Micropython Documentation Release 1.10 Damien P. George, Paul

Total Page:16

File Type:pdf, Size:1020Kb

Micropython Documentation Release 1.10 Damien P. George, Paul MicroPython Documentation Release 1.10 Damien P. George, Paul Sokolovsky, and contributors Jan 25, 2019 CONTENTS 1 MicroPython libraries 1 1.1 Python standard libraries and micro-libraries..............................2 1.1.1 Builtin functions and exceptions................................2 1.1.2 array – arrays of numeric data................................5 1.1.3 cmath – mathematical functions for complex numbers....................5 1.1.4 gc – control the garbage collector...............................6 1.1.5 math – mathematical functions................................7 1.1.6 sys – system specific functions................................9 1.1.7 ubinascii – binary/ASCII conversions........................... 11 1.1.8 ucollections – collection and container types...................... 11 1.1.9 uerrno – system error codes................................. 12 1.1.10 uhashlib – hashing algorithms............................... 13 1.1.11 uheapq – heap queue algorithm................................ 14 1.1.12 uio – input/output streams................................... 14 1.1.13 ujson – JSON encoding and decoding............................ 16 1.1.14 uos – basic “operating system” services............................ 16 1.1.15 ure – simple regular expressions............................... 20 1.1.16 uselect – wait for events on a set of streams........................ 22 1.1.17 usocket – socket module................................... 23 1.1.18 ussl – SSL/TLS module................................... 28 1.1.19 ustruct – pack and unpack primitive data types....................... 29 1.1.20 utime – time related functions................................ 30 1.1.21 uzlib – zlib decompression.................................. 33 1.1.22 _thread – multithreading support.............................. 33 1.2 MicroPython-specific libraries...................................... 33 1.2.1 btree – simple BTree database................................ 33 1.2.2 framebuf — Frame buffer manipulation........................... 36 1.2.3 machine — functions related to the hardware........................ 38 1.2.4 micropython – access and control MicroPython internals................. 55 1.2.5 network — network configuration.............................. 57 1.2.6 ucryptolib – cryptographic ciphers............................ 66 1.2.7 uctypes – access binary data in a structured way...................... 67 1.3 Libraries specific to the pyboard..................................... 71 1.3.1 pyb — functions related to the board............................. 71 1.3.2 lcd160cr — control of LCD160CR display......................... 109 1.4 Libraries specific to the WiPy...................................... 114 1.4.1 wipy – WiPy specific features................................. 114 1.4.2 class TimerWiPy – control hardware timers.......................... 114 1.4.3 class TimerChannel — setup a channel for a timer....................... 116 1.5 Libraries specific to the ESP8266 and ESP32.............................. 117 i 1.5.1 esp — functions related to the ESP8266 and ESP32..................... 117 1.5.2 esp32 — functionality specific to the ESP32......................... 118 2 The MicroPython language 121 2.1 Glossary................................................. 121 2.2 The MicroPython Interactive Interpreter Mode (aka REPL)....................... 123 2.2.1 Auto-indent........................................... 123 2.2.2 Auto-completion........................................ 123 2.2.3 Interrupting a running program................................. 124 2.2.4 Paste Mode........................................... 124 2.2.5 Soft Reset............................................ 125 2.2.6 The special variable _ (underscore)............................... 126 2.2.7 Raw Mode........................................... 126 2.3 Writing interrupt handlers........................................ 126 2.3.1 Tips and recommended practices................................ 126 2.3.2 MicroPython Issues....................................... 127 2.3.3 Exceptions........................................... 129 2.3.4 General Issues.......................................... 130 2.4 Maximising MicroPython Speed..................................... 132 2.4.1 Designing for speed....................................... 133 2.4.2 Identifying the slowest section of code............................. 134 2.4.3 MicroPython code improvements................................ 135 2.4.4 The Native code emitter.................................... 135 2.4.5 The Viper code emitter..................................... 136 2.4.6 Accessing hardware directly.................................. 137 2.5 MicroPython on Microcontrollers.................................... 138 2.5.1 Flash Memory.......................................... 138 2.5.2 RAM.............................................. 138 2.5.3 The Heap............................................ 142 2.5.4 String Operations........................................ 143 2.5.5 Postscript............................................ 144 2.6 Distribution packages, package management, and deploying applications............... 144 2.6.1 Overview............................................ 144 2.6.2 Distribution packages...................................... 144 2.6.3 upip package manager..................................... 145 2.6.4 Cross-installing packages.................................... 146 2.6.5 Cross-installing packages with freezing............................ 146 2.6.6 Creating distribution packages................................. 147 2.6.7 Application resources...................................... 147 2.6.8 References........................................... 148 2.7 Inline Assembler for Thumb2 architectures............................... 148 2.7.1 Document conventions..................................... 149 2.7.2 Instruction Categories...................................... 149 2.7.3 Usage examples......................................... 158 2.7.4 References........................................... 161 3 MicroPython differences from CPython 163 3.1 Syntax.................................................. 163 3.1.1 Spaces.............................................. 163 3.1.2 Unicode............................................. 163 3.2 Core Language.............................................. 164 3.2.1 Classes............................................. 164 3.2.2 Functions............................................ 166 3.2.3 Generator............................................ 166 ii 3.2.4 Runtime............................................. 167 3.2.5 import.............................................. 168 3.3 Builtin Types............................................... 169 3.3.1 Exception............................................ 169 3.3.2 bytearray............................................ 171 3.3.3 bytes............................................... 171 3.3.4 float............................................... 172 3.3.5 int................................................ 173 3.3.6 list................................................ 173 3.3.7 str................................................ 174 3.3.8 tuple............................................... 176 3.4 Modules................................................. 176 3.4.1 array............................................... 176 3.4.2 builtins............................................. 177 3.4.3 deque.............................................. 178 3.4.4 json............................................... 178 3.4.5 struct.............................................. 178 3.4.6 sys................................................ 179 4 MicroPython license information 181 5 Quick reference for the pyboard 183 5.1 General information about the pyboard................................. 183 5.1.1 Local filesystem and SD card.................................. 183 5.1.2 Boot modes........................................... 184 5.1.3 Errors: flashing LEDs...................................... 184 5.1.4 Guide for using the pyboard with Windows.......................... 184 5.1.5 The pyboard hardware..................................... 184 5.1.6 Datasheets for the components on the pyboard......................... 185 5.1.7 Datasheets for other components................................ 185 5.2 MicroPython tutorial for the pyboard.................................. 185 5.2.1 Introduction to the pyboard................................... 185 5.2.2 Running your first script.................................... 186 5.2.3 Getting a MicroPython REPL prompt............................. 189 5.2.4 Turning on LEDs and basic Python concepts.......................... 190 5.2.5 The Switch, callbacks and interrupts.............................. 192 5.2.6 The accelerometer....................................... 194 5.2.7 Safe mode and factory reset.................................. 195 5.2.8 Making the pyboard act as a USB mouse............................ 196 5.2.9 The Timers........................................... 198 5.2.10 Inline assembler......................................... 200 5.2.11 Power control.......................................... 202 5.2.12 Tutorials requiring extra components.............................. 202 5.2.13 Tips, tricks and useful things to know............................. 216 5.3 General board control.......................................... 217 5.4 Delay and timing............................................. 217 5.5 Internal LEDs.............................................
Recommended publications
  • Ironpython in Action
    IronPytho IN ACTION Michael J. Foord Christian Muirhead FOREWORD BY JIM HUGUNIN MANNING IronPython in Action Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> IronPython in Action MICHAEL J. FOORD CHRISTIAN MUIRHEAD MANNING Greenwich (74° w. long.) Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact Special Sales Department Manning Publications Co. Sound View Court 3B fax: (609) 877-8256 Greenwich, CT 06830 email: [email protected] ©2009 by Manning Publications Co. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps. Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.
    [Show full text]
  • 102-401-08 3 Fiches SOFTW.Indd
    PYPY to be adapted to new platforms, to be used in education Scope and to give new answers to security questions. Traditionally, fl exible computer languages allow to write a program in short time but the program then runs slow- Contribution to standardization er at the end-user. Inversely, rather static languages run 0101 faster but are tedious to write programs in. Today, the and interoperability issues most used fl exible and productive computer languages Pypy does not contribute to formal standardization proc- are hard to get to run fast, particularly on small devices. esses. However, Pypy’s Python implementation is practi- During its EU project phase 2004-2007 Pypy challenged cally interoperable and compatible with many environ- this compromise between fl exibility and speed. Using the ments. Each night, around 12 000 automatic tests ensure platform developed in Pypy, language interpreters can that it remains robust and compatible to the mainline now be written at a higher level of abstraction. Pypy au- Python implementation. tomatically produces effi cient versions of such language interpreters for hardware and virtual target environ- Target users / sectors in business ments. Concrete examples include a full Python Inter- 010101 10 preter, whose further development is partially funded by and society the Google Open Source Center – Google itself being a Potential users are developers and companies who have strong user of Python. Pypy also showcases a new way of special needs for using productive dynamic computer combining agile open-source development and contrac- languages. tual research. It has developed methods and tools that support similar projects in the future.
    [Show full text]
  • Scons API Docs Version 4.2
    SCons API Docs version 4.2 SCons Project July 31, 2021 Contents SCons Project API Documentation 1 SCons package 1 Module contents 1 Subpackages 1 SCons.Node package 1 Submodules 1 SCons.Node.Alias module 1 SCons.Node.FS module 9 SCons.Node.Python module 68 Module contents 76 SCons.Platform package 85 Submodules 85 SCons.Platform.aix module 85 SCons.Platform.cygwin module 85 SCons.Platform.darwin module 86 SCons.Platform.hpux module 86 SCons.Platform.irix module 86 SCons.Platform.mingw module 86 SCons.Platform.os2 module 86 SCons.Platform.posix module 86 SCons.Platform.sunos module 86 SCons.Platform.virtualenv module 87 SCons.Platform.win32 module 87 Module contents 87 SCons.Scanner package 89 Submodules 89 SCons.Scanner.C module 89 SCons.Scanner.D module 93 SCons.Scanner.Dir module 93 SCons.Scanner.Fortran module 94 SCons.Scanner.IDL module 94 SCons.Scanner.LaTeX module 94 SCons.Scanner.Prog module 96 SCons.Scanner.RC module 96 SCons.Scanner.SWIG module 96 Module contents 96 SCons.Script package 99 Submodules 99 SCons.Script.Interactive module 99 SCons.Script.Main module 101 SCons.Script.SConsOptions module 108 SCons.Script.SConscript module 115 Module contents 122 SCons.Tool package 123 Module contents 123 SCons.Variables package 125 Submodules 125 SCons.Variables.BoolVariable module 125 SCons.Variables.EnumVariable module 125 SCons.Variables.ListVariable module 126 SCons.Variables.PackageVariable module 126 SCons.Variables.PathVariable module 127 Module contents 127 SCons.compat package 129 Module contents 129 Submodules 129 SCons.Action
    [Show full text]
  • Porting of Micropython to LEON Platforms
    Porting of MicroPython to LEON Platforms Damien P. George George Robotics Limited, Cambridge, UK TEC-ED & TEC-SW Final Presentation Days ESTEC, 10th June 2016 George Robotics Limited (UK) I a limited company in the UK, founded in January 2014 I specialising in embedded systems I hardware: design, manufacturing (via 3rd party), sales I software: development and support of MicroPython code D.P. George (George Robotics Ltd) MicroPython on LEON 2/21 Motivation for MicroPython Electronics circuits now pack an enor- mous amount of functionality in a tiny package. Need a way to control all these sophisti- cated devices. Scripting languages enable rapid development. Is it possible to put Python on a microcontroller? Why is it hard? I Very little memory (RAM, ROM) on a microcontroller. D.P. George (George Robotics Ltd) MicroPython on LEON 3/21 Why Python? I High-level language with powerful features (classes, list comprehension, generators, exceptions, . ). I Large existing community. I Very easy to learn, powerful for advanced users: shallow but long learning curve. I Ideal for microcontrollers: native bitwise operations, procedural code, distinction between int and float, robust exceptions. I Lots of opportunities for optimisation (this may sound surprising, but Python is compiled). D.P. George (George Robotics Ltd) MicroPython on LEON 4/21 Why can't we use existing CPython? (or PyPy?) I Integer operations: Integer object (max 30 bits): 4 words (16 bytes) Preallocates 257+5=262 ints −! 4k RAM! Could ROM them, but that's still 4k ROM. And each integer outside the preallocated ones would be another 16 bytes. I Method calls: led.on(): creates a bound-method object, 5 words (20 bytes) led.intensity(1000) −! 36 bytes RAM! I For loops: require heap to allocate a range iterator.
    [Show full text]
  • The Blit: a Multiplexed Graphics Terminal
    The Blit: A Multiplexed Graphics Terminal Rob Pike Bell Laboratories Murray Hill, New Jersey 07974 ABSTRACT The Blit is a programmable bitmap graphics terminal designed specifically to run with the Unix operating system. The software in the terminal provides an asynchronous multi-window environment, and thereby exploits the multiprogramming capabilities of the Unix system which have been largely under-utilized because of the restrictions of conventional terminals. This paper discusses the design motivation of the Blit, gives an overview of the user interface, mentions some of the novel uses of multiprogramming made possible by the Blit, and describes the implementation of the multiplexing facilities on the host and in the terminal. Because most of the functionality is provided by the ter- minal, the discussion focuses on the structure of the terminal’s software. Sometime in 1983 The Blit: A Multiplexed Graphics Terminal Rob Pike Bell Laboratories Murray Hill, New Jersey 07974 Introduction The Blit* is a graphics terminal characterized more by the software it runs than the hardware itself. The hardware is simple and inexpensive (Figure 1): 256K bytes of memory dual-ported between an 800×1024×1 bit display and a Motorola MC68000 microprocessor, with 24K of ROM, an RS-232 interface, a mouse and a keyboard. Unlike many graphics terminals, it has no special-purpose graphics hardware; instead, the microprocessor executes all graphical operations in software. The reasons for and conse- quences of this design are discussed elsewhere.5 The microprocessor may be loaded from the host with custom applications software, but the terminal is rarely used this way.
    [Show full text]
  • Goless Documentation Release 0.6.0
    goless Documentation Release 0.6.0 Rob Galanakis July 11, 2014 Contents 1 Intro 3 2 Goroutines 5 3 Channels 7 4 The select function 9 5 Exception Handling 11 6 Examples 13 7 Benchmarks 15 8 Backends 17 9 Compatibility Details 19 9.1 PyPy................................................... 19 9.2 Python 2 (CPython)........................................... 19 9.3 Python 3 (CPython)........................................... 19 9.4 Stackless Python............................................. 20 10 goless and the GIL 21 11 References 23 12 Contributing 25 13 Miscellany 27 14 Indices and tables 29 i ii goless Documentation, Release 0.6.0 • Intro • Goroutines • Channels • The select function • Exception Handling • Examples • Benchmarks • Backends • Compatibility Details • goless and the GIL • References • Contributing • Miscellany • Indices and tables Contents 1 goless Documentation, Release 0.6.0 2 Contents CHAPTER 1 Intro The goless library provides Go programming language semantics built on top of gevent, PyPy, or Stackless Python. For an example of what goless can do, here is the Go program at https://gobyexample.com/select reimplemented with goless: c1= goless.chan() c2= goless.chan() def func1(): time.sleep(1) c1.send(’one’) goless.go(func1) def func2(): time.sleep(2) c2.send(’two’) goless.go(func2) for i in range(2): case, val= goless.select([goless.rcase(c1), goless.rcase(c2)]) print(val) It is surely a testament to Go’s style that it isn’t much less Python code than Go code, but I quite like this. Don’t you? 3 goless Documentation, Release 0.6.0 4 Chapter 1. Intro CHAPTER 2 Goroutines The goless.go() function mimics Go’s goroutines by, unsurprisingly, running the routine in a tasklet/greenlet.
    [Show full text]
  • Micropython for Satlink 3 Documentation Release 1.8.4
    MicroPython for Satlink 3 Documentation Release 1.8.4 Damien P. George, contributors, and Sutron Corporation Jul 28, 2017 CONTENTS 1 Python first time setup & configuration1 1.1 1. Download & Install LinkComm....................................1 1.2 2. Download & Install Python......................................1 1.3 3. Download & Install Pyinstaller....................................3 1.4 4. Download & Install PyCharm.....................................3 1.5 5. Testing out .py to .exe converter....................................5 1.6 6. Python PyQt5 GUI..........................................6 1.7 7. Connect PyCharm into external programs like linkcomm or micropython..............6 1.8 8. Configure PyCharm for program development using LinkComm..................9 1.9 9. Configure PyCharm with SL3 API for auto completion....................... 11 1.10 10. Setting docstring stub in PyCharm.................................. 13 2 MicroPython libraries 15 2.1 Python standard libraries and micro-libraries.............................. 15 2.2 MicroPython-specific libraries...................................... 16 2.3 Libraries specific to the Satlink 3.................................... 19 3 The MicroPython language 39 3.1 Overview of MicroPython Differences from Standard Python..................... 39 3.2 Code examples of how MicroPython differs from Standard Python with work-arounds........ 41 3.3 The MicroPython Interactive Interpreter Mode (aka REPL)....................... 56 3.4 Maximising Python Speed.......................................
    [Show full text]
  • A Complete Bibliography of Publications in Software—Practice and Experience
    A Complete Bibliography of Publications in Software|Practice and Experience Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 23 July 2021 Version 3.26 Title word cross-reference [Bar82a, Bar82c, Bar84b]. < [SMGMOFM07a, SMGMOFM07b]. > [SMGMOFM07a, SMGMOFM07b]. 2 [MST13, MDB19]. 3 [DS09]. 4 [MSR+07]. \ 0 [GW96]. 1 [GW96]. $1.50 [Bar78d]. $11 [PK04]. TM [MZB00, Win02]. 8 [DB21b]. k [Bar84a]. $12.00 [Rob72]. $13 [Bar84a]. [AW93, Mer93]. κ [MG94]. µ $13.00 [Rob72]. $18.50 [Jon74]. $185 [BS90c, BDS+92, SMNB21]. N [Bar79b]. $19.30 [Lan74a]. $19.50 [Dav78]. [MS98, Coh98, KST94, YAVHC21]. P 3 $25.00 [Pet77, And78]. 3 [BE02, FMA02]. [DC03]. PM [CLD+17]. q [GSR17]. τ $31-25 [Pet77]. $31.35 [Bri82]. 32 [VED06]. 2:5 [TSZ14, UDS+07]. $35.00 [Inc86]. $39.50 [Sim83]. 5 [CPMAH+20]. $58.50 [Wal81a]. $6.95 -ary [MS98]. -bit [AM10, SF85, VED06]. [Tho74]. 64 [AM10, VED06]. 68 -gram [Coh98, KST94, YAVHC21]. -grams [Ear76, Hol77]. $68.25 [Pit82]. $7.00 [GSR17]. -level [FM77]. -queens [Plu74]. [Bar72a]. $7.50 [Bar78d]. $7.95 -R [Ear76, Hol77]. -shortest-paths [MG94]. [Bar76a, Lav77]. $78.50 [Sim83]. 8 -System [BS90c]. [Plu74, SF85]. $8.95 [Bar82a, Bar82c, Bar84b]. $9.75 . [Bis81b]. .NET [Coo04, Han04]. [Bar77e, Mul76]. $9.80 [Atk79a]. $9.95 1 2 0 [Bar81, Edw98a, Edw98b, Gru83, Llo82, 2 [Bar74a, Bar74b, Bar80b, Bud85, Cor88b, Val77a, Val78, Wal83b].
    [Show full text]
  • Setting up Your Environment
    APPENDIX A Setting Up Your Environment Choosing the correct tools to work with asyncio is a non-trivial choice, since it can significantly impact the availability and performance of asyncio. In this appendix, we discuss the interpreter and the packaging options that influence your asyncio experience. The Interpreter Depending on the API version of the interpreter, the syntax of declaring coroutines change and the suggestions considering API usage change. (Passing the loop parameter is considered deprecated for APIs newer than 3.6, instantiating your own loop should happen only in rare circumstances in Python 3.7, etc.) Availability Python interpreters adhere to the standard in varying degrees. This is because they are implementations/manifestations of the Python language specification, which is managed by the PSF. At the time of this writing, three relevant interpreters support at least parts of asyncio out of the box: CPython, MicroPython, and PyPy. © Mohamed Mustapha Tahrioui 2019 293 M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2 APPENDIX A SeTTinG Up YouR EnViROnMenT Since we are ideally interested in a complete or semi-complete implementation of asyncio, our choice is limited to CPython and PyPy. Both of these products have a great community. Since we are ideally using a lot powerful stdlib features, it is inevitable to pose the question of implementation completeness of a given interpreter with respect to the Python specification. The CPython interpreter is the reference implementation of the language specification and hence it adheres to the largest set of features in the language specification. At the point of this writing, CPython was targeting API version 3.7.
    [Show full text]
  • Optimizing and Evaluating Transient Gradual Typing
    Optimizing and Evaluating Transient Gradual Typing Michael M. Vitousek Jeremy G. Siek Avik Chaudhuri Indiana University, USA Indiana University, USA Facebook Inc., USA [email protected] [email protected] [email protected] Abstract 1 Introduction Gradual typing enables programmers to combine static and Gradual typing enables programmers to gradually evolve dynamic typing in the same language. However, ensuring their programs from the dynamic typing, which allows flex- sound interaction between the static and dynamic parts can ibility, to static typing, providing security [Siek and Taha incur runtime cost. In this paper, we analyze the perfor- 2006; Tobin-Hochstadt and Felleisen 2006]. Over the last mance of the transient design for gradual typing in Retic- decade, gradual typing has been of great interest to both ulated Python, a gradually typed variant of Python. This the research community [Ahmed et al. 2011; Allende et al. approach inserts lightweight checks throughout a program 2013a; Rastogi et al. 2012; Ren et al. 2013; Siek et al. 2015b; rather than installing proxies on higher order values. We Swamy et al. 2014; Takikawa et al. 2012], and to industry, show that, when using CPython as a host, performance de- which has introduced several languages with elements of creases as programs evolve from dynamic to static types, up gradual typing, such as TypeScript [Microsoft 2012], Flow to a 6× slowdown compared to equivalent Python programs. [Facebook 2014], and Dart [Google 2011]. Many existing To reduce this overhead, we design a static analysis and gradually typed languages operate by translating a “surface optimization that removes redundant runtime checks, em- language” program (i.e.
    [Show full text]
  • Python Crypto Misuses in the Wild
    Python Crypto Misuses in the Wild Anna-Katharina Wickert Lars Baumgärtner [email protected] [email protected] Technische Universität Darmstadt Technische Universität Darmstadt Darmstadt, Germany Darmstadt, Germany Florian Breitfelder Mira Mezini [email protected] [email protected] Technische Universität Darmstadt Technische Universität Darmstadt Darmstadt, Germany Darmstadt, Germany ABSTRACT 1 INTRODUCTION Background: Previous studies have shown that up to 99.59 % of the Cryptography, hereafter crypto, is widely used nowadays to protect Java apps using crypto APIs misuse the API at least once. However, our data and ensure confidentiality. For example, without crypto, these studies have been conducted on Java and C, while empirical we would not be able to securely use online banking or do online studies for other languages are missing. For example, a controlled shopping. Unfortunately, previous research results show that crypto user study with crypto tasks in Python has shown that 68.5 % of the is often used in an insecure way [3, 4, 7, 9, 11]. One such problem is professional developers write a secure solution for a crypto task. the choice of an insecure parameter, like an insecure block mode, for Aims: To understand if this observation holds for real-world code, crypto primitives like encryption. Many static analysis tools exist we conducted a study of crypto misuses in Python. Method: We to identify these misuses such as CryptoREX [13], CryptoLint [4], developed a static analysis tool that covers common misuses of5 CogniCryptSAST [8], and Cryptoguard [12]. different Python crypto APIs. With this analysis, we analyzed 895 While these tools and the respective in-the-wild studies concen- popular Python projects from GitHub and 51 MicroPython projects trate on Java and C, user studies suggest that the existing Python for embedded devices.
    [Show full text]
  • How Python Is Winning New Friends
    How Python is Winning New Friends Steve Holden CTO, Global Stress Index Limited [email protected] IntroducFons • Programmer since 1967 • Computaonal scienFst by training • Engineer at heart • Python user since Python 1.4 (c. 1995) • Enjoy helping people to learn I’ve WriSen about Python Any Python users out there? Developments in CompuFng SOME HISTORY 1948 Programming Was Hard • No operang system • No libraries • No compilers • No assemblers • The painful process of abstracFon layering began 1977 Easier to Program • Assemblers/compilers available • UNIX starFng to emerge as a common base – Microprogramming handled hardware complexity • Storage flexibly handled by the OS • Networking heading to ubiquity 1984 2015 2016 2017 2020 ? Whatever it is, it will be complex! And so to Python “BUT IT’S [JUST] A SCRIPTING LANGUAGE …” What’s a “ScripFng Language”? • “First they ignore you; then they abuse you; then they crack down on you and then you win.” – not Mahatma Ghandi What’s a “ScripFng Language”? • “First they ignore you; then they abuse you; then they crack down on you and then you win.” – not Mahatma Ghandi • “Ridicule is like repression. Both give place to respect when they fail to produce the intended effect.” – Mahatma Ghandi Note to Purists • Learners do not have complex needs – Simplicity and consistency are important – ExecuFon speed mostly isn’t • Direct hands-on experience enables • Large resources not required – Wide availability and ease of access are criFcal The Programming Audience • Professional soiware engineers • ScienFsts • Lab
    [Show full text]