An Approach for Representing Complex 3D Objects in GIS Applied to 3D Properties
Total Page:16
File Type:pdf, Size:1020Kb
DEPARTMENT OF TECHNOLOGY AND BUILT ENVIRONMENT An approach for representing complex 3D objects in GIS applied to 3D properties Fredrik Ekberg May 2007 Thesis for Degree of Master of Geomatics Examiner: Prof. Anders Östman Abstract The main problem that is addressed in this thesis is how to represent complex three- dimensional objects in GIS in order to render a more realistic representation of the real world. The goal is to present an approach for representing complex 3D objects in GIS. This is achieved by using commercial GIS (ArcGIS), applied to 3D properties. In order to get a clear overview of the state-of-the-art of 3D GIS and the current 3D cadastral situation a literature study was carried out. Based on this overview it can be concluded that 3D GIS still is in its initial phase. Current 3D GIS developments are mainly in the area of visualisation and animation, and almost nothing in the area of spatial analysis and attribute handling. Furthermore, the literature study reveals that no complete solution has been introduced that solves the problems involved in 3D cadastral registration. In several countries (e.g. Sweden, Denmark, Norway, Netherlands, Israel, and Australia) 3D properties exists in a juridical framework, but technical issues such as how to represent, store, and visualize 3D properties has not yet been solved. Some countries (Sweden, Norway, and Australia) visualize the footprints of 3D property units in a base map. This approach partly solves some technical issues, but can only represent 3D objects in a 2.5D environment. Therefore, research in how to represent complex objects in GIS as ‘true’ 3D objects is of great need. This thesis will emphasize MultiPatch as a geographic representation method to represent complex 3D objects in GIS. A case study will demonstrate that complex objects can be visualized and analysed in a commercial GIS, in this case ArcGIS. Most commercial GIS software available on the market applies a 2.5D approach to represent 3D objects. The 2.5D approach has limitations for representing complex objects. There is therefore a need of finding new approaches to represent complex objects within GIS. The result shows that MultiPatch is not an answer to all the problems within 3D GIS but a solution to some of the problems. It still requires a lot of research in the field of 3D GIS, especially in development of spatial analysis capabilities. ii Sammanfattning Det huvudsakliga problemet i denna uppsats är hur komplexa tre-dimensionella objekt kan representeras i GIS för att återge verkligheten mer realistiskt. Målet är att presentera ett tillvägagångssätt för att representera komplexa 3D-objekt i GIS. Detta har uppnåtts genom att använda ett kommersiellt GIS tillämpat på 3D-fastigheter. En litteraturstudie har genomförts för att erhålla en klar översikt över det senaste inom 3D-GIS och över den aktuella situationen inom 3D-fastigheter. Grundat på översikten kan slutsatsen dras att 3D-GIS bara är i sin begynnelsefas. Den aktuella utvecklingen inom 3D-GIS har huvudsakligen fokuserat på visualisering och animering och nästan ingenting inom rumsliga analysmetoder och hantering av attribut. Litteraturstudien visar också att ingen fullständig lösning för de problem som finns inom 3D-fastighetsregistrering har introducerats. I flera länder, t.ex. Sverige, Danmark, Norge, Nederländerna, Israel och Australien, existerar 3D-fastigheter idag i juridiska termer, men de tekniska problemen som t.ex. hur 3D-fastigheter ska representeras, lagras och visualiseras har inte ännu lösts. Vissa länder (Sverige, Norge och Australien) visualiserar idag en projektion av 3D-fastigheterna på en fastighetskarta. Den här metoden löser endast några av de tekniska problemen och kan endast representera 3D-objekt i en 2,5D-miljö. Därför är forskning inom hur komplexa objekt kan representeras i GIS som s.k. ”sann” 3D av betydelse. Den här uppsatsen framhäver MultiPatch som en datatyp för att representera komplexa 3D- objekt i GIS. En fallstudie visar att komplexa objekt kan visualiseras och analyseras i ett kommersiellt GIS, i det här fallet ArcGIS. De flesta kommersiella GIS som är tillgängliga på marknaden använder 2,5D-metoden för att representera 3D-objekt. 2,5D-metoden har vissa begränsningar för att representera komplexa objekt och därför finns det ett behov att finna nya tillvägagångssätt för att representera komplexa objekt inom GIS. Resultaten kommer att visa att MultiPatch inte är någon fullständig lösning till alla problem inom 3D-GIS men en lösning på några av problemen. Det krävs fortfarande mycket forskning inom 3D-GIS, särskilt inom utveckling av rumsliga analysmetoder. iii Preface This thesis is written to complete my degree of Master of Geomatics at the Department of Technology and Built Environment at the University of Gävle. The work in this thesis is focused on 3D GIS, 3D properties, and object representation and has been carried out at the department of Geographic Information at the Municipality of Gävle as a part of their work within 3D GIS. I would like to thank my supervisor PhD. S.A. Brandt for all his help and for inspiring me throughout my education. Furthermore, I would like to thank all the people at the department of Geographic Information at the Municipality of Gävle, especially Eddie Larsson for all his feedback on, and ideas for this work. Finally, I would like to thank my wife, Linda, for all her support, encouragement and understanding. Gävle, May 2007 Fredrik Ekberg iv Table of contents ABSTRACT ..........................................................................................................................................II SAMMANFATTNING....................................................................................................................... III PREFACE ............................................................................................................................................IV 1 INTRODUCTION.................................................................................................................... 1 1.1 PROJECT SCOPE .................................................................................................................... 3 1.2 OBJECTIVES ......................................................................................................................... 3 1.3 ORGANISATION OF THE THESIS............................................................................................. 4 2 METHODS ............................................................................................................................... 6 2.1 LITERATURE STUDY ............................................................................................................. 6 2.2 CASE STUDY......................................................................................................................... 6 2.2.1 Work flow................................................................................................................. 6 2.2.2 Functionality............................................................................................................. 7 3 THEORY .................................................................................................................................. 9 3.1 OVERVIEW OF THE 3D CADASTRAL SITUATION .................................................................... 9 3.2 OVERVIEW OF THE 3D GIS SITUATION............................................................................... 11 3.3 THE CONCEPT OF DIMENSION ............................................................................................. 15 3.3.1 Representation in 2.5D ........................................................................................... 16 3.3.2 ‘True’ 3D representation ........................................................................................ 18 3.4 SOLID MODELLING ............................................................................................................. 19 3.4.1 Constructive Solid Geometry (CSG) representation .............................................. 19 3.4.2 Boundary representation (b-rep)............................................................................. 21 3.4.3 Primitive Instancing representation ........................................................................ 23 3.4.4 Spatial-Partitioning Representations ...................................................................... 23 3.4.5 Sweep Representations........................................................................................... 25 3.4.6 Freeform data types ................................................................................................ 26 v 3.5 MULTIPATCH IN ARCGIS................................................................................................... 27 4 RESULTS................................................................................................................................29 4.1 WORK FLOW ...................................................................................................................... 30 4.2 ANALYSIS OF THE STORAGE ............................................................................................... 33 4.3 ANALYSING THE DATA....................................................................................................... 34 DISCUSSION....................................................................................................................................... 38 5 CONCLUSIONS....................................................................................................................