CALENDAR 3Emm About the PSI SBKB

Total Page:16

File Type:pdf, Size:1020Kb

CALENDAR 3Emm About the PSI SBKB sbkb.org • [email protected] 2012CALENDAR 3emm About the PSI SBKB To present a broader view of structural biology and structural The Protein Structure Initiative Structural Biology ABOUT THIS CALENDAR genomics research, the PSI Structural Biology Knowledgebase Knowledgebase (PSI SBKB, sbkb.org) is a free The 2012 PSI SBKB calendar is composed of selections offers centralized access to the following information from the online resource that enables users to discover from the PSI Featured System and Featured Molecule Protein Structure Initiative and beyond: how amino acid sequences, 3D structures, and series, written and illustrated by David Goodsell (The theoretical models help us understand protein Scripps Research Institute) especially for the SBKB. • biological annotations function. A single search of the SBKB will provide Each month features a space-filling representation, • theoretical models links to 3D protein structures, pre-built theoretical (like the image below) which shows the overall shape • all structures in the Protein Data Bank models, biological annotations, structural and volume of the biomolecule, a ribbon diagram to • protein production protocols genomics target information, protocols, and show how the amino acid sequence folds into the • DNA clones and technologies access to DNA clones. The website offers an easy presented 3D shape, and an explanation of biological • research library way to keep abreast of developments by the PSI and/or biomedical relevance of this protein structure • new research and technical highlights and more generally in the fields of structural for readers of all ages and backgrounds. • news and events calendar biology and structural genomics. The PSI SBKB is a collaboration between the Protein ABOUT THE PSI FEATURED SYSTEM The PSI Featured System (on the homepage at sbkb.org) Structure Initiative (PSI) and Nature Publishing is a monthly article about one of the many protein Group (NPG). Funding is provided by the National systems studied by the PSI high-throughput structural Institute of General Medical Sciences. genomics and structural biology efforts. Molecular images are created by the Python Molecular Viewer The Protein Structure Initiative (mgltools.scripps.edu). In addition, the web-version The PSI is a federal, university, and industry effort of the PSI Featured System includes an interactive view to dramatically reduce the costs and reduce the of the protein structure that allows users to explore the time it takes to determine a three-dimensional 3D structure on their own. protein structure. The long-range goal of the PSI is to make the 3D atomic-level structures of most proteins easily obtainable from knowledge of their corresponding DNA sequences. Nature Publishing Group NPG is the scientific publishing arm of Macmillan Publishers Ltd. It publishes journals and online databases across the life, physical and applied sciences and, most recently, clinical medicine. Content encompasses daily news from award- winning journalists, expert opinion, practical methodology, and high impact research and reviews. sbkb.org [email protected] AboutNitrobindin this calendar doi:10.3942/psi_sbkb/fm_2010_12 Proteins perform most of the nanoscale tasks inside of cells, but occasionally, they need help from more exotic molecules. For instance, very small molecules like oxygen are difficult to capture, and proteins like hemoglobin use a heme to trap them. Heme is used in many other capacities as well, including the management of electrons and the capture of other gas molecules such as nitric oxide. So, when researchers at CESG discovered a ON THE COVER THE ON new heme-containing protein in the plant Arabidopsis, they were faced with an exciting challenge: what is the heme doing? HEME EXPOSED One clue to the function of nitrobindin is provided The heme in nitrobindin (PDB entry 3emm, by the similar NO-binding protein nitrophorin. pictured on the cover and at right) is unusual in that Nitrophorin is made by blood-sucking insects and the iron atom found in all heme molecules is rather used to deliver NO to their victims, where it dilates exposed to solvent. In many heme proteins, the the blood vessels and provides more blood for the heme is buried deep within the protein, with per- insect. Nitrobindin may play a similar role in plants, fectly-placed amino acids guarding access to the providing a way to store NO safely until it is needed. iron atom. For instance, globins have a histidine on one side of the heme, which positions the iron in ANOTHER NITROBINDIN the proper place, and a histidine or glutamine on Structural genomics often acts like a snowball, the other side, leaving just enough room for oxygen starting with a central piece of information, then to bind. Nitrobindin, on the other hand, has a sim- growing around that. Building on the Arabidopsis ilar histidine coordinated directly to the iron, but nitrobindin structure, researchers at the CESG then the other side of the iron is free to interact with looked to the human genome and found a similar water. This has an unusual consequence: in the pres- protein there. The protein THAP4 includes a ence of oxygen, the iron atom is rapidly oxidized modified zinc finger, which binds to DNA, as well and shows only a weak interaction with oxygen. as a nitrobindin-style heme-binding domain. A 3emm recent crystallographic structure of the nitrobindin MANAGING NITRIC OXIDE portion (PDB entry 3ia8, not shown) revealed a Testing revealed, however, that the reduced form structure very similar to the Arabidopsis nitrobindin, of the protein binds to nitric oxide (NO) with with a beautifully symmetrical beta barrel, a heme- substantial affinity. This has posed a mystery about binding pocket at one end and a special shape called the function of the protein. Nitric oxide, in spite of a 310 helix at the opposite end. its significant toxicity, is widely used in animal cells SBKB Quick Fact as a hormone in particular, in the local control of blood flow. It plays a similar role in plant cells as The SBKB is updated weekly with new targets, structures, part of a complex signaling network that decides Bianchetti, C. M. et al. Proteins 78, 917- 931 (2010). PDB ID: 3emm methods, and annotations. Learn about all this, and how to Wendehenne, D. et al. Nitric oxide: a new player in plant signalling and defence responses what to do when cells are infected or wounded. Curr. Op. Plant Biol. 7, 449-455 (2004). subscribe to RSS feeds and E-alerts, at sbkb.org The Perils of Protein Secretion doi:10.3942/psi_sbkb/fm_2011_11 Salmonella bacteria are tiny terrorists that infect cells and ultimately destroy them. They don't, however, just kill cells outright. The attack is far more measured, so that the bacteria have time to multiply within the cell before the cell dies. To control this process, Salmonella bacteria inject a deadly cocktail of proteins into their targets. These "effector" proteins assist in the entry of bacteria into the cells, they thwart cellu- lar defense systems, and they ultimately destroy the cells when the bacteria have finished with them. DEADLY NEEDLE hobble the immune system. In other cases, such as Many of these effector proteins are injected into epithelial cells, it needs to wait and kill the cell cells through a "needle complex"through a process later, when it's ready to escape and spread. The known as type III secretion. Structures are available bacterial effector proteins make these decisions, for a few of the many components of this complex, forcing infected cells to die on command. For as shown in the top image. In the image, we are instance, the SlrP protein of Salmonella mimics the looking from the outside of the cell through the E3 ubiquitin ligases. These ligases normally control middle of the complex. At the center, there is a the disposal of obsolete proteins in our cells by "needle" protein with a narrow opening, shown in attaching the small protein ubiquitin to them, red from PDB entry 2v6l. Because the opening is so which marks them for destruction by the protea- small, effector proteins must be unfolded before some. SlrP hijacks this system, using it instead to they are threaded through the hole and into the destroy essential proteins involved in the cellular infected cell. Surrounding the needle several con- immune response. centric rings of proteins, shown here in blue and green from PDB entries 2y9j and 2y9k, that anchor EXPLORING AN EFFECTOR PROTEIN MCSG researchers are exploring the structures of the needle in the bacterial cell wall. 2v6l 2y9j 2y9k these bacterial E3 ubiquitin ligases, looking at the SlrP protein of Salmonella and the similar protein CAREFUL REGULATION 3cvr 3ckd As you can imagine, this process must be carefully IpaH from Shigella. This is a bit tricky because they regulated, so that the proper effector proteins are are flexible proteins, with two separate domains injected at the proper time. Researchers at PCSEP connected by a short hinge, so PSI researchers had are using protein network analysis to uncover the to cut the enzymes into two pieces and solve the many players involved in this control. By looking at structures of each half individually. One half, the proteins that are expressed during infection, shown here on the left from PDB entry 3cvr, and comparing these to the bacterial proteins that recognizes the target protein, and the other half, are expressed at other times, they can identify the shown on the right from PDB entry 3ckd, performs proteins specifically involved in secretion, and the reaction that connects ubiquitin. determine networks of how they interact with one another. By analyzing these networks, they have Deane, J.E. et al. Molecular model of a type III secretion system needle: Implications discovered that many mechanisms come into play, for host-cell sensing.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Statistical and Bioinformatic Analysis of Hemimethylation Patterns in Non-Small Cell Lung Cancer
    Statistical and Bioinformatic Analysis of Hemimethylation Patterns in Non-Small Cell Lung Cancer Shuying Sun ( [email protected] ) Texas State University San Marcos https://orcid.org/0000-0003-3974-6996 Austin Zane Texas A&M University College Station Carolyn Fulton Schreiner University Jasmine Philipoom Case Western Reserve University Research article Keywords: Methylation, Hemimethylation, Lung Cancer, Bioinformatics, Epigenetics Posted Date: October 12th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-17794/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on March 12th, 2021. See the published version at https://doi.org/10.1186/s12885-021-07990-7. Page 1/29 Abstract Background: DNA methylation is an epigenetic event involving the addition of a methyl-group to a cytosine-guanine base pair (i.e., CpG site). It is associated with different cancers. Our research focuses on studying non- small cell lung cancer hemimethylation, which refers to methylation occurring on only one of the two DNA strands. Many studies often assume that methylation occurs on both DNA strands at a CpG site. However, recent publications show the existence of hemimethylation and its signicant impact. Therefore, it is important to identify cancer hemimethylation patterns. Methods: In this paper, we use the Wilcoxon signed rank test to identify hemimethylated CpG sites based on publicly available non-small cell lung cancer methylation sequencing data. We then identify two types of hemimethylated CpG clusters, regular and polarity clusters, and genes with large numbers of hemimethylated sites.
    [Show full text]
  • Rabbit Mab A
    Revision 1 C 0 2 - t SIN3A (D1B7) Rabbit mAb a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 1 9 Web: [email protected] 6 www.cellsignal.com 7 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: WB, ChIP H M R Mk Endogenous 145 Rabbit IgG Q96ST3 25942 Product Usage Information nucleosome binding of the complex. The SIN3 complex functions to repress transcription, in part, by deacetylating histones at target gene promoters (3,4). In addition, recent For optimal ChIP results, use 5 μl of antibody and 10 μg of chromatin (approximately 4 x studies have shown that SIN3 is recruited to the coding regions of repressed and active 106 cells) per IP. This antibody has been validated using SimpleChIP® Enzymatic genes, where it deacetylates histones and suppresses spurious transcription by RNA Chromatin IP Kits. polymerase II (3,5). In addition to histone deacetylase activity, the SIN3 complex associates with histone methyltransferase (ESET), histone demethylase Application Dilution (JARID1A/RBP2), ATP-dependent chromatin remodeling (SWI/SNF), methylcytosine dioxygenase (TET1), and O-GlcNAc transferase (OGT) activities, all of which appear to Western Blotting 1:1000 contribute to the regulation of target genes (5-9). The SIN3 complex is critical for proper Chromatin IP 1:100 regulation of embryonic development, cell growth and proliferation, apoptosis, DNA replication, DNA repair, and DNA methylation (imprinting and X-chromosome inactivation) Storage (3,4).
    [Show full text]
  • PWWP2A Binds Distinct Chromatin Moieties and Interacts with an MTA1-Specific Core Nurd Complex
    ARTICLE DOI: 10.1038/s41467-018-06665-5 OPEN PWWP2A binds distinct chromatin moieties and interacts with an MTA1-specific core NuRD complex Stephanie Link1,2, Ramona M.M. Spitzer1,2, Maryam Sana3, Mario Torrado3, Moritz C. Völker-Albert1, Eva C. Keilhauer4,9, Thomas Burgold5,10, Sebastian Pünzeler1,11, Jason K.K. Low3, Ida Lindström 3, Andrea Nist6, Catherine Regnard1, Thorsten Stiewe 6,7, Brian Hendrich5, Axel Imhof 1,8, Matthias Mann 4,8, Joel P. Mackay 3, Marek Bartkuhn2 & Sandra B. Hake 2,8 1234567890():,; Chromatin structure and function is regulated by reader proteins recognizing histone mod- ifications and/or histone variants. We recently identified that PWWP2A tightly binds to H2A. Z-containing nucleosomes and is involved in mitotic progression and cranial–facial devel- opment. Here, using in vitro assays, we show that distinct domains of PWWP2A mediate binding to free linker DNA as well as H3K36me3 nucleosomes. In vivo, PWWP2A strongly recognizes H2A.Z-containing regulatory regions and weakly binds H3K36me3-containing gene bodies. Further, PWWP2A binds to an MTA1-specific subcomplex of the NuRD complex (M1HR), which consists solely of MTA1, HDAC1, and RBBP4/7, and excludes CHD, GATAD2 and MBD proteins. Depletion of PWWP2A leads to an increase of acetylation levels on H3K27 as well as H2A.Z, presumably by impaired chromatin recruitment of M1HR. Thus, this study identifies PWWP2A as a complex chromatin-binding protein that serves to direct the deacetylase complex M1HR to H2A.Z-containing chromatin, thereby promoting changes in histone acetylation levels. 1 Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.
    [Show full text]
  • Aberrations of EZH2 in Cancer
    Published OnlineFirst March 2, 2011; DOI: 10.1158/1078-0432.CCR-10-2156 Clinical Cancer Molecular Pathways Research Aberrations of EZH2 in Cancer Andrew Chase and Nicholas C.P. Cross Abstract Control of gene expression is exerted at a number of different levels, one of which is the accessibility of genes and their controlling elements to the transcriptional machinery. Accessibility is dictated broadly by the degree of chromatin compaction, which is influenced in part by polycomb group proteins. EZH2, together with SUZ12 and EED, forms the polycomb repressive complex 2 (PRC2), which catalyzes trimethylation of histone H3 lysine 27 (H3K27me3). PRC2 may recruit other polycomb complexes, DNA methyltransferases, and histone deacetylases, resulting in additional transcriptional repressive marks and chromatin compaction at key developmental loci. Overexpression of EZH2 is a marker of advanced and metastatic disease in many solid tumors, including prostate and breast cancer. Mutation of EZH2 Y641 is described in lymphoma and results in enhanced activity, whereas inactivating mutations are seen in poor prognosis myeloid neoplasms. No histone demethylating agents are currently available for treatment of patients, but 3-deazaneplanocin (DZNep) reduces EZH2 levels and H3K27 trimethylation, resulting in reduced cell proliferation in breast and prostate cancer cells in vitro. Furthermore, synergistic effects are seen for combined treatment with DNA demethylating agents and histone deacetylation inhibitors, opening up the possibility of refined epigenetic treatments in the future. Clin Cancer Res; 17(9); 2613–8. Ó2011 AACR. Background trithorax homolog myeloid-lymphoid leukemia (MLL), is associated with transcriptional activation (Fig. 1A). Impor- DNA is wrapped around histone complexes termed tantly, many genes involved in development, stem cell nucleosomes, and gene accessibility is determined largely maintenance, and differentiation are targets of H3K27 by the local chromatin configuration.
    [Show full text]
  • Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders
    177 Arch Neuropsychitry 2020;57:177−191 RESEARCH ARTICLE https://doi.org/10.29399/npa.24890 Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders Hakan GÜRKAN1 , Emine İkbal ATLI1 , Engin ATLI1 , Leyla BOZATLI2 , Mengühan ARAZ ALTAY2 , Sinem YALÇINTEPE1 , Yasemin ÖZEN1 , Damla EKER1 , Çisem AKURUT1 , Selma DEMİR1 , Işık GÖRKER2 1Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey 2Faculty of Medicine, Department of Child and Adolescent Psychiatry, Trakya University, Edirne, Turkey ABSTRACT Introduction: Aneuploids, copy number variations (CNVs), and single in 39 (39/123=31.7%) patients. Twelve CNV variant of unknown nucleotide variants in specific genes are the main genetic causes of significance (VUS) (9.75%) patients and 7 CNV benign (5.69%) patients developmental delay (DD) and intellectual disability disorder (IDD). were reported. In 6 patients, one or more pathogenic CNVs were These genetic changes can be detected using chromosome analysis, determined. Therefore, the diagnostic efficiency of CMA was found to chromosomal microarray (CMA), and next-generation DNA sequencing be 31.7% (39/123). techniques. Therefore; In this study, we aimed to investigate the Conclusion: Today, genetic analysis is still not part of the routine in the importance of CMA in determining the genomic etiology of unexplained evaluation of IDD patients who present to psychiatry clinics. A genetic DD and IDD in 123 patients. diagnosis from CMA can eliminate genetic question marks and thus Method: For 123 patients, chromosome analysis, DNA fragment analysis alter the clinical management of patients. Approximately one-third and microarray were performed. Conventional G-band karyotype of the positive CMA findings are clinically intervenable.
    [Show full text]
  • Targeting Human Retinoblastoma Binding Protein 4 (RBBP4) and 7 (RBBP7)
    bioRxiv preprint doi: https://doi.org/10.1101/303537; this version posted April 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Targeting Human Retinoblastoma Binding Protein 4 (RBBP4) and 7 (RBBP7) Megha Abbey1, Viacheslav Trush1, Elisa Gibson1, and Masoud Vedadi1,2* 1Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada 2Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada To whom correspondence should be addressed: Masoud Vedadi; Tel.: 416-432-1980; E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/303537; this version posted April 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract RBBP4 and RBBP7 (RBBP4/7) are highly homologous nuclear WD40 motif containing proteins widely implicated in various cancers and are valuable drug targets. They interact with multiple proteins within diverse complexes such as NuRD and PRC2, as well as histone H3 and H4 through two distinct binding sites. FOG-1, PHF6 and histone H3 bind to the top of the donut shape seven-bladed β-propeller fold, while SUZ12, MTA1 and histone H4 bind to a pocket on the side of the WD40 repeats. Here, we briefly review these six interactions and present binding assays optimized for medium to high throughput screening. These assays enable screening of RBBP4/7 toward the discovery of novel cancer therapeutics.
    [Show full text]
  • Global Analysis of Chromosome X Gene Expression in Primary Cultures of Normal Ovarian Surface Epithelial Cells and Epithelial Ovarian Cancer Cell Lines
    5-17 6/12/06 18:21 Page 5 INTERNATIONAL JOURNAL OF ONCOLOGY 30: 5-17, 2007 5 Global analysis of chromosome X gene expression in primary cultures of normal ovarian surface epithelial cells and epithelial ovarian cancer cell lines MARIE-HÉLÈNE BENOÎT1, THOMAS J. HUDSON1,2,3, GEORGES MAIRE4, JEREMY A. SQUIRE4,5, SUZANNA L. ARCAND6, DIANE PROVENCHER7,8, ANNE-MARIE-MES-MASSON7,9 and PATRICIA N. TONIN1,3,6 1Department of Human Genetics, McGill University, Montreal, Quebec H3A 1A1; 2McGill University and Genome Quebec Innovation Centre, Montreal, Quebec H3A 1A4; 3Department of Medicine, McGill University, Montreal, Quebec H3G 1A4; 4Applied Molecular Oncology, The Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario M5G 2M9; 5Departments of Medical Biophysics and Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5; 6The Research Institute of McGill University Health Center, Montreal, Quebec H3G 1A4; 7Centre de Recherche du Centre Hospitalier de l'Université de Montreal (CR-CHUM)/Institut du cancer de Montréal, Montreal, Quebec H2L 4M1; 8Division de gynécologie et obstétrique, and 9Départément de médicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada Received June 2, 2006; Accepted August 3, 2006 Abstract. The interpretation of loss of heterozygosity (LOH) and TOV21G. The combined evidence is consistent with two in cancers is complicated as genes that map to LOH regions proposed mechanisms to account for absence of Xi in female may be transcriptionally active (Xa) or inactive (Xi) due to X cancers: Xi loss followed by Xa duplication (exemplified by chromosome inactivation (XCI). We have analyzed the TOV112D) and transcriptional reactivation of Xi (exemplified chromosome X transcriptome in four epithelial ovarian by TOV21G).
    [Show full text]
  • Rabbit Anti-RBBP7/Rbap46/FITC Conjugated Antibody-SL19740R
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-RBBP7/RbAp46/FITC Conjugated antibody SL19740R-FITC Product Name: Anti-RBBP7/RbAp46/FITC Chinese Name: FITC标记的组蛋白Binding proteinRBBP7抗体 G1/S transition control protein binding protein RbAp46; Histone acetyltransferase type B subunit 2; Histone binding protein RBBP 7; Histone binding protein RBBP7; Histone- binding protein RBBP7; MGC138867; MGC138868; Nucleosome remodeling factor subunit RBAP46; Nucleosome-remodeling factor subunit RBAP46; RbAp 46; RBAP46; Alias: RBBP 7; RBBP-7; RBBP7; RBBP7_HUMAN; Retinoblastoma binding protein 7; Retinoblastoma binding protein p46; Retinoblastoma binding protein RbAp46; Retinoblastoma protein associated protein 46; Retinoblastoma-binding protein 7; Retinoblastoma-binding protein p46; Retinoblastoma-binding protein RbAp46. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Dog,Pig,Cow,Horse,Rabbit,Sheep,Guinea Pig, ICC=1:50-200IF=1:50-200 Applications: not yet tested in other applications. optimalwww.sunlongbiotech.com dilutions/concentrations should be determined by the end user. Molecular weight: 48kDa Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human RBBP7/RbAp46 Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C.
    [Show full text]
  • Genome-Wide Linkage Analysis of Human Auditory Cortical Activation Suggests Distinct Loci on Chromosomes 2, 3, and 8
    The Journal of Neuroscience, October 17, 2012 • 32(42):14511–14518 • 14511 Behavioral/Systems/Cognitive Genome-Wide Linkage Analysis of Human Auditory Cortical Activation Suggests Distinct Loci on Chromosomes 2, 3, and 8 Hanna Renvall,1* Elina Salmela,2,3* Minna Vihla,1 Mia Illman,1 Eira Leinonen,2,3 Juha Kere,2,3,4 and Riitta Salmelin1 1Brain Research Unit and MEG Core, O.V. Lounasmaa Laboratory, Aalto University, FI-00076 Aalto, Finland, 2Department of Medical Genetics, Haartman Institute, and Research Programs Unit, Molecular Medicine, University of Helsinki, FI-00014 Helsinki, Finland, 3Folkha¨lsan Institute of Genetics, FI-00014 Helsinki, Finland, and 4Department of Biosciences and Nutrition, and Science for Life Laboratory, Karolinska Institute, SE-14183 Stockholm, Sweden Neural processes are explored through macroscopic neuroimaging and microscopic molecular measures, but the two levels remain primarily detached. The identification of direct links between the levels would facilitate use of imaging signals as probes of genetic function and, vice versa, access to molecular correlates of imaging measures. Neuroimaging patterns have been mapped for a few isolated genes,chosenbasedontheirconnectionwithaclinicaldisorder.Hereweproposeanapproachthatallowsanunrestricteddiscoveryofthe genetic basis of a neuroimaging phenotype in the normal human brain. The essential components are a subject population that is composed of relatives and selection of a neuroimaging phenotype that is reproducible within an individual and similar between relatives but markedly variable across a population. Our present combined magnetoencephalography and genome-wide linkage study in 212 healthy siblings demonstrates that auditory cortical activation strength is highly heritable and, specifically in the right hemisphere, regulatedoligogenicallywithlinkagestochromosomes2q37,3p12,and8q24.TheidentifiedregionsdelimitascandidategenesTRAPPC9, operating in neuronal differentiation, and ROBO1, regulating projections of thalamocortical axons.
    [Show full text]
  • 2020.11.07.372946V1.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.07.372946; this version posted November 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Functional characterization of RebL1 highlights the evolutionary conservation of oncogenic activities of the RBBP4/7 orthologue in Tetrahymena thermophila Syed Nabeel-Shah1,9, Jyoti Garg2,8, Alejandro Saettone1,8, Kanwal Ashraf 2, Hyunmin Lee3,4, Suzanne Wahab1, Nujhat Ahmed4,5, Jacob Fine2, Joanna Derynck1, Marcelo Ponce6, Shuye Pu4, Edyta Marcon4, Zhaolei Zhang3,4,5, Jack F Greenblatt4,5, Ronald E Pearlman2, Jean-Philippe Lambert7,* and Jeffrey Fillingham1, * 1. Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto M5B 2K3, Canada. 2. Department of Biology, York University, 4700 Keele St., Toronto, M3J 1P3, Canada. 3. Department of Computer Sciences, University of Toronto, Toronto, M5S 1A8, Canada. 4. Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada. 5. Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada. 6. SciNet HPC Consortium, University of Toronto, 661 University Avenue, Suite 1140, Toronto, ON M5G 1M1, Canada. 7. Department of Molecular Medicine, Cancer Research Center, Big Data Research Center, Université Laval, Quebec, Canada; CHU de Québec Research Center, CHUL, 2705 Laurier Boulevard, Quebec, G1V 4G2, Canada. 8. These authors contributed equally to this work 9. Present address: Donnelly Centre, University of Toronto, Toronto, M5S 3E1, Canada. Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada.
    [Show full text]