Licensing Information User Manual for Autonomous Database on Shared Exadata Infrastructure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Differential Fuzzing the Webassembly
Master’s Programme in Security and Cloud Computing Differential Fuzzing the WebAssembly Master’s Thesis Gilang Mentari Hamidy MASTER’S THESIS Aalto University - EURECOM MASTER’STHESIS 2020 Differential Fuzzing the WebAssembly Fuzzing Différentiel le WebAssembly Gilang Mentari Hamidy This thesis is a public document and does not contain any confidential information. Cette thèse est un document public et ne contient aucun information confidentielle. Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Technology. Antibes, 27 July 2020 Supervisor: Prof. Davide Balzarotti, EURECOM Co-Supervisor: Prof. Jan-Erik Ekberg, Aalto University Copyright © 2020 Gilang Mentari Hamidy Aalto University - School of Science EURECOM Master’s Programme in Security and Cloud Computing Abstract Author Gilang Mentari Hamidy Title Differential Fuzzing the WebAssembly School School of Science Degree programme Master of Science Major Security and Cloud Computing (SECCLO) Code SCI3084 Supervisor Prof. Davide Balzarotti, EURECOM Prof. Jan-Erik Ekberg, Aalto University Level Master’s thesis Date 27 July 2020 Pages 133 Language English Abstract WebAssembly, colloquially known as Wasm, is a specification for an intermediate representation that is suitable for the web environment, particularly in the client-side. It provides a machine abstraction and hardware-agnostic instruction sets, where a high-level programming language can target the compilation to the Wasm instead of specific hardware architecture. The JavaScript engine implements the Wasm specification and recompiles the Wasm instruction to the target machine instruction where the program is executed. Technically, Wasm is similar to a popular virtual machine bytecode, such as Java Virtual Machine (JVM) or Microsoft Intermediate Language (MSIL). -
Deadline-Driven Serverless for the Edge
SledgeEDF: Deadline-driven Serverless for the Edge by Sean Patrick McBride B.S. in German, May 2007, United States Military Academy M.A.S. in Information Technology and Management, May 2013, Illinois Institute of Technology A Thesis submitted to The Faculty of The School of Engineering and Applied Science of The George Washington University in partial satisfaction of the requirements for the degree of Master of Science January 8, 2021 Thesis directed by Gabriel Parmer Associate Professor of Computer Science c Copyright 2021 by Sean Patrick McBride All rights reserved ii Dedication This thesis is dedicated to the many educators, mentors, and battle buddies that have helped me grow as a technologist, software engineer, and computer scientist. Sankaran Iyer, Susan Schwartz, Chris Okasaki, Christa Chewar, Ray Trygstad, Jeremy Hajek, Jeffrey Kimont, Robert Hendry, Carol Davids, Bill Slater, Bonnie Goins, David Gaertner, Andy Quintana, Patricia Schatz, Wayne Bucek, Pat Medo, Lih Wang, Tony Liu, Bill Seubert, Marty Horan, Fred Bader, Mitch Green, Bob Kaas, Richard Lewis, Gwen Dente, Ray Mullins, Frank DeGilio, Paul Novak, Bruce Hayden, Art Breslau, Chris Ganim, Mark Woehrer, Will Dory, Steve Payne, Walt Melo, Mark Davis, Omri Bernstein, Eliot Szwajkowski, Dani Young-Smith, Conrad Holloman, David Tillery, Garth Hershfield, Daniel Cox, Doug Fort, Jeff Hemminger, Josh Rutherford, Hiromi Suenaga, Kait Moreno, Howie Huang, Ben Bowman, Yuede Ji, Pradeep Kumar, Nahid Ghalaty, Roozbeh Haghnazar, Morris Lancaster, Gabe Parmer, Phani Kishoreg, and the unnamed others I’ve forgotten. I am mostly an ambulatory accumulation of the investments others have made in me over the years. I hope that you consider me a worthy investment, and I pledge to pay this forward! iii Abstract SledgeEDF: Deadline-driven Serverless for the Edge Serverless Computing has gained mass popularity by offering lower cost, improved elasticity, and improved ease of use. -
Full Stack Web Development
Full Stack Web Development Partial report in partial fulfilment of the requirement of the Degree of Bachelor of Technology In Computer Science and Engineering By Charchit Kapoor (161207) Under the supervision of Umesh Sharma Product Manager (magicPin Samast Technologies Pvt. Ltd) To Department of Computer Science Engineering and Information Technology Jaypee University of Information Technology,Waknaghat,Solan-173234 Himachal Pradesh I CERTIFICATE Candidate Declaration I”declare that the work presented in this report ‘Full Stack Web Development’ in partial fulfilment of”the requirements for the award of the degree of bachelor of Technology in Computer Science and Engineering submitted in the department of Computer Science and Engineering/ Information Technology,”Jaypee University of Information Technology Waknaghat, is an authentic record of my work carried out over a period of Feb,2020 to”May,2020 under the Supervision of Umesh Sharma (Product Manager, magicPin). The matter embodied in the report”has not been submitted for the award of any other degree or diploma. It contains sufficient”information to describe the various tasks performed by me during the internship. Charchit Kapoor, 161207 This is to certify that”the above statement made by the candidate is true to the best of my knowledge. The report has been reviewed by the company officials, and has been audited according to the company guidelines. Umesh Sharma Product Manager magicPin (Samast Technologies Private Ltd.) Dated: May 29th, 2020 II ACKNOWLEDGEMET We have taken efforts in”this project. However, it would not have been possible without the kind support and help of many”individuals and organisations. I would like to extend our sincere thanks to all of them. -
International Journal of Progressive Research in Science and Engineering, Vol.2, No.8, August 2021
INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN SCIENCE AND ENGINEERING, VOL.2, NO.8, AUGUST 2021. Web Application to Search and Rank Online Learning Resources from Various Sites Keshav J1, Venkat Kumar B M1, Ananth N1 1Student, Department of Computer Engineering, Velammal Engineering College, Anna University, Chennai, Tamil Nadu, India. Corresponding Author: [email protected] Abstract: - E-Learning is becoming one of the most reliable and fast methods for learning in the present days and this trend will only continue to grow in the coming years. However, the process of finding the correct course in the desired topic is becoming harder and harder day by day due to the sheer number of resource material being uploaded to the internet. Currently, whenever there’s a need to acquire a new skill or learn something new, people go on different platforms to search for resources to learn them - YouTube for videos, Google for blogs, Coursera/Udemy/Edx for courses. This leads to taking too much time in finding the right resource to start learning. They have to try out multiple resources before finding the right one. We plan to eliminate this with our website, where a single search query will fetch the top videos, blogs, and courses for that query. Users will be able to rate the results, and the upcoming search results will be ordered primarily based on the user ratings. This will allow the most useful blogs, courses, and videos to rank up. Additionally, the resources will have comments and tags, so that the user can read a review before opening a tutorial. -
AUTOMATIC DESIGN of NONCRYPTOGRAPHIC HASH FUNCTIONS USING GENETIC PROGRAMMING, Computational Intelligence, 4, 798– 831
Universidad uc3m Carlos Ill 0 -Archivo de Madrid This is a postprint version of the following published document: Estébanez, C., Saez, Y., Recio, G., and Isasi, P. (2014), AUTOMATIC DESIGN OF NONCRYPTOGRAPHIC HASH FUNCTIONS USING GENETIC PROGRAMMING, Computational Intelligence, 4, 798– 831 DOI: https://doi.org/10.1111/coin.12033 © 2014 Wiley Periodicals, Inc. AUTOMATIC DESIGN OF NONCRYPTOGRAPHIC HASH FUNCTIONS USING GENETIC PROGRAMMING CESAR ESTEBANEZ, YAGO SAEZ, GUSTAVO RECIO, AND PEDRO ISASI Department of Computer Science, Universidad Carlos III de Madrid, Madrid, Spain Noncryptographic hash functions have an immense number of important practical applications owing to their powerful search properties. However, those properties critically depend on good designs: Inappropriately chosen hash functions are a very common source of performance losses. On the other hand, hash functions are difficult to design: They are extremely nonlinear and counterintuitive, and relationships between the variables are often intricate and obscure. In this work, we demonstrate the utility of genetic programming (GP) and avalanche effect to automatically generate noncryptographic hashes that can compete with state-of-the-art hash functions. We describe the design and implementation of our system, called GP-hash, and its fitness function, based on avalanche properties. Also, we experimentally identify good terminal and function sets and parameters for this task, providing interesting information for future research in this topic. Using GP-hash, we were able to generate two different families of noncryptographic hashes. These hashes are able to compete with a selection of the most important functions of the hashing literature, most of them widely used in the industry and created by world-class hashing experts with years of experience. -
Open Source Used in Quantum SON Suite 18C
Open Source Used In Cisco SON Suite R18C Cisco Systems, Inc. www.cisco.com Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco website at www.cisco.com/go/offices. Text Part Number: 78EE117C99-185964180 Open Source Used In Cisco SON Suite R18C 1 This document contains licenses and notices for open source software used in this product. With respect to the free/open source software listed in this document, if you have any questions or wish to receive a copy of any source code to which you may be entitled under the applicable free/open source license(s) (such as the GNU Lesser/General Public License), please contact us at [email protected]. In your requests please include the following reference number 78EE117C99-185964180 Contents 1.1 argparse 1.2.1 1.1.1 Available under license 1.2 blinker 1.3 1.2.1 Available under license 1.3 Boost 1.35.0 1.3.1 Available under license 1.4 Bunch 1.0.1 1.4.1 Available under license 1.5 colorama 0.2.4 1.5.1 Available under license 1.6 colorlog 0.6.0 1.6.1 Available under license 1.7 coverage 3.5.1 1.7.1 Available under license 1.8 cssmin 0.1.4 1.8.1 Available under license 1.9 cyrus-sasl 2.1.26 1.9.1 Available under license 1.10 cyrus-sasl/apsl subpart 2.1.26 1.10.1 Available under license 1.11 cyrus-sasl/cmu subpart 2.1.26 1.11.1 Notifications 1.11.2 Available under license 1.12 cyrus-sasl/eric young subpart 2.1.26 1.12.1 Notifications 1.12.2 Available under license Open Source Used In Cisco SON Suite R18C 2 1.13 distribute 0.6.34 -
Skalierbare Echtzeitverarbeitung Mit Spark Streaming: Realisierung Und Konzeption Eines Car Information Systems
Bachelorarbeit Philipp Grulich Skalierbare Echtzeitverarbeitung mit Spark Streaming: Realisierung und Konzeption eines Car Information Systems Fakultät Technik und Informatik Faculty of Engineering and Computer Science Department Informatik Department of Computer Science Philipp Grulich Skalierbare Echtzeitverarbeitung mit Spark Streaming: Realisierung und Konzeption eines Car Information Systems Bachelorarbeit eingereicht im Rahmen Bachelorprüfung im Studiengang Angewandte Informatik am Department Informatik der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg Betreuender Prüfer: Prof. Dr.-Ing. Olaf Zukunft Zweitgutachter: Prof. Dr. Stefan Sarstedt Abgegeben am 1.3.2016 Philipp Grulich Thema der Arbeit Skalierbare Echtzeitverarbeitung mit Spark Streaming: Realisierung und Konzeption eines Car Information Systems Stichworte Echtzeitverarbeitung, Spark, Spark Streaming, Car Information System, Event Processing, Skalierbarkeit, Fehlertoleranz Kurzzusammenfassung Stream Verarbeitung ist mittlerweile eines der relevantesten Bereiche im Rahmen der Big Data Analyse, da es die Verarbeitung einer Vielzahl an Events innerhalb einer kurzen Latenz erlaubt. Eines der momentan am häufigsten genutzten Stream Verarbeitungssysteme ist Spark Streaming. Dieses wird im Rahmen dieser Arbeit anhand der Konzeption und Realisie- rung eines Car Information Systems demonstriert und diskutiert, wobei viel Wert auf das Er- zeugen einer möglichst generischen Anwendungsarchitektur gelegt wird. Abschließend wird sowohl das CIS als -
Unravel Data Systems Version 4.5
UNRAVEL DATA SYSTEMS VERSION 4.5 Component name Component version name License names jQuery 1.8.2 MIT License Apache Tomcat 5.5.23 Apache License 2.0 Tachyon Project POM 0.8.2 Apache License 2.0 Apache Directory LDAP API Model 1.0.0-M20 Apache License 2.0 apache/incubator-heron 0.16.5.1 Apache License 2.0 Maven Plugin API 3.0.4 Apache License 2.0 ApacheDS Authentication Interceptor 2.0.0-M15 Apache License 2.0 Apache Directory LDAP API Extras ACI 1.0.0-M20 Apache License 2.0 Apache HttpComponents Core 4.3.3 Apache License 2.0 Spark Project Tags 2.0.0-preview Apache License 2.0 Curator Testing 3.3.0 Apache License 2.0 Apache HttpComponents Core 4.4.5 Apache License 2.0 Apache Commons Daemon 1.0.15 Apache License 2.0 classworlds 2.4 Apache License 2.0 abego TreeLayout Core 1.0.1 BSD 3-clause "New" or "Revised" License jackson-core 2.8.6 Apache License 2.0 Lucene Join 6.6.1 Apache License 2.0 Apache Commons CLI 1.3-cloudera-pre-r1439998 Apache License 2.0 hive-apache 0.5 Apache License 2.0 scala-parser-combinators 1.0.4 BSD 3-clause "New" or "Revised" License com.springsource.javax.xml.bind 2.1.7 Common Development and Distribution License 1.0 SnakeYAML 1.15 Apache License 2.0 JUnit 4.12 Common Public License 1.0 ApacheDS Protocol Kerberos 2.0.0-M12 Apache License 2.0 Apache Groovy 2.4.6 Apache License 2.0 JGraphT - Core 1.2.0 (GNU Lesser General Public License v2.1 or later AND Eclipse Public License 1.0) chill-java 0.5.0 Apache License 2.0 Apache Commons Logging 1.2 Apache License 2.0 OpenCensus 0.12.3 Apache License 2.0 ApacheDS Protocol -
AMP's Governance Model
Governance Update & Next Steps AMP Contributor Summit - October 10, 2019 Tobie Langel (@tobie) bit.ly/ampgov-blog AMP’s Governance Model ● The Technical Steering Committee (TSC) ● The Advisory Committee (AC) ● Working Groups (WGs) Technical Steering Committee (TSC) Sets AMP's technical & product direction based on the project guidelines. TSC Members ● Chris Papazian, Pinterest - @cpapazian* ● David Strauss, Pantheon - @davidstrauss* ● Dima Voytenko, Google - @dvoytenko* ● Malte Ubl, Google - @cramforce* ● Paul Armstrong, Twitter - @paularmstrong ● Rudy Galfi, Google - @rudygalfi* ● Saulo Santos, Microsoft - @ssantosms* * Present at the AMP Contributor Summit 2019 So… what has the TSC been up to? ● Set up the initial set of Working Groups. ● Clarified the contribution process (OWNERS/Reviewers/Collaborators). ● Formalized how cherry picks are handled. ● Asked for more formal regular updates from the Working Groups. Working Groups (WGs) Segments of the community with knowledge/interest in specific areas of AMP. Working groups ● Access control and subscriptions WG - user ● AMP4Email WG - AMP4Email project. specific controlled access to AMP content. ● Ads WG - ads features and integrations in AMP ● Validation & caching WG - AMP validator and ● Analytics WG - analytics features and integrations features related to AMP caches. in AMP. ● Viewers WG - ensures support for AMP viewers ● Stories WG - implements and improves AMP's and for the amp-viewer project. story format. ● Approvers WG - approves changes that have a ● Performance WG - monitors and improves AMP's significant impact on AMP's behavior or significant load and runtime perf. new features. ● Runtime WG - AMP's core runtime ● Infrastructure WG - AMP's infrastructure, (layout/rendering and data binding). including building, testing and release. ● UX & Accessibility WG - AMP's visual ● Code of Conduct WG - enforces AMP's CoC. -
Angularjs Native Rich Clients with Eclipse RCP WEB APPS UNTIL NOW
Die Grundlagen Philipp Burgmer theCodeCampus / Weigle Wilczek GmbH ABOUT ME Philipp Burgmer Software Engineer / Consultant / Trainer Focus: Frontend, Web Technologies WeigleWilczek GmbH [email protected] ABOUT US WeigleWilczek / W11k Software Design, Development & Maintenance Consulting, Trainings & Project Kickoff Web Applications with AngularJS Native Rich Clients with Eclipse RCP WEB APPS UNTIL NOW JSF UI on Server A lot HTTP Requests Just to Update UI Hard to Use JS Libs / Scatters UI Logic GWT UI in Java / XML Hard to Use JS Libs / Scatters UI Logic "Java World" Instead of "Web World" Flex Clean Separation of Front- and Backend Based on Flash, Adobe Discontinues Developement MXML and ActionScript Instead of HTML and JavaScript WEB APPS FROM NOW ON Frontend Runs Completely in the Browser Stateful UI, Stateless Server Server Delivers Static Resources Server Delivers Dynamic Data HTML, CSS and JavaScript as UI Toolkit WHAT IS ANGULARJS? HTML Enhanced for Web Apps angularjs.com Client / Browser JS Framework Rich Browser Applications Brings Core Frontend Concepts and Features to the Browser Extends HTML Instead of Abstracting or Wrapping It angularjs.org Current Versions: 1.2.23 and 1.3.0-beta.19 License: MIT CORE CONCEPTS Model View Controller Modules Pattern Dependency Injection Two Way Data-Binding Services Directives Filter Goals Separation of Concerns Make It Easier to Write Clean Code Make It Easier to Write Testable Code Offer Concepts and Be Open for Extensions DEMO Two Way Data-Binding [ JS Bin | localhost ] Add Logic with a Controller -
Implementation of the Programming Language Dino – a Case Study in Dynamic Language Performance
Implementation of the Programming Language Dino – A Case Study in Dynamic Language Performance Vladimir N. Makarov Red Hat [email protected] Abstract design of the language, its type system and particular features such The article gives a brief overview of the current state of program- as multithreading, heterogeneous extensible arrays, array slices, ming language Dino in order to see where its stands between other associative tables, first-class functions, pattern-matching, as well dynamic programming languages. Then it describes the current im- as Dino’s unique approach to class inheritance via the ‘use’ class plementation, used tools and major implementation decisions in- composition operator. cluding how to implement a stable, portable and simple JIT com- The second part of the article describes Dino’s implementation. piler. We outline the overall structure of the Dino interpreter and just- We study the effect of major implementation decisions on the in-time compiler (JIT) and the design of the byte code and major performance of Dino on x86-64, AARCH64, and Powerpc64. In optimizations. We also describe implementation details such as brief, the performance of some model benchmark on x86-64 was the garbage collection system, the algorithms underlying Dino’s improved by 3.1 times after moving from a stack based virtual data structures, Dino’s built-in profiling system, and the various machine to a register-transfer architecture, a further 1.5 times by tools and libraries used in the implementation. Our goal is to give adding byte code combining, a further 2.3 times through the use an overview of the major implementation decisions involved in of JIT, and a further 4.4 times by performing type inference with a dynamic language, including how to implement a stable and byte code specialization, with a resulting overall performance im- portable JIT. -
Hash-Flooding Dos Reloaded
Hash-flooding DoS reloaded: Hash flooding begins? attacks and defenses July 1998 article Jean-Philippe Aumasson, “Designing and attacking Kudelski Security (NAGRA) port scan detection tools” by Solar Designer (Alexander D. J. Bernstein, Peslyak) in Phrack Magazine: University of Illinois at Chicago & Technische Universiteit Eindhoven “In scanlogd, I’m using a hash table to lookup source addresses. Martin Boßlet, This works very well for the Ruby Core Team typical case ::: average lookup time is better than that of a binary search. ::: Hash-flooding DoS reloaded: Hash flooding begins? However, an attacker can attacks and defenses choose her addresses (most July 1998 article likely spoofed) to cause hash Jean-Philippe Aumasson, “Designing and attacking collisions, effectively replacing the Kudelski Security (NAGRA) port scan detection tools” hash table lookup with a linear by Solar Designer (Alexander D. J. Bernstein, search. Depending on how many Peslyak) in Phrack Magazine: University of Illinois at Chicago & entries we keep, this might make Technische Universiteit Eindhoven “In scanlogd, I’m using a hash scanlogd not be able to pick table to lookup source addresses. ::: Martin Boßlet, new packets up in time. I’ve This works very well for the Ruby Core Team solved this problem by limiting typical case ::: average lookup the number of hash collisions, and time is better than that of a discarding the oldest entry with binary search. ::: the same hash value when the limit is reached. Hash-flooding DoS reloaded: Hash flooding begins? However, an attacker can attacks and defenses choose her addresses (most July 1998 article likely spoofed) to cause hash Jean-Philippe Aumasson, “Designing and attacking collisions, effectively replacing the Kudelski Security (NAGRA) port scan detection tools” hash table lookup with a linear by Solar Designer (Alexander D.