manuscript submitted to JGR: Solid Earth 1 Time-Series Prediction Approaches to Forecasting Deformation in Sentinel-1 InSAR Data 1 2 1 1 2 P. Hill , J. Biggs , V. Ponce-L´opez , D. Bull 1 3 Department of Electrical and Electronic Engineering, University of Bristol, Bristol, United Kingdom 2 4 COMET, School of Earth Sciences, University of Bristol, Bristol, United Kingdom 5 This manuscript is a preprint and has been submitted for publication in JGR-Solid Earth. 6 It has yet to undergo peer review and the manuscript has yet to be formally accepted 7 for publication. Subsequent versions of this manuscript may have slightly different con- 8 tent. {1{ manuscript submitted to JGR: Solid Earth 9 Time-Series Prediction Approaches to Forecasting 10 Deformation in Sentinel-1 InSAR Data 1 2 1 1 11 P. Hill , J. Biggs , V. Ponce-L´opez , D. Bull , 1 12 Department of Electrical and Electronic Engineering, University of Bristol, Bristol, United Kingdom 2 13 COMET, School of Earth Sciences, University of Bristol, Bristol, United Kingdom 14 Key Points: 15 • We test established time series prediction methods on 4 years of Sentinel-1 InSAR 16 data, and investigate the role of seasonality. 17 • For seasonal signals, SARIMA and machine learning (LSTM) perform best over 18 <3 months, and sinusoid extrapolation over >6 months. 19 • Forecast quality decreases for less seasonal signals, and a constant value predic- 20 tion performs best for randomly-selected datapoints. Corresponding author: Paul Hill,
[email protected] {2{ manuscript submitted to JGR: Solid Earth 21 Abstract 22 Time series of displacement are now routinely available from satellite InSAR and are used 23 for flagging anomalous ground motion, but not yet forecasting.