Circuitpython Documentation Release 7.0.0
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Raspberry Pi Pico SDK
FAQ Colophon Copyright © 2020 Raspberry Pi (Trading) Ltd. The documentation of the RP2040 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND). build-date: 2021-09-30 build-version: 000dcb1-clean About the SDK Throughout the text "the SDK" refers to our Raspberry Pi Pico SDK. More details about the SDK can be found in the Raspberry Pi Pico C/C++ SDK book. Source code included in the documentation is Copyright © 2020 Raspberry Pi (Trading) Ltd. and licensed under the 3-Clause BSD license. Legal Disclaimer Notice TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM TIME TO TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI (TRADING) LTD (“RPTL) "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO EVENT SHALL RPTL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. RPTL reserves the right to make any enhancements, improvements, corrections or any other modifications to the RESOURCES or any products described in them at any time and without further notice. The RESOURCES are intended for skilled users with suitable levels of design knowledge. -
Bridge Linking Engineering and Society
Fall 2017 OPEN SOURCE HARDWARE The BRIDGE LINKING ENGINEERING AND SOCIETY Hardware: The Next Step toward Open Source Everything Alicia M. Gibb Freedom Reigns in Desktop 3D Printing Ben Malouf and Harris Kenny Reevaluating Intellectual Property Law in a 3D Printing Era Lucas S. Osborn Impacts of Open Source Hardware in Science and Engineering Joshua M. Pearce The Maker Movement and Engineering AnnMarie Thomas and Deb Besser 3D Printing for Low-Resource Settings Matthew P. Rogge, Melissa A. Menke, and William Hoyle The mission of the National Academy of Engineering is to advance the well-being of the nation by promoting a vibrant engineering profession and by marshalling the expertise and insights of eminent engineers to provide independent advice to the federal government on matters involving engineering and technology. The BRIDGE NATIONAL ACADEMY OF ENGINEERING Gordon R. England, Chair C. D. Mote, Jr., President Corale L. Brierley, Vice President Julia M. Phillips, Home Secretary Ruth A. David, Foreign Secretary Martin B. Sherwin, Treasurer Editor in Chief: Ronald M. Latanision Managing Editor: Cameron H. Fletcher Production Assistant: Penelope Gibbs The Bridge (ISSN 0737-6278) is published quarterly by the National Aca d emy of Engineering, 2101 Constitution Avenue NW, Washington, DC 20418. Periodicals postage paid at Washington, DC. Vol. 47, No. 3, Fall 2017 Postmaster: Send address changes to The Bridge, 2101 Constitution Avenue NW, Washington, DC 20418. Papers are presented in The Bridge on the basis of general interest and time- liness. They reflect the views of the authors and not necessarily the position of the National Academy of Engineering. -
Micropython for Satlink 3 Documentation Release 1.8.4
MicroPython for Satlink 3 Documentation Release 1.8.4 Damien P. George, contributors, and Sutron Corporation Jul 28, 2017 CONTENTS 1 Python first time setup & configuration1 1.1 1. Download & Install LinkComm....................................1 1.2 2. Download & Install Python......................................1 1.3 3. Download & Install Pyinstaller....................................3 1.4 4. Download & Install PyCharm.....................................3 1.5 5. Testing out .py to .exe converter....................................5 1.6 6. Python PyQt5 GUI..........................................6 1.7 7. Connect PyCharm into external programs like linkcomm or micropython..............6 1.8 8. Configure PyCharm for program development using LinkComm..................9 1.9 9. Configure PyCharm with SL3 API for auto completion....................... 11 1.10 10. Setting docstring stub in PyCharm.................................. 13 2 MicroPython libraries 15 2.1 Python standard libraries and micro-libraries.............................. 15 2.2 MicroPython-specific libraries...................................... 16 2.3 Libraries specific to the Satlink 3.................................... 19 3 The MicroPython language 39 3.1 Overview of MicroPython Differences from Standard Python..................... 39 3.2 Code examples of how MicroPython differs from Standard Python with work-arounds........ 41 3.3 The MicroPython Interactive Interpreter Mode (aka REPL)....................... 56 3.4 Maximising Python Speed....................................... -
Universal Serial Bus Type-C Cable and Connector Specification
Release 1.3 - 1 - USB Type-C Cable and July 14, 2017 Connector Specification Universal Serial Bus Type-C Cable and Connector Specification Release 1.3 July 14, 2017 Copyright © 2017 USB 3.0 Promoter Group. All rights reserved. Release 1.3 - 2 - USB Type-C Cable and July 14, 2017 Connector Specification Copyright © 2014-2017, USB 3.0 Promoter Group: Apple Inc., Hewlett-Packard Inc., Intel Corporation, Microsoft Corporation, Renesas, STMicroelectronics, and Texas Instruments All rights reserved. NOTE: Adopters may only use the USB Type-C™ cable and connector to implement USB or third party functionality as expressly described in this Specification; all other uses are prohibited. LIMITED COPYRIGHT LICENSE: The USB 3.0 Promoters grant a conditional copyright license under the copyrights embodied in the USB Type-C Cable and Connector Specification to use and reproduce the Specification for the sole purpose of, and solely to the extent necessary for, evaluating whether to implement the Specification in products that would comply with the specification. Without limiting the foregoing, use of the Specification for the purpose of filing or modifying any patent application to target the Specification or USB compliant products is not authorized. Except for this express copyright license, no other rights or licenses are granted, including without limitation any patent licenses. In order to obtain any additional intellectual property licenses or licensing commitments associated with the Specification a party must execute the USB 3.0 Adopters Agreement. NOTE: By using the Specification, you accept these license terms on your own behalf and, in the case where you are doing this as an employee, on behalf of your employer. -
Setting up Your Environment
APPENDIX A Setting Up Your Environment Choosing the correct tools to work with asyncio is a non-trivial choice, since it can significantly impact the availability and performance of asyncio. In this appendix, we discuss the interpreter and the packaging options that influence your asyncio experience. The Interpreter Depending on the API version of the interpreter, the syntax of declaring coroutines change and the suggestions considering API usage change. (Passing the loop parameter is considered deprecated for APIs newer than 3.6, instantiating your own loop should happen only in rare circumstances in Python 3.7, etc.) Availability Python interpreters adhere to the standard in varying degrees. This is because they are implementations/manifestations of the Python language specification, which is managed by the PSF. At the time of this writing, three relevant interpreters support at least parts of asyncio out of the box: CPython, MicroPython, and PyPy. © Mohamed Mustapha Tahrioui 2019 293 M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2 APPENDIX A SeTTinG Up YouR EnViROnMenT Since we are ideally interested in a complete or semi-complete implementation of asyncio, our choice is limited to CPython and PyPy. Both of these products have a great community. Since we are ideally using a lot powerful stdlib features, it is inevitable to pose the question of implementation completeness of a given interpreter with respect to the Python specification. The CPython interpreter is the reference implementation of the language specification and hence it adheres to the largest set of features in the language specification. At the point of this writing, CPython was targeting API version 3.7. -
Python Crypto Misuses in the Wild
Python Crypto Misuses in the Wild Anna-Katharina Wickert Lars Baumgärtner [email protected] [email protected] Technische Universität Darmstadt Technische Universität Darmstadt Darmstadt, Germany Darmstadt, Germany Florian Breitfelder Mira Mezini [email protected] [email protected] Technische Universität Darmstadt Technische Universität Darmstadt Darmstadt, Germany Darmstadt, Germany ABSTRACT 1 INTRODUCTION Background: Previous studies have shown that up to 99.59 % of the Cryptography, hereafter crypto, is widely used nowadays to protect Java apps using crypto APIs misuse the API at least once. However, our data and ensure confidentiality. For example, without crypto, these studies have been conducted on Java and C, while empirical we would not be able to securely use online banking or do online studies for other languages are missing. For example, a controlled shopping. Unfortunately, previous research results show that crypto user study with crypto tasks in Python has shown that 68.5 % of the is often used in an insecure way [3, 4, 7, 9, 11]. One such problem is professional developers write a secure solution for a crypto task. the choice of an insecure parameter, like an insecure block mode, for Aims: To understand if this observation holds for real-world code, crypto primitives like encryption. Many static analysis tools exist we conducted a study of crypto misuses in Python. Method: We to identify these misuses such as CryptoREX [13], CryptoLint [4], developed a static analysis tool that covers common misuses of5 CogniCryptSAST [8], and Cryptoguard [12]. different Python crypto APIs. With this analysis, we analyzed 895 While these tools and the respective in-the-wild studies concen- popular Python projects from GitHub and 51 MicroPython projects trate on Java and C, user studies suggest that the existing Python for embedded devices. -
Circuitpython Documentation Release 0.0.0
CircuitPython Documentation Release 0.0.0 Damien P. George, Paul Sokolovsky, and contributors Jun 26, 2020 API and Usage 1 Adafruit CircuitPython 3 1.1 Status...................................................3 1.2 Supported Boards............................................3 1.2.1 Designed for CircuitPython...................................3 1.2.2 Other..............................................4 1.3 Download.................................................4 1.4 Documentation..............................................4 1.5 Contributing...............................................4 1.6 Differences from MicroPython......................................4 1.6.1 Behavior.............................................5 1.6.2 API...............................................5 1.6.3 Modules.............................................5 1.6.4 atmel-samd21 features.....................................5 1.7 Project Structure.............................................5 1.7.1 Core...............................................6 1.7.2 Ports...............................................6 1.8 Full Table of Contents..........................................7 1.8.1 Core Modules..........................................7 1.8.2 Supported Ports......................................... 47 1.8.3 Troubleshooting......................................... 56 1.8.4 Additional Adafruit Libraries and Drivers on GitHub..................... 57 1.8.5 Design Guide.......................................... 59 1.8.6 Architecture.......................................... -
Atmega32u4 Breakout Created by Lady Ada
Atmega32u4 Breakout Created by lady ada Last updated on 2021-07-12 01:27:14 PM EDT Guide Contents Guide Contents 2 Intro 3 About the Atmega32u4 Breakout board+ 3 Why not use a Teensy 3 Assembly 5 Design 7 Design Specifications 7 Microcontroller 7 Power 7 Pinout 7 USB Development 8 Using with AVRDude 9 AVR109 Bootloader & AVRdude 9 Arduino IDE Setup 11 https://adafruit.github.io/arduino-board-index/package_adafruit_index.json 12 Using with Arduino 14 Using it with Teensyduino 15 Download 18 Download 18 Schematic 18 Fabrication Print 18 © Adafruit Industries https://learn.adafruit.com/atmega32u4-breakout Page 2 of 20 Intro About the Atmega32u4 Breakout board+ We like the AVR 8-bit family and were excited to see Atmel upgrade the series with a USB core. Having USB built in allows the chip to act like any USB device. For example, we can program the chip to 'pretend' it's a USB joystick, or a keyboard, or a flash drive! Another nice bonus of having USB built in is that instead of having an FTDI chip or cable (like an Arduino), we can emulate the serial port directly in the chip. This costs some Flash space and RAM space but that's the trade-off. The only bad news about this chip is that it is surface mount only (SMT), which means that it is not easy to solder the way the larger DIP chips are. For that reason, we made a breakout board. The board comes with some extras like a fuse, a 16mhz crystal, USB connector and a button to start the bootloader. -
How Python Is Winning New Friends
How Python is Winning New Friends Steve Holden CTO, Global Stress Index Limited [email protected] IntroducFons • Programmer since 1967 • Computaonal scienFst by training • Engineer at heart • Python user since Python 1.4 (c. 1995) • Enjoy helping people to learn I’ve WriSen about Python Any Python users out there? Developments in CompuFng SOME HISTORY 1948 Programming Was Hard • No operang system • No libraries • No compilers • No assemblers • The painful process of abstracFon layering began 1977 Easier to Program • Assemblers/compilers available • UNIX starFng to emerge as a common base – Microprogramming handled hardware complexity • Storage flexibly handled by the OS • Networking heading to ubiquity 1984 2015 2016 2017 2020 ? Whatever it is, it will be complex! And so to Python “BUT IT’S [JUST] A SCRIPTING LANGUAGE …” What’s a “ScripFng Language”? • “First they ignore you; then they abuse you; then they crack down on you and then you win.” – not Mahatma Ghandi What’s a “ScripFng Language”? • “First they ignore you; then they abuse you; then they crack down on you and then you win.” – not Mahatma Ghandi • “Ridicule is like repression. Both give place to respect when they fail to produce the intended effect.” – Mahatma Ghandi Note to Purists • Learners do not have complex needs – Simplicity and consistency are important – ExecuFon speed mostly isn’t • Direct hands-on experience enables • Large resources not required – Wide availability and ease of access are criFcal The Programming Audience • Professional soiware engineers • ScienFsts • Lab -
Bfree: Enabling Battery-Free Sensor Prototyping with Python
BFree: Enabling Battery-free Sensor Prototyping with Python VITO KORTBEEK, Delft University of Technology, The Netherlands ABU BAKAR, Northwestern University, USA STEFANY CRUZ, Northwestern University, USA KASIM SINAN YILDIRIM, University of Trento, Italy PRZEMYSŁAW PAWEŁCZAK, Delft University of Technology, The Netherlands JOSIAH HESTER, Northwestern University, USA Building and programming tiny battery-free energy harvesting embedded computer systems is hard for the average maker because of the lack of tools, hard to comprehend programming models, and frequent power failures. With the high ecologic cost of equipping the next trillion embedded devices with batteries, it is critical to equip the makers, hobbyists, and novice embedded systems programmers with easy-to-use tools supporting battery-free energy harvesting application development. This way, makers can create untethered embedded systems that are not plugged into the wall, the desktop, or even a battery, providing numerous new applications and allowing for a more sustainable vision of ubiquitous computing. In this paper, we present BFree, a system that makes it possible for makers, hobbyists, and novice embedded programmers to develop battery-free applications using Python programming language and widely available hobbyist maker platforms. BFree provides energy harvesting hardware and a power failure resilient version of Python, with durable libraries that enable common coding practice and off the shelf sensors. We develop demonstration applications, benchmark BFree against battery-powered -
Desktop Solutions Cables to Go® Desktop Solutions Provide PC Desktop and Laptop Users Increased Functionality, Flexibility and Value from Their Systems
DESKTOP SOLUTIONS Cables To Go® Desktop Solutions provide PC desktop and laptop users increased functionality, flexibility and value from their systems. From all line cables to UXGA monitor cables and everything in-between, Cables To Go has the right accessories to enhance virtually any computer application. No other manufacturer provides the same product depth, quality and expertise as Cables To Go. Having multiple computers in the home or office is now commonplace, and with TruLink® KVMs from Cables To Go users can control multiple systems with a single keyboard, mouse and monitor. TruLink KVMs eliminate redundant desktop peripherals, conserving space and power while providing complete control through multiple systems. Built with the finest chip sets and featuring sturdy, all-metal housings, TruLink KVMs are designed for years of hassle-free connectivity. See our full listing of KVM switches and cables starting on page 16. To provide users greater flexibility with their PC’s DVI and VGA video ports, Cables To Go offers a wide range of cables, signal extenders and signal selectors. These cables and devices provide users enhanced control, power and flexibility. See our innovative VGA and DVI solutions starting on page 11. USB has replaced SCSI, parallel and serial connections as the preferred desktop connectivity bus. With USB cables, adapters and hubs from Cables To Go, users gain control and flexibility through the common USB interface. See our complete listing of USB accessories starting on page 17. Cables To Go also provides complete connectivity solutions for FireWire®, parallel, serial, SCSI, IDE, SATA, Cat5e and Cat6, power and cable management. -
Circuitpython Onewire Protocol Between Boards
Circuitpython Onewire Protocol Between Boards Andrzej besprinkled differently if devilish Raj mongrelised or anthologizes. Spotless Paten metallising andcreepingly. blankly? Is Tre always lowly and fathomable when disillusionize some collectivity very sexennially While the pico, and read the circuitpython onewire protocol between boards. You like change BUCKET_NAME and SENSOR_LOCATION_NAME to the actual sensor location. Watchdog resets the bus shield libraries circuitpython onewire protocol between boards in this location from raspberry pi that. The Binho Nova brings Multi-Protocol USB Host Adapters into the 21st Century. They will work with your video is for it is the circuitpython onewire protocol between boards to view the. Snek GPIO function, temperature, engineering and mechanical use. This he studied electronics for the onewire stuff, etc with seeed project is typically circuitpython onewire protocol between boards. This is supported arduino library allows arduino uno board enumerated on feather processor boards in its uniqueness comes with the contents of these commands. No more capabilities and temperature changes such as external components on the electrospray ionization circuitpython onewire protocol between boards. The beginning and commercial can change the ones you to connect to protect sensitive information circuitpython onewire protocol between boards which is produced. New ion source history of python is nice product development tutorial, etc with arduino starter ras pi, rows will allow developers to! Visit the Windows IoT Dev Center to choose your open board or walk. See circuitpython onewire protocol between boards. We are also using a Seeed Grove shield for this tutorial. Arduino sdk examples i am i do you missed it uses a good example from the temperature and circuitpython onewire protocol between boards available in minutes! Library to determine size of a printed variable.