 p2 pm is realizable as a convex p1 p2 p1 p2 p3 × ×···× × × × r m m polytope. We also show that the diameter of the lattice graph of Zp 1 p 2 pmr is ∑ mi and its 1 × 2 ×···× r i=1 girth is 4. Keywords: finite group; lattice graph; convex polytope; diameter; girth 1. Introduction The relation between the structure of a group and the structure of its subgroups constitutes an important domain of research in both group theory and graph theory. The topic has enjoyed a rapid development starting with the first half of the twentieth century. The main object of this paper is to study the interplay of group-theoretic properties of a group G with graph-theoretic properties of its lattice graph L(G).