EANM/ESC Guidelines for Radionuclide Imaging of Cardiac Function

Total Page:16

File Type:pdf, Size:1020Kb

EANM/ESC Guidelines for Radionuclide Imaging of Cardiac Function Eur J Nucl Med Mol Imaging DOI 10.1007/s00259-007-0694-9 GUIDELINES EANM/ESC guidelines for radionuclide imaging of cardiac function B. Hesse & T. B. Lindhardt & W. Acampa & C. Anagnostopoulos & J. Ballinger & J. J. Bax & L. Edenbrandt & A. Flotats & G. Germano & T. Gmeiner Stopar & P. Franken & A. Kelion & A. Kjaer & D. Le Guludec & M. Ljungberg & A. F. Maenhout & C. Marcassa & J. Marving & F. McKiddie & W. M. Schaefer & L. Stegger & R. Underwood # EANM 2008 Abstract Radionuclide imaging of cardiac function repre- gated PET, and studies with non-imaging devices for the sents a number of well-validated techniques for accurate evaluation of cardiac function. The items covered are determination of right (RV) and left ventricular (LV) presented in 11 sections: clinical indications, radiopharma- ejection fraction (EF) and LV volumes. These first ceuticals and dosimetry, study acquisition, RV EF, LV EF, European guidelines give recommendations for how and LV volumes, LV regional function, LV diastolic function, when to use first-pass and equilibrium radionuclide ven- reports and image display and reference values from the triculography, gated myocardial perfusion scintigraphy, literature of RVEF, LVEF and LV volumes. If specific B. Hesse (*) : A. Kjaer : J. Marving L. Edenbrandt Department of Clinical Physiology and Nuclear Medicine, Department of Clinical Sciences, Malmö, Lund University University Hospital of Copenhagen, Research Program in Medical Informatics, Rigshospitalet, Malmö University Hospital, Copenhagen, Denmark Malmö, Sweden e-mail: [email protected] A. Flotats T. B. Lindhardt Nuclear Medicine Department, Department of Cardiology, Hilleroed Hospital, Autonomous University of Barcelona, Hilleroed, Denmark Hospital de la Santa Creu i Sant Pau, Barcelona, Spain W. Acampa Department of Biomorphological and Functional Sciences, G. Germano Institute of Biostructure and Bioimages of the National Artificial Intelligence Program at Cedars-Sinai Medical Center Council of Research, University of Naples Federico II, and Department of Medicine of the University of California at Naples, Italy Los Angeles, Los Angeles, USA C. Anagnostopoulos : A. F. Maenhout Department of Nuclear Medicine, Royal Brompton Hospital, T. G. Stopar London, UK Department of Nuclear Medicine, University Medical Centre Ljubljana, J. Ballinger Radiopharmacy and Clinical Biochemistry, Department of Nuclear Medicine, Ljubljana, Guy’s Hospital–Guy’s and St. Thomas’ Foundation Trust, Zaloska 7, Slovenia St. Thomas Street, London, UK P. Franken Nuclear Medicine, AZ VUB, J. J. Bax Brussels, Belgium Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands Eur J Nucl Med Mol Imaging recommendations given cannot be based on evidence from LVEF left ventricular ejection fraction original, scientific studies, referral is given to “prevailing or MI myocardial infarction general consensus”. The guidelines are designed to assist in MPS myocardial perfusion scintigraphy the practice of referral to, performance, interpretation and NSTEMI non-ST elevation acute myocardial infarction reporting of nuclear cardiology studies for the evaluation of PFR peak filling rate cardiac performance. PFRSV PFR normalised to stroke volume QGS quantitative gated SPECT Keywords Nuclear imaging . EANM/ESC guidelines . RAO right anterior oblique Cardiac function RBC red blood cells RNV radionuclide ventriculography Abbreviations ROI region-of-interest ACD acid citrate dextrose RV right ventricle CAD coronary artery disease STEMI ST elevation acute myocardial infarction cMRI cardiac magnetic resonance imaging TAC time–activity curve ECG electrocardiogram TID transient ischaemic dilatation ECT Emory Cardiac Toolbox TPFR time to peak filling rate ED end-diastolic WM wall motion EDV end-diastolic volume WTh wall thickening ES end-systolic EF ejection fraction ERNV equilibrium radionuclide ventriculography ESV end-systolic volume Preamble FP first pass FPRNV first-pass radionuclide ventriculography The European guidelines for radionuclide imaging of HSA human serum albumin cardiac function have been developed under the auspices i.v. intravenous of the European Council on Nuclear Cardiology (the joint LAO left anterior oblique group of the Cardiovascular Committee of the European LBBB left bundle branche block Association of Nuclear Medicine and of the Working Group LEGP low energy general purpose on Nuclear Cardiology of the European Society of LEHR low energy high resolution Cardiology). The aim of the authors has been to present LEHS low energy high sensitivity the state-of-the-art applications and protocols approved by LPO left posterior oblique experts in the field and to disseminate this information to LV left ventricle the European nuclear cardiology community. The guide- LVV left ventricular volume lines are designed to assist physicians and other healthcare A. Kelion W. Schaefer Nuclear Medicine Department, Harefield Hospital, Nuclear Medicine Department, University Hospital, Harefield, Middlesex, UK Aachen University of Technology, Aachen, Germany D. Le Guludec Service de medecine nucleaire, hôpital Bichat, APHP, L. Stegger Université Denis-Diderot, UMR577B, and Inserm U773, Department of Nuclear Medicine, University Hospital Münster, Paris, France Münster, Germany M. Ljungberg R. Underwood Medical Radiation Physics, Clinical Sciences, Department of Nuclear Medicine, Royal Brompton Hospital, Lund, Lund University, London, UK Lund, Sweden C. Marcassa Department of Cardiology, Fondazione Maugeri, IRCCS, Veruno, Italy F. McKiddie Nuclear Medicine Department, Aberdeen Royal Infirmary, Foresterhill Aberdeen, Scotland, UK Eur J Nucl Med Mol Imaging professionals in referring to, performing, interpreting and The use of radionuclide imaging was addressed in the reporting the different radionuclide imaging examinations ACC/AHA/ASNC practice guidelines [4], a report from the dealing with cardiac function. three major US organizations involved in this field. In this It has been our intention to present information specif- report, the main focus is on MPS, but assessment of LV ically adapted to European practice, based on evidence function is closely related to that. The ACC/AHA/ASNC from original scientific studies. Where more than one classifications I, II and III have been used to summarise the solution seems to be practised, and none has been shown to indications as follows: be superior to the others, we hope that we have succeeded in 1. Class I: Conditions for which there is evidence and/or specifically expressing this state of knowledge. general agreement that a given procedure (or treatment) The authors comprise scientists from many different is useful and effective countries, all with sub-speciality expertise in nuclear 2. Class II: Conditions for which there is conflicting cardiology. Every effort has been made to avoid conflicts evidence and/or a divergence of opinion about the of interest arising from non-academic and non-clinical usefulness/efficacy of a procedure relationships. Class IIa: Weight of evidence is in favour of usefulness/ efficacy List of contents Class IIb: Usefulness/efficacy is less well established by evidence/opinion 1. Clinical indications 3. Class III: Conditions for which there is evidence and/or 2. Radiopharmaceuticals and dosimetry general agreement that the procedure is not useful or 3. Acquisition of radionuclide ventriculography and effective and, in some cases, may be harmful. Such gated perfusion imaging indications are not discussed in the present guideline 4. Right ventricular ejection fraction Levels of evidence for individual class assignments are 5. Left ventricular ejection fraction designated as: 6. Left ventricular volumes 7. Left ventricular regional function – A = data derived from multiple, randomised, clinical 8. Left ventricular diastolic function trials 9. Physics and software – B = data derived from a single, randomised trial or 10. Reference values from non-randomised studies 11. Report and image display – C = consensus opinion of experts Level A is rarely available for diagnostic imaging and level B sometimes; hence, level C is most often applied. In the present guidelines, emphasis has been laid on the presentation of evidence-based data with direct references 1. Clinical indications to original papers. Clinical indications may often depend on several local factors such as availability, experience, Introduction traditions, reimbursement, risk of complications, logistics, etc. Furthermore, new modalities or development within a Assessment of left ventricular (LV) function and volumes is modality [gating of MPS, cardiac CT, contrast MRI important for prognostification, being very powerful predic- (cMRI), echocardiography, plasma atrial and brain natri- tors of long-term outcome after acute myocardial infarction uretic peptides (ANP and BNP)] may have a great impact (MI) [1, 2]. The information obtained to that obtained by on the clinical indications for alternative techniques. The ungated myocardial perfusion scintigraphy (MPS) by the most important indications are listed in Table 1. addition of gating has been demonstrated in several studies to be of high clinical value. The assessment of the function of the right ventricle (RV) is recognised to be important in Prognosis after acute MI with ST elevation subgroups of patients including arrhyhmogenic RV, in lung transplant candidates, and after MI, possibly including RV The prognosis of patients after ST elevation acute myocar- infarction, with high prognostic value
Recommended publications
  • Nuclide Imaging: Planar Scintigraphy, SPECT, PET
    Nuclide Imaging: Planar Scintigraphy, SPECT, PET Yao Wang Polytechnic University, Brooklyn, NY 11201 Based on J. L. Prince and J. M. Links, Medical Imaging Signals and Systems, and lecture notes by Prince. Figures are from the textbook except otherwise noted. Lecture Outline • Nuclide Imaging Overview • Review of Radioactive Decay • Planar Scintigraphy – Scintillation camera – Imaging equation • Single Photon Emission Computed Tomography (SPECT) • Positron Emission Tomography (PET) • Image Quality consideration – Resolution, noise, SNR, blurring EL5823 Nuclear Imaging Yao Wang, Polytechnic U., Brooklyn 2 What is Nuclear Medicine • Also known as nuclide imaging • Introduce radioactive substance into body • Allow for distribution and uptake/metabolism of compound ⇒ Functional Imaging ! • Detect regional variations of radioactivity as indication of presence or absence of specific physiologic function • Detection by “gamma camera” or detector array • (Image reconstruction) From H. Graber, Lecture Note for BMI1, F05 EL5823 Nuclear Imaging Yao Wang, Polytechnic U., Brooklyn 3 Examples: PET vs. CT • X-ray projection and tomography: – X-ray transmitted through a body from a outside source to a detector (transmission imaging) – Measuring anatomic structure • Nuclear medicine: – Gamma rays emitted from within a body (emission imaging) From H. Graber, Lecture Note, F05 – Imaging of functional or metabolic contrasts (not anatomic) • Brain perfusion, function • Myocardial perfusion • Tumor detection (metastases) EL5823 Nuclear Imaging Yao Wang, Polytechnic
    [Show full text]
  • Cardiac CT - Quantitative Evaluation of Coronary Calcification
    Clinical Appropriateness Guidelines: Advanced Imaging Appropriate Use Criteria: Imaging of the Heart Effective Date: January 1, 2018 Proprietary Date of Origin: 03/30/2005 Last revised: 11/14/2017 Last reviewed: 11/14/2017 8600 W Bryn Mawr Avenue South Tower - Suite 800 Chicago, IL 60631 P. 773.864.4600 Copyright © 2018. AIM Specialty Health. All Rights Reserved www.aimspecialtyhealth.com Table of Contents Description and Application of the Guidelines ........................................................................3 Administrative Guidelines ........................................................................................................4 Ordering of Multiple Studies ...................................................................................................................................4 Pre-test Requirements ...........................................................................................................................................5 Cardiac Imaging ........................................................................................................................6 Myocardial Perfusion Imaging ................................................................................................................................6 Cardiac Blood Pool Imaging .................................................................................................................................12 Infarct Imaging .....................................................................................................................................................15
    [Show full text]
  • The Role of Multimodality Cardiac Imaging in the Management Of
    CVIA The Role of Multimodality Cardiac REVIEW ARTICLE pISSN 2508-707X / eISSN 2508-7088 Imaging in the Management https://doi.org/10.22468/cvia.2017.00038 CVIA 2017;1(3):177-192 of Patients with Atrial Fibrillation Jung Im Jung Department of Radiology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea Received: March 6, 2017 Atrial fibrillation (AF) is the most common arrhythmia and is an independent risk factor for Revised: June 22, 2017 stroke, heart failure, and death. The prevalence of AF is expected to increase in the future Accepted: June 28, 2017 due to increasing life expectancy. In this review, we describe and evaluate the utility of ad- Corresponding author vanced cardiovascular imaging modalities, including echocardiography, cardiac computed Jung Im Jung, MD, PhD tomography, and cardiac magnetic resonance imaging, to provide novel insights into the Department of Radiology, pathogenesis, prediction, and natural history of AF. Moreover, cardiovascular imaging has Seoul St. Mary’s Hospital, become an integral part of the pre-procedural assessment, procedural management, and College of Medicine, follow-up of patients undergoing catheter-based ablation. We believe that knowledge and The Catholic University of Korea, proper use of these cardiovascular imaging modalities will enhance the successful treatment 222 Banpo-daero, Seocho-gu, and management of patients with AF. Seoul 06591, Korea Tel: 82-2-2258-1435 Key words Atrial fibrillation · Catheter ablation · Echocardiography · Fax: 82-2-599-6771 Multidetector computed tomography · Magnetic resonance Imaging. E-mail: [email protected] INTRODUCTION treat AF. Cardiovascular imaging has become an integral part of the pre-procedural assessment, procedural management, and Atrial fibrillation (AF) is the most common arrhythmia man- follow-up of patients undergoing catheter-based left atrium (LA) aged in clinical practice.
    [Show full text]
  • 2018 Guideline Document on Chagas Disease
    GUIDELINES AND STANDARDS Recommendations for Multimodality Cardiac Imaging in Patients with Chagas Disease: A Report from the American Society of Echocardiography in Collaboration With the InterAmerican Association of Echocardiography (ECOSIAC) and the Cardiovascular Imaging Department of the Brazilian Society of Cardiology (DIC-SBC) Harry Acquatella, MD, FASE (Chair), Federico M. Asch, MD, FASE (Co-Chair), Marcia M. Barbosa, MD, PhD, FASE, Marcio Barros, MD, PhD, Caryn Bern, MD, MPH, Joao L. Cavalcante, MD, FASE, Luis Eduardo Echeverria Correa, MD, Joao Lima, MD, Rachel Marcus, MD, Jose Antonio Marin-Neto, MD, PhD, Ricardo Migliore, MD, PhD, Jose Milei, MD, PhD, Carlos A. Morillo, MD, Maria Carmo Pereira Nunes, MD, PhD, Marcelo Luiz Campos Vieira, MD, PhD, and Rodolfo Viotti, MD*, Caracas, Venezuela; Washington, District of Columbia; Belo Horizonte and Sao~ Paulo, Brazil; San Francisco, California; Pittsburgh, Pennsylvania; Floridablanca, Colombia; Baltimore, Maryland; San Martin and Buenos Aires, Argentina; and Hamilton, Ontario, Canada In addition to the collaborating societies listed in the title, this document is endorsed by the following American Society of Echocardiography International Alliance Partners: the Argentinian Federation of Cardiology, the Argentinian Society of Cardiology, the British Society of Echocardiography, the Chinese Society of Echocardiography, the Echocardiography Section of the Cuban Society of Cardiology, the Echocardiography Section of the Venezuelan Society of Cardiology, the Indian Academy of Echocardiography,
    [Show full text]
  • Description of Alternative Approaches to Measure and Place a Value on Hospital Products in Seven Oecd Countries
    OECD Health Working Papers No. 56 Description of Alternative Approaches to Measure Luca Lorenzoni, and Place a Value Mark Pearson on Hospital Products in Seven OECD Countries https://dx.doi.org/10.1787/5kgdt91bpq24-en Unclassified DELSA/HEA/WD/HWP(2011)2 Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development 14-Apr-2011 ___________________________________________________________________________________________ _____________ English text only DIRECTORATE FOR EMPLOYMENT, LABOUR AND SOCIAL AFFAIRS HEALTH COMMITTEE Unclassified DELSA/HEA/WD/HWP(2011)2 Health Working Papers OECD HEALTH WORKING PAPERS NO. 56 DESCRIPTION OF ALTERNATIVE APPROACHES TO MEASURE AND PLACE A VALUE ON HOSPITAL PRODUCTS IN SEVEN OECD COUNTRIES Luca Lorenzoni and Mark Pearson JEL Classification: H51, I12, and I19 English text only JT03300281 Document complet disponible sur OLIS dans son format d'origine Complete document available on OLIS in its original format DELSA/HEA/WD/HWP(2011)2 DIRECTORATE FOR EMPLOYMENT, LABOUR AND SOCIAL AFFAIRS www.oecd.org/els OECD HEALTH WORKING PAPERS http://www.oecd.org/els/health/workingpapers This series is designed to make available to a wider readership health studies prepared for use within the OECD. Authorship is usually collective, but principal writers are named. The papers are generally available only in their original language – English or French – with a summary in the other. Comment on the series is welcome, and should be sent to the Directorate for Employment, Labour and Social Affairs, 2, rue André-Pascal, 75775 PARIS CEDEX 16, France. The opinions expressed and arguments employed here are the responsibility of the author(s) and do not necessarily reflect those of the OECD.
    [Show full text]
  • Myocardial Perfusion Imaging (Revised Edition)
    Publications · Brochures Myocardial Perfusion Imaging (Revised Edition) A Technologist’s Guide Produced with the kind Support of Editors Ryder, Helen (Dublin) Testanera, Giorgio (Rozzano, Milan) Veloso Jerónimo, Vanessa (Almada) Vidovič, Borut (Munich) Contributors Abreu, Carla (London) Koziorowski, Jacek (Linköping) Acampa, Wanda (Naples) Lezaic, Luka (Ljubljana) Assante, Roberta (Naples) Mann, April (South Hadley) Ballinger, James (London) Medolago, Giuseppe (Bergamo) Fragoso Costa, Pedro (Oldenburg) Pereira, Edgar (Almada) Figueredo, Sergio (Lisbon) Santos, Andrea (Alverca do Ribatejo) Geão, Ana (Lisbon) Vara, Anil (Brighton) Ghilardi, Adriana (Bergamo) Zampella, Emilia (Naples) Holbrook, Scott (Gray) Contents Foreword 4 Introduction 5 Borut Vidovič Chapter 1 State of the Art in Myocardial Imaging 6 Wanda Acampa, Emilia Zampella and Roberta Assante Chapter 2 Clinical Indications 16 Luka Lezaic Chapter 3 Patient Preparation and Stress Protocols 23 Giuseppe Medolago and Adriana Ghilardi EANM Chapter 4 Multidisciplinary Approach and Advanced Practice 35 Anil Vara Chapter 5 Advances in Radiopharmaceuticals for Myocardial Perfusion Imaging 42 James R. Ballinger and Jacek Koziorowski Chapter 6 SPECT and SPECT/CT Protocols and New Imaging Equipment 54 Andrea Santos and Edgar Lemos Pereira Chapter 7 PET/CT Protocols and Imaging Equipment (*) 62 April Mann and Scott Holbrook Chapter 8 Image Processing and Software 77 Sérgio Figueiredo and Pedro Fragoso Costa Chapter 9 Artefacts and Pitfalls in Myocardial Imaging (SPECT, SPECT/CT and PET/CT) 109 Ana Geão and Carla Abreu Imprint 126 n accordance with the Austrian Eco-Label for printed matters. Eco-Label with the Austrian for n accordance (*) Articles were written with the kind support Printed i Printed of and in cooperation with: 3 Foreword The EANM Technologist Committee was dural workflow and need to cooperate with created more than 20 years ago.
    [Show full text]
  • PET/CT Evaluation of Cardiac Sarcoidosis
    PET/CT Evaluation of Cardiac Sarcoidosis John P. Bois, MDa,*, Daniele Muser, MDb,1, Panithaya Chareonthaitawee, MDa KEYWORDS Cardiac sarcoidosis Positron emission tomography Fluorine-18 deoxyglucose KEY POINTS Sarcoidosis can involve the heart at with resultant significant morbidity and mortality. PET/CT is the most accurate method by which to diagnose cardiac sarcoidosis. Patient preparation prior to the PET/CT cardiac sarcoid study is critical to ensure diagnostic images are obtained. PET/CT detection of both active inflammation and scar has diagnostic, prognostic, and therapeutic importance. Ongoing areas of research include the use of PET to quantify the extent of myocardial inflammation and the discrepancies in myocardial blood flow in the cardiac sarcoidosis population. INTRODUCTION experiencing spontaneous remission and the remaining one-third developing either a stable or The increasing implementation of advanced car- progressive course.3 diovascular imaging in the form of cardiac PET/ The rate of cardiac involvement by sarcoidosis, CT has had a significant impact on the manage- otherwise termed CS, is variable and ranges ment of cardiac sarcoidosis (CS), one that con- from 20% to 75%.4,5 Furthermore, CS accounts tinues to evolve. Sarcoidosis is characterized for one-fourth of sarcoid-related mortality in the histologically by the presence of noncaseating United States and upward of 85% of death attrib- granulomas, with a predilection for the pulmonary uted to sarcoidosis in the Japanese population.4,6 system but with the ability to involve nearly every The high rate of involvement of the cardiovascular organ. Although the development of sarcoidosis system by sarcoidosis coupled with the potential is believed the sequelae of an exaggerated im- lethal outcomes has rendered accurate and timely mune or inflammatory response to an inciting in- diagnosis of this disease entity as imperative to fectious or environmental trigger, the specific patient care.
    [Show full text]
  • The Additive Value of Combined Assessment of Myocardial Perfusion and Ventricular Function Studies*
    The Additive Value of Combined Assessment of Myocardial Perfusion and Ventricular Function Studies* Trip J. Meine, MD1; Michael W. Hanson, MD1,2; and Salvador Borges-Neto, MD1,2 1Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina; and 2Division of Nuclear Medicine, Department of Radiology, Duke University Medical Center, Durham, North Carolina This review focuses on the combined assessment of myo- In addition to providing quantitative ventricular function infor- cardial perfusion imaging and left ventricular function. Two mation, gated SPECT and radionuclide angiocardiographic clear roles for nuclear imaging in clinical practice include studies can evaluate regional wall motion and ventricular vol- the diagnosis of coronary artery disease (CAD) and assess- umes. This review focuses on the combined assessment of ment of prognosis in patients with known CAD. Combined myocardial perfusion and left ventricular function. Two clear roles for nuclear imaging in clinical practice include the diagno- nuclear imaging can play a role in both these areas, and in sis of coronary artery disease and assessment of prognosis in fact, the addition of left ventricular function data to myo- patients with known coronary artery disease. Ventricular func- cardial perfusion imaging can enhance the clinician’s ability tion information can help differentiate an attenuation artifact to both diagnose CAD and assess prognosis. from an infarct and is helpful in diagnosing 3-vessel coronary disease. Additionally, several studies have highlighted the prog- nostic benefit to combined assessment of myocardial perfusion DIAGNOSIS and ventricular function. Several new modalities have recently Assessment of ventricular function has long been recog- been reported that promise to continue to solidify the place of nuclear imaging in the diagnosis and prognosis of coronary nized as a sensitive means by which to diagnose the pres- artery disease.
    [Show full text]
  • Equilibrium Radionuclide Angiography/ Multigated Acquisition
    EQUILIBRIUM RADIONUCLIDE ANGIOGRAPHY/ MULTIGATED ACQUISITION Equilibrium Radionuclide Angiography/ Multigated Acquisition S van Eeckhoudt, Bravis ziekenhuis, Roosendaal VJR Schelfhout, Rijnstate, Arnhem 1. Introduction Equilibrium radionuclide angiography (ERNA), also known as radionuclide ventriculography (ERNV), gated synchronized angiography (GSA), blood pool scintigraphy or multi gated acquisition (MUGA), is a well-validated technique to accurately determine cardiac function. In oncology its high reproducibility and low inter observer variability allow for surveillance of cardiac function in patients receiving potentially cardiotoxic anti-cancer treatment. In cardiology it is mostly used for diagnosis and prognosis of patients with heart failure and other heart diseases. 2. Methodology This guideline is based on available scientifi c literature on the subject, the previous guideline (Aanbevelingen Nucleaire Geneeskunde 2007), international guidelines from EANM and/or SNMMI if available and applicable to the Dutch situation. 3. Indications Several Class I (conditions for which there is evidence and/or general agreement that a given procedure or treatment is useful and effective) indications exist: • Evaluation of left ventricular function in cardiac disease: - Coronary artery disease - Valvular heart disease - Congenital heart disease - Congestive heart failure • Evaluation of left ventricular function in non-cardiac disease: - Monitoring potential cardiotoxic side effects of (chemo)therapy - Pre-operative risk stratifi cation in high risk surgery • Evaluation of right ventricular function: - Congenital heart disease - Mitral valve insuffi ciency - Heart-lung transplantation 4. Contraindications None 5. Medical information necessary for planning • Clear description of the indication (left and/or right ventricle) • Previous history of cardiac disease • Previous or current use of cardiotoxic medication PART I - 211 Deel I_C.indd 211 27-12-16 14:15 EQUILIBRIUM RADIONUCLIDE ANGIOGRAPHY/ MULTIGATED ACQUISITION 6.
    [Show full text]
  • Planar Imaging Versus Gated Blood-Pool SPECT for the Assessment of Ventricular Performance: a Multicenter Study
    Planar Imaging Versus Gated Blood-Pool SPECT for the Assessment of Ventricular Performance: A Multicenter Study Mark W. Groch, E. Gordon DePuey, Allan C. Belzberg, William D. Erwin, Mohammad Kamran, Charles A. Barnett, Robert C. Hendel, Stewart M. Spies, Amjad Ali, and Robert C. Marshall Northwestern University Medical School, Chicago; Rush-Presbyterian-St. Luke’s Medical Center, Chicago; Rush University, Chicago, Illinois; St. Luke’s-Roosevelt Hospital, New York; Columbia University, New York, New York; St. Paul’s Hospital, Vancouver, British Columbia; University of British Columbia, Vancouver, British Columbia, Canada; VA Medical Center, Martinez; University of California-Davis, Davis; and Lawrence Berkeley National Laboratory, Berkeley, California Gated blood-pool SPECT (GBPS), inherently 3-dimensional (3D), Planar equilibrium radionuclide angiography (ERNA) is has the potential to replace planar equilibrium radionuclide angiog- well established and provides a relatively simple and non- raphy (ERNA) for computation of left ventricular ejection fraction invasive method to assess ventricular function and, in par- (LVEF), analysis of regional wall motion (RWM), and analysis of right heart function. The purpose of this study was to compare ticular, left ventricular ejection fraction (LVEF) (1,2). In GBPS and ERNA for the assessment of ventricular function in a any planar projection imaging study, anatomic structures large, multicenter cohort of patients. Methods: One hundred sev- overlap. In planar equilibrium blood-pool imaging, the in- enty-eight patients referred in the usual manner for nuclear medi- ferior wall of the left ventricle is obscured by the right cine studies underwent ERNA followed by GBPS. Each clinical site ventricle in anterior and right anterior oblique (RAO) pro- followed a GBPS acquisition protocol that included 180° rotation, jections, and the left atrium may partially overlap, posteri- a 64 by 64 matrix, and 64 or 32 views using single- or double-head cameras.
    [Show full text]
  • Comparison of Echocardiography and Angiography in Determining the Cause of Severe Aortic Regurgitation
    Br Heart J: first published as 10.1136/hrt.51.1.36 on 1 January 1984. Downloaded from Br Heart J 1984; 51: 36-45 Comparison of echocardiography and angiography in determining the cause of severe aortic regurgitation NICHOLAS L DEPACE, PASQUALE F NESTICO, MORRIS N KOTLER, GARY S MINTZ, DEMETRIOS KIMBIRIS, INDER P GOEL, E ELAINE GLAZIER-LASKEY, JOHN ROSS From the LikoffCardiovascular Institute, Hahnemann University, Philadelphia, Pennsylvania, USA SUMMARY To assess the accuracy of echocardiography in determining the cause of aortic regurgita- tion M mode and cross sectional echocardiography were compared with angiography in 43 patients with predominant aortic regurgitation. Each patient had all three investigations performed during the same admission to hospital. In each instance, the cause of aortic regurgitation was confirmed at surgery or necropsy. Seventeen patients had rheumatic aortic valve disease, 13 bacterial endocarditis with a perforated or partially destroyed cusp, five a biscuspid aortic valve (four with a history of endocarditis), and eight aortic regurgitation secondary to aortic root dilatation or aneurysm. Overall sensitivity of echocardiography and aortography was 84% in determining the cause of aortic regurgi- tation. Thus, rheumatic valve disease and endocarditis appear to be the most common causes of severe aortic regurgitation in this hospital based population. Furthermore, echocardiography is a sensitive non-invasive technique for determining the cause of aortic regurgitation and allows differentiation of valvular from root causes of aortic regurgitation. Aortic regurgitation may be caused by valvular dis- ment for predominant aortic regurgitation were http://heart.bmj.com/ ease, aortic root disease, or a combination of both. reviewed.
    [Show full text]
  • Pdf 296.03 K
    Original Article Evaluation of myocardial perfusion and function after kidney transplantation by Gated SPECT myocardial perfusion scintigraphy Armaghan Fard-Esfahani1, Babak Fallahi1, Sahar Mirpour 1, Ali Gholamrezanezhad1, Ezatollah Abdi2, Mohammad Karimi1, Davood Beiki1, Alireza Emami-Ardekani1, Fariba Akhzari3, Mojtaba Ansari4, Mohammad Eftekhari1 1 Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran 2 Hasheminejad Kidney Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran 3 Nuclear Medicine Department, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran 4 Nuclear Medicine Department, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran (Received 12 September 2012, Revised 14 October 2012, Accepted 20 October 2012) ABSTRACT Introduction: The aim of this study was to evaluate the effect of successful kidney transplantation (KT) on myocardial perfusion and left ventricular function by both qualitative (visual) interpretation and semiquantitative parameters, using myocardial perfusion scintigraphy with gated-single photon emission computed tomography (gated-SPECT) in patients suffering from end-stage renal disease. Methods: From a total of 38 patients who were candidates of KT, twenty-six patients (16 female, 10 male, mean age: 47.5 yr, range: 24-64 yr) who had successful KT were included. Myocardial perfusion scintigraphy was performed by Gated Single Photon Emission Computed Tomography (Gated-SPECT) method, before and after surgery (mean: 24 months). Perfusion and function status was evaluated by qualitative and semiquantitative parameters. Results: Our data showed qualitative evidence of perfusion and functional abnormality in pre-transplant scans as follows: Abnormal perfusion in left anterior descending (LAD), left circumflex (LCX) and right coronary artery (RCA) territories in 42.5%, 53.8% and 65.4% of cases, respectively; dilation in 57.7% and inhomogenity of uptake in 53.8% of cases.
    [Show full text]