CHM 8304 Physical Organic Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

CHM 8304 Physical Organic Chemistry CHM 8304 CHM 8304 Physical Organic Chemistry Kinetic analyses Scientific method • proposal of a hypothesis • conduct experiments to test this hypothesis – confirmation – refutation • the trait of refutability is what distinguishes a good scientific hypothesis from a pseudo-hypothesis (see Karl Popper) 2 Kinetic analyses 1 CHM 8304 “Proof” of a mechanism • a mechanism can never really be ‘proven’ – inter alia, it is not directly observable! • one can propose a hypothetical mechanism • one can conduct experiments designed to refute certain hypotheses • one can retain mechanisms that are not refuted • a mechanism can thus become “generally accepted” 3 Mechanistic studies • allow a better comprehension of a reaction, its scope and its utility • require kinetic experiments – rate of disappearance of reactants – rate of appearance of products • kinetic studies are therefore one of the most important disciplines in experimental chemistry 4 Kinetic analyses 2 CHM 8304 Outline: Energy surfaces • based on section 7.1 of A&D – energy surfaces – energy profiles – the nature of a transition state – rates and rate constants – reaction order and rate laws 5 Energy profiles and surfaces • tools for the visualisation of the change of energy as a function of chemical transformations – profiles: • two dimensions • often, energy as a function of ‘reaction coordinate’ – surfaces: • three dimensions • energy as a function of two reaction coordinates 6 Kinetic analyses 3 CHM 8304 Example: SN2 energy profile • one step passing by a single transition state δ- δ- X---Y---Z transition state activation ΔG‡ energy X:- + Y-Z reactants Free energy ΔG° X-Y + :Z- products Reaction co-ordinate 7 Reminder: activated complex • ethereal complex formed at the transition state of the reaction – partially formed bonds -13 – partially broken bonds very unstable; <10 s H H δ− δ− H HO + C Cl HO C Cl HO C + Cl HH HH H H not isolable partial transition state bonds 8 Kinetic analyses 4 CHM 8304 Free energy profiles vs surfaces • a reaction profile gives the impression that only one reaction pathway can lead to the formation of products • however, in reality, reactant molecules are free to ‘explore’ all available reaction pathways – the pathway with the lowest energy is the one that determines the predominant mechanism • free energy surfaces are in 3D, and take account of more than one event that must take place during a reaction (e.g. bond cleavage and formation) – allow the consideration off ‘off-pathway’ interactions – allow the visualisation of mechanistic promiscuity 9 Energy surfaces • allow the visualisation of several reaction pathways, or even several reactions that may take place activated complex for A activated complex for B product A product B reactant chem.wayne.edu 10 Kinetic analyses 5 CHM 8304 More-O’Ferrall and Jencks • Rory More-O’Ferrall – University College, Dublin – mechanisms et catalysis • William P. Jencks (1927-2007) – Biochemistry, Brandeis University – a father of modern physical organic chemistry and biological chemistry – author of classic textbook – laureate of several awards 11 Profile to surface δ- δ- X---Y---Z 2D: TS rxn. coord. & energy X:- + Y-Z X-Y + :Z- Free energy reactants products Reaction co-ordinate - X:- + Y+ + :Z- X: + Y-Z Cleavage of Y-Z bond reactants unstable intermediates ‡ 2D: 2 rxn. coord. - X-Y -Z 3D: unstable bond Formation of X-Y X-Y + :Z- 2 rxn. coord. & energy intermediate products 12 Kinetic analyses 6 CHM 8304 Mountain terminology summit (Mt. Robson) summit (Helmet Pk.) Helmet/Robson col 13 ‘Summit’ vs ‘col’ • the predominant mechanism follows the reaction pathway of lowest activation energy • the ‘summit’ (TS) of this pathway is often a ‘col’ between peaks of even higher energy Free energy Free Rxn. co-ord. 14 Kinetic analyses 7 CHM 8304 Exercise: Diagram to mechanism • Draw the reaction profile that corresponds to the lowest energy reaction pathway on the MOFJ diagram below. Draw the corresponding mechanism including its transition state(s). R GLGP + Nuc Cleavage of C-LG bond bond Nuc Formation of C- + GP REt LG + Nuc Nuc - H 3 C RCH 2 GLGP Free energy Rxn. Co-ord. R Nuc + GLGP 15 Multi-step reactions • when a reaction takes place via several elementary chemical steps, one of these steps will limit the global rate of transformation – named the rate determining step (rds) or rate limiting step (rls) • the rate limiting step is always the step having the highest energy transition state – even if this step does not have the largest microscopic activation barrier! 16 Kinetic analyses 8 CHM 8304 Rate-limiting step on a reaction profile • the rate-limiting step is the one with the highest energy transition state with respect to the ground state activation energy TS2 TS2 of global reaction; step 2 is rls TS1 ‡ TS1 ΔG2 int. int. products products ‡ ‡ ‡ ‡ ΔG Free energy Free energy ΔG1 ΔG1 > ΔG2 so step 1 is rls? reactants NO!! reactants Rxn. Co-ord. Rxn. Co-ord. 17 Rate-limiting step on a reaction profile • the rate-limiting step is the one with the highest energy transition state with respect to the ground state – see A&D, Figure 7.3 G‡ Δ ΔG‡ ΔG‡ Free energy Free energy Free energy Rxn. co-ord. Rxn. co-ord. Rxn. co-ord. ‡ ΔG ‡ ΔG‡ ΔG Free energy Free energy Free energy Rxn. co-ord. Rxn. co-ord. Rxn. co-ord. 18 Kinetic analyses 9 CHM 8304 Rate vs rate constant • the reaction rate depends on the activation barrier of the global reaction and the concentration of reactants, according to rate law for the reaction – e.g. v = k[A] • the proportionality constant, k, is called the rate constant 19 Rate vs rate constant • reaction rate at a given moment is the instantaneous slope of [P] vs time • a rate constant derives from the integration of the rate law 100 90 different 80 concentrations 70 of reactants; 60 different 50 [Produit] 40 end points different 30 initial 20 rates 10 0 0 5 10 15 20 Temps same half-lives; same rate constants 20 Kinetic analyses 10 CHM 8304 Rate law and molecularity • each reactant may or may not affect the reaction rate, according to the rate law for a given reaction • a rate law is an empirical observation of the variation of reaction rate as a function of the concentration of each reactant – procedure for determining a rate law: • measure the initial rate (<10% conversion) • vary the concentration of each reactant, one after the other • determine the order of the variation of rate as a function of the concentration of each reactant • e.g. v ∝ [A][B]2 • the order of each reactant in the rate law indicates the stoichiometry of its involvement in the transition state of the rate-determining step 21 Integers in rate laws • integers indicate the number of equivalents of each reactant that are found in the activated complex at the rae-limiting transition state – e.g.: • reaction: A + B à P – mechanism: A combines with B to form P • rate law: v ∝ [A][B] – one equivalent of each of A and B are present at the TS of the rds 22 Kinetic analyses 11 CHM 8304 Fractions in rate laws • fractions signify the dissociation of a complex of reactants, leading up to the rds: – e.g. : • elementary reactions: A à B + B; B + C à P – mechanism: reactant A exists in the form of a dimer that must dissociate before reacting with C to form P • rate law: v ∝ [A]½[C] – true rate law is v ∝ [B][C], but B comes from the dissociation of dimer A – observed rate law, written in terms of reactants A and C, reflects the dissociation of A – it is therefore very important to know the nature of reactants in solution! 23 Negative integers in rate laws • negative integers indicate the presence of an equilibrium that provides a reactive species: – e.g. : • elementary reactions: A B + C; B + D à P – mechanism: A dissociates to give B and C, before B reacts with D to give P • rate law: v ∝ [A][C]-1[D] – true rate law is v ∝ [B][D], but B comes from the dissociation of A – observed rate law, written in terms of reactants A and D, reflects the dissociation of A – apparent inhibition by C reflects the displacement of the initial equilibrium 24 Kinetic analyses 12 CHM 8304 Outline: Transition State Theory • based on section 7.2 of A&D – Arrhenius approach – Eyring approach – temperature effects – interpretation of thermodynamic parameters 25 Arrhenius • Svante Arrhenius (1859-1927) – Swedish physicist and chemist (Stockholm) – solution chemistry, activation energy – also: panspermia, universal language, greenhouse effect, racial biology – one of the founders of the Nobel Institute – Nobel Prize (1903) for the electrolytic theory of of dissociation 26 Kinetic analyses 13 CHM 8304 Arrhenius equation • in 1889, Arrhenius noted that the rate constant of a given reaction increases exponentially with temperature : E d lnk a Ea = 2 lnk = − + lnA dT RT RT • the activation energy, Ea, was defined as the energy necessary to convert reactants into “high energy species” • however, this energy is not expressed in terms of thermodynamic parameters – for this, it was necessary to develop the transition state theory 27 Arrhenius plot Graphique d'Arrhenius ln A E lnk = − a + lnA RT slopepente = - Ea / R obs k ln 1 / T (K-1) 28 Kinetic analyses 14 CHM 8304 Eyring • Henry Eyring (Sr.) (1901-1981) – American professor of theoretical chemistry and reaction rates (Princeton, Utah) – laureate of several prizes: Wolf Prize, Priestley Medal et National Medal of Science 29 Transition State Theory (TST) • developed by Eyring to explain observed reaction rates in terms of standard thermodynamic parameters • in their transformation into products, reactants must attain a
Recommended publications
  • Chapter 12 Lecture Notes
    Chemical Kinetics “The study of speeds of reactions and the nanoscale pathways or rearrangements by which atoms and molecules are transformed to products” Chapter 13: Chemical Kinetics: Rates of Reactions © 2008 Brooks/Cole 1 © 2008 Brooks/Cole 2 Reaction Rate Reaction Rate Combustion of Fe(s) powder: © 2008 Brooks/Cole 3 © 2008 Brooks/Cole 4 Reaction Rate Reaction Rate + Change in [reactant] or [product] per unit time. Average rate of the Cv reaction can be calculated: Time, t [Cv+] Average rate + Cresol violet (Cv ; a dye) decomposes in NaOH(aq): (s) (mol / L) (mol L-1 s-1) 0.0 5.000 x 10-5 13.2 x 10-7 10.0 3.680 x 10-5 9.70 x 10-7 20.0 2.710 x 10-5 7.20 x 10-7 30.0 1.990 x 10-5 5.30 x 10-7 40.0 1.460 x 10-5 3.82 x 10-7 + - 50.0 1.078 x 10-5 Cv (aq) + OH (aq) → CvOH(aq) 2.85 x 10-7 60.0 0.793 x 10-5 -7 + + -5 1.82 x 10 change in concentration of Cv Δ [Cv ] 80.0 0.429 x 10 rate = = 0.99 x 10-7 elapsed time Δt 100.0 0.232 x 10-5 © 2008 Brooks/Cole 5 © 2008 Brooks/Cole 6 1 Reaction Rates and Stoichiometry Reaction Rates and Stoichiometry Cv+(aq) + OH-(aq) → CvOH(aq) For any general reaction: a A + b B c C + d D Stoichiometry: The overall rate of reaction is: Loss of 1 Cv+ → Gain of 1 CvOH Rate of Cv+ loss = Rate of CvOH gain 1 Δ[A] 1 Δ[B] 1 Δ[C] 1 Δ[D] Rate = − = − = + = + Another example: a Δt b Δt c Δt d Δt 2 N2O5(g) 4 NO2(g) + O2(g) Reactants decrease with time.
    [Show full text]
  • Chapter 9. Atomic Transport Properties
    NEA/NSC/R(2015)5 Chapter 9. Atomic transport properties M. Freyss CEA, DEN, DEC, Centre de Cadarache, France Abstract As presented in the first chapter of this book, atomic transport properties govern a large panel of nuclear fuel properties, from its microstructure after fabrication to its behaviour under irradiation: grain growth, oxidation, fission product release, gas bubble nucleation. The modelling of the atomic transport properties is therefore the key to understanding and predicting the material behaviour under irradiation or in storage conditions. In particular, it is noteworthy that many modelling techniques within the so-called multi-scale modelling scheme of materials make use of atomic transport data as input parameters: activation energies of diffusion, diffusion coefficients, diffusion mechanisms, all of which are then required to be known accurately. Modelling approaches that are readily used or which could be used to determine atomic transport properties of nuclear materials are reviewed here. They comprise, on the one hand, static atomistic calculations, in which the migration mechanism is fixed and the corresponding migration energy barrier is calculated, and, on the other hand, molecular dynamics calculations and kinetic Monte-Carlo simulations, for which the time evolution of the system is explicitly calculated. Introduction In nuclear materials, atomic transport properties can be a combination of radiation effects (atom collisions) and thermal effects (lattice vibrations), this latter being possibly enhanced by vacancies created by radiation damage in the crystal lattice (radiation enhanced-diffusion). Thermal diffusion usually occurs at high temperature (typically above 1 000 K in nuclear ceramics), which makes the transport processes difficult to model at lower temperatures because of the low probability to see the diffusion event occur in a reasonable simulation time.
    [Show full text]
  • Andrea Deoudes, Kinetics: a Clock Reaction
    A Kinetics Experiment The Rate of a Chemical Reaction: A Clock Reaction Andrea Deoudes February 2, 2010 Introduction: The rates of chemical reactions and the ability to control those rates are crucial aspects of life. Chemical kinetics is the study of the rates at which chemical reactions occur, the factors that affect the speed of reactions, and the mechanisms by which reactions proceed. The reaction rate depends on the reactants, the concentrations of the reactants, the temperature at which the reaction takes place, and any catalysts or inhibitors that affect the reaction. If a chemical reaction has a fast rate, a large portion of the molecules react to form products in a given time period. If a chemical reaction has a slow rate, a small portion of molecules react to form products in a given time period. This experiment studied the kinetics of a reaction between an iodide ion (I-1) and a -2 -1 -2 -2 peroxydisulfate ion (S2O8 ) in the first reaction: 2I + S2O8 I2 + 2SO4 . This is a relatively slow reaction. The reaction rate is dependent on the concentrations of the reactants, following -1 m -2 n the rate law: Rate = k[I ] [S2O8 ] . In order to study the kinetics of this reaction, or any reaction, there must be an experimental way to measure the concentration of at least one of the reactants or products as a function of time. -2 -2 -1 This was done in this experiment using a second reaction, 2S2O3 + I2 S4O6 + 2I , which occurred simultaneously with the reaction under investigation. Adding starch to the mixture -2 allowed the S2O3 of the second reaction to act as a built in “clock;” the mixture turned blue -2 -2 when all of the S2O3 had been consumed.
    [Show full text]
  • Download Author Version (PDF)
    Chemical Society Reviews Understanding Catalysis Journal: Chemical Society Reviews Manuscript ID: CS-TRV-06-2014-000210.R2 Article Type: Tutorial Review Date Submitted by the Author: 20-Jun-2014 Complete List of Authors: Roduner, Emil; Universitat Stuttgart, Institut fur Physikalische Chemie Page 1 of 33 Chemical Society Reviews Tutorial Review Understanding Catalysis Emil Roduner Institute of Physical Chemistry, University of Stuttgart, D-70569 Stuttgart, Germany and Chemistry Department, University of Pretoria, Pretoria 0002, Republic of South Africa Abstract The large majority of chemical compounds underwent at least one catalytic step during synthesis. While it is common knowledge that catalysts enhance reaction rates by lowering the activation energy it is often obscure how catalysts achieve this. This tutorial review explains some fundamental principles of catalysis and how the mechanisms are studied. The dissociation of formic acid into H 2 and CO 2, serves to demonstrate how a water molecule can open a new reaction path at lower energy, how immersion in liquid water can influence the charge distribution and energetics, and how catalysis at metal surfaces differs from that in the gas phase. The reversibility of catalytic reactions, the influence of an adsorption pre- equilibrium and the compensating effects of adsorption entropy and enthalpy on the Arrhenius parameters are discussed. It is shown that flexibility around the catalytic centre and residual substrate dynamics on the surface affect these parameters. Sabatier’s principle of optimum substrate adsorption, shape selectivity in the pores of molecular sieves and the polarisation effect at the metal-support interface are explained. Finally, it is shown that the application of a bias voltage in electrochemistry offers an additional parameter to promote or inhibit a reaction.
    [Show full text]
  • Transition State Theory. I
    MIT OpenCourseWare http://ocw.mit.edu 5.62 Physical Chemistry II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.62 Spring 2007 Lecture #33 Page 1 Transition State Theory. I. Transition State Theory = Activated Complex Theory = Absolute Rate Theory ‡ k H2 + F "! [H2F] !!" HF + H Assume equilibrium between reactants H2 + F and the transition state. [H F]‡ K‡ = 2 [H2 ][F] Treat the transition state as a molecule with structure that decays unimolecularly with rate constant k. d[HF] ‡ ‡ = k[H2F] = kK [H2 ][F] dt k has units of sec–1 (unimolecular decay). The motion along the reaction coordinate looks ‡ like an antisymmetric vibration of H2F , one-half cycle of this vibration. Therefore k can be approximated by the frequency of the antisymmetric vibration ν[sec–1] k ≈ ν ≡ frequency of antisymmetric vibration (bond formation and cleavage looks like antisymmetric vibration) d[HF] = νK‡ [H2] [F] dt ! ‡* $ d[HF] (q / N) 'E‡ /kT [ ] = ν # *H F &e [H2 ] F dt "#(q 2 N)(q / N)%& ! ‡ $ ‡ ‡* ‡ (q / N) ' q *' q *' g * ‡ K‡ = # trans &) rot ,) vib ,) 0 ,e-E kT H2 qH2 ) q*H2 , gH2 gF "# (qtrans N) %&( rot +( vib +( 0 0 + ‡ Reaction coordinate is antisymmetric vibrational mode of H2F . This vibration is fully excited (high T limit) because it leads to the cleavage of the H–H bond and the formation of the H–F bond. For a fully excited vibration hν kT The vibrational partition function for the antisymmetric mode is revised 4/24/08 3:50 PM 5.62 Spring 2007 Lecture #33 Page 2 1 kT q*asym = ' since e–hν/kT ≈ 1 – hν/kT vib 1! e!h" kT h! Note that this is an incredibly important simplification.
    [Show full text]
  • Eyring Equation
    Search Buy/Sell Used Reactors Glass microreactors Hydrogenation Reactor Buy Or Sell Used Reactors Here. Save Time Microreactors made of glass and lab High performance reactor technology Safe And Money Through IPPE! systems for chemical synthesis scale-up. Worldwide supply www.IPPE.com www.mikroglas.com www.biazzi.com Reactors & Calorimeters Induction Heating Reacting Flow Simulation Steam Calculator For Process R&D Laboratories Check Out Induction Heating Software & Mechanisms for Excel steam table add-in for water Automated & Manual Solutions From A Trusted Source. Chemical, Combustion & Materials and steam properties www.helgroup.com myewoss.biz Processes www.chemgoodies.com www.reactiondesign.com Eyring Equation Peter Keusch, University of Regensburg German version "If the Lord Almighty had consulted me before embarking upon the Creation, I should have recommended something simpler." Alphonso X, the Wise of Spain (1223-1284) "Everything should be made as simple as possible, but not simpler." Albert Einstein Both the Arrhenius and the Eyring equation describe the temperature dependence of reaction rate. Strictly speaking, the Arrhenius equation can be applied only to the kinetics of gas reactions. The Eyring equation is also used in the study of solution reactions and mixed phase reactions - all places where the simple collision model is not very helpful. The Arrhenius equation is founded on the empirical observation that rates of reactions increase with temperature. The Eyring equation is a theoretical construct, based on transition state model. The bimolecular reaction is considered by 'transition state theory'. According to the transition state model, the reactants are getting over into an unsteady intermediate state on the reaction pathway.
    [Show full text]
  • The 'Yard Stick' to Interpret the Entropy of Activation in Chemical Kinetics
    World Journal of Chemical Education, 2018, Vol. 6, No. 1, 78-81 Available online at http://pubs.sciepub.com/wjce/6/1/12 ©Science and Education Publishing DOI:10.12691/wjce-6-1-12 The ‘Yard Stick’ to Interpret the Entropy of Activation in Chemical Kinetics: A Physical-Organic Chemistry Exercise R. Sanjeev1, D. A. Padmavathi2, V. Jagannadham2,* 1Department of Chemistry, Geethanjali College of Engineering and Technology, Cheeryal-501301, Telangana, India 2Department of Chemistry, Osmania University, Hyderabad-500007, India *Corresponding author: [email protected] Abstract No physical or physical-organic chemistry laboratory goes without a single instrument. To measure conductance we use conductometer, pH meter for measuring pH, colorimeter for absorbance, viscometer for viscosity, potentiometer for emf, polarimeter for angle of rotation, and several other instruments for different physical properties. But when it comes to the turn of thermodynamic or activation parameters, we don’t have any meters. The only way to evaluate all the thermodynamic or activation parameters is the use of some empirical equations available in many physical chemistry text books. Most often it is very easy to interpret the enthalpy change and free energy change in thermodynamics and the corresponding activation parameters in chemical kinetics. When it comes to interpretation of change of entropy or change of entropy of activation, more often it frightens than enlightens a new teacher while teaching and the students while learning. The classical thermodynamic entropy change is well explained by Atkins [1] in terms of a sneeze in a busy street generates less additional disorder than the same sneeze in a quiet library (Figure 1) [2].
    [Show full text]
  • Transition State Analysis of the Reaction Catalyzed by the Phosphotriesterase from Sphingobium Sp
    Article Cite This: Biochemistry 2019, 58, 1246−1259 pubs.acs.org/biochemistry Transition State Analysis of the Reaction Catalyzed by the Phosphotriesterase from Sphingobium sp. TCM1 † † † ‡ ‡ Andrew N. Bigley, Dao Feng Xiang, Tamari Narindoshvili, Charlie W. Burgert, Alvan C. Hengge,*, † and Frank M. Raushel*, † Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States ‡ Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States *S Supporting Information ABSTRACT: Organophosphorus flame retardants are stable toxic compounds used in nearly all durable plastic products and are considered major emerging pollutants. The phospho- triesterase from Sphingobium sp. TCM1 (Sb-PTE) is one of the few enzymes known to be able to hydrolyze organo- phosphorus flame retardants such as triphenyl phosphate and tris(2-chloroethyl) phosphate. The effectiveness of Sb-PTE for the hydrolysis of these organophosphates appears to arise from its ability to hydrolyze unactivated alkyl and phenolic esters from the central phosphorus core. How Sb-PTE is able to catalyze the hydrolysis of the unactivated substituents is not known. To interrogate the catalytic hydrolysis mechanism of Sb-PTE, the pH dependence of the reaction and the effects of changing the solvent viscosity were determined. These experiments were complemented by measurement of the primary and ff ff secondary 18-oxygen isotope e ects on substrate hydrolysis and a determination of the e ects of changing the pKa of the leaving group on the magnitude of the rate constants for hydrolysis. Collectively, the results indicated that a single group must be ionized for nucleophilic attack and that a separate general acid is not involved in protonation of the leaving group.
    [Show full text]
  • Lecture Outline a Closer Look at Carbocation Stabilities and SN1/E1 Reaction Rates We Learned That an Important Factor in the SN
    Lecture outline A closer look at carbocation stabilities and SN1/E1 reaction rates We learned that an important factor in the SN1/E1 reaction pathway is the stability of the carbocation intermediate. The more stable the carbocation, the faster the reaction. But how do we know anything about the stabilities of carbocations? After all, they are very unstable, high-energy species that can't be observed directly under ordinary reaction conditions. In protic solvents, carbocations typically survive only for picoseconds (1 ps - 10–12s). Much of what we know (or assume we know) about carbocation stabilities comes from measurements of the rates of reactions that form them, like the ionization of an alkyl halide in a polar solvent. The key to connecting reaction rates (kinetics) with the stability of high-energy intermediates (thermodynamics) is the Hammond postulate. The Hammond postulate says that if two consecutive structures on a reaction coordinate are similar in energy, they are also similar in structure. For example, in the SN1/E1 reactions, we know that the carbocation intermediate is much higher in energy than the alkyl halide reactant, so the transition state for the ionization step must lie closer in energy to the carbocation than the alkyl halide. The Hammond postulate says that the transition state should therefore resemble the carbocation in structure. So factors that stabilize the carbocation also stabilize the transition state leading to it. Here are two examples of rxn coordinate diagrams for the ionization step that are reasonable and unreasonable according to the Hammond postulate. We use the Hammond postulate frequently in making assumptions about the nature of transition states and how reaction rates should be influenced by structural features in the reactants or products.
    [Show full text]
  • Reaction Kinetics in Organic Reactions
    Autumn 2004 Reaction Kinetics in Organic Reactions Why are kinetic analyses important? • Consider two classic examples in asymmetric catalysis: geraniol epoxidation 5-10% Ti(O-i-C3H7)4 O DET OH * * OH + TBHP CH2Cl2 3A mol sieve OH COOH5C2 L-(+)-DET = OH COOH5C2 * OH geraniol hydrogenation OH 0.1% Ru(II)-BINAP + H2 CH3OH P(C6H5)2 (S)-BINAP = P(C6 H5)2 • In both cases, high enantioselectivities may be achieved. However, there are fundamental differences between these two reactions which kinetics can inform us about. 1 Autumn 2004 Kinetics of Asymmetric Catalytic Reactions geraniol epoxidation: • enantioselectivity is controlled primarily by the preferred mode of initial binding of the prochiral substrate and, therefore, the relative stability of intermediate species. The transition state resembles the intermediate species. Finn and Sharpless in Asymmetric Synthesis, Morrison, J.D., ed., Academic Press: New York, 1986, v. 5, p. 247. geraniol hydrogenation: • enantioselectivity may be dictated by the relative reactivity rather than the stability of the intermediate species. The transition state may not resemble the intermediate species. for example, hydrogenation of enamides using Rh+(dipamp) studied by Landis and Halpern (JACS, 1987, 109,1746) 2 Autumn 2004 Kinetics of Asymmetric Catalytic Reactions “Asymmetric catalysis is four-dimensional chemistry. Simple stereochemical scrutiny of the substrate or reagent is not enough. The high efficiency that these reactions provide can only be achieved through a combination of both an ideal three-dimensional structure (x,y,z) and suitable kinetics (t).” R. Noyori, Asymmetric Catalysis in Organic Synthesis,Wiley-Interscience: New York, 1994, p.3. “Studying the photograph of a racehorse cannot tell you how fast it can run.” J.
    [Show full text]
  • 5.3 Controlling Chemical Reactions Vocabulary: Activation Energy
    5.3 Controlling Chemical Reactions Vocabulary: Activation energy – Concentration – Catalyst – Enzyme – Inhibitor - How do reactions get started? Chemical reactions won’t begin until the reactants have enough energy. The energy is used to break the chemical bonds of the reactants. Then the atoms form the new bonds of the products. Activation Energy is the minimum amount of energy needed to start a chemical reaction. All chemical reactions need a certain amount of activation energy to get started. Usually, once a few molecules react, the rest will quickly follow. The first few reactions provide the activation energy for more molecules to react. Hydrogen and oxygen can react to form water. However, if you just mix the two gases together, nothing happens. For the reaction to start, activation energy must be added. An electric spark or adding heat can provide that energy. A few of the hydrogen and oxygen molecules will react, producing energy for even more molecules to react. Graphing Changes in Energy Every chemical reaction needs activation energy to start. Whether or not a reaction still needs more energy from the environment to keep going depends on whether it is exothermic or endothermic. The peaks on the graphs show the activation energy. Notice that at the end of the exothermic reaction, the products have less energy than the reactants. This type of reaction results in a release of energy. The burning of fuels, such as wood, natural gas, or oil, is an example of an exothermic reaction. Endothermic reactions also need activation energy to get started. In addition, they need energy to continue.
    [Show full text]
  • (A) Reaction Rates (I) Following the Course of a Reaction Reactions Can Be Followed by Measuring Changes in Concentration, Mass and Volume of Reactants Or Products
    (a) Reaction rates (i) Following the course of a reaction Reactions can be followed by measuring changes in concentration, mass and volume of reactants or products. g Measuring a change in mass Measuring a change in volume Volume of gas produced of gas Volume Mass of beaker and contents of beaker Mass Time Time The rate is highest at the start of the reaction because the concentration of reactants is highest at this point. The steepness (gradient) of the plotted line indicates the rate of the reaction. We can also measure changes in product concentration using a pH meter for reactions involving acids or alkalis, or by taking small samples and analysing them by titration or spectrophotometry. Concentration reactant Time Calculating the average rate The average rate of a reaction, or stage in a reaction, can be calculated from initial and final quantities and the time interval. change in measured factor Average rate = change in time Units of rate The unit of rate is simply the unit in which the quantity of substance is measured divided by the unit of time used. Using the accepted notation, ‘divided by’ is represented by unit-1. For example, a change in volume measured in cm3 over a time measured in minutes would give a rate with the units cm3min-1. 0.05-0.00 Rate = 50-0 1 - 0.05 = 50 = 0.001moll-1s-1 Concentration moll Concentration 0.075-0.05 Rate = 100-50 0.025 = 50 = 0.0005moll-1s-1 The rate of a reaction, or stage in a reaction, is proportional to the reciprocal of the time taken.
    [Show full text]