Generalized Trace-Distance Measure Connecting Quantum and Classical Non-Markovianity

Total Page:16

File Type:pdf, Size:1020Kb

Generalized Trace-Distance Measure Connecting Quantum and Classical Non-Markovianity View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AIR Universita degli studi di Milano PHYSICAL REVIEW A 92, 042108 (2015) Generalized trace-distance measure connecting quantum and classical non-Markovianity Steffen Wißmann and Heinz-Peter Breuer Physikalisches Institut, Universitat¨ Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany Bassano Vacchini Dipartimento di Fisica, Universita` degli Studi di Milano, Via Celoria 16, I-20133 Milan, Italy and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milan, Italy (Received 31 July 2015; published 12 October 2015) We establish a direct connection of quantum Markovianity of an open system to its classical counterpart by generalizing the criterion based on the information flow. Here the flow is characterized by the time evolution of Helstrom matrices, given by the weighted difference of statistical operators, under the action of the quantum dynamical map. It turns out that the introduced criterion is equivalent to P divisibility of a quantum process, namely, divisibility in terms of positive maps, which provides a direct connection to classical Markovian stochastic processes. Moreover, it is shown that mathematical representations similar to those found for the original trace-distance-based measure hold true for the associated generalized measure for quantum non-Markovianity. That is, we prove orthogonality of optimal states showing a maximal information backflow and establish a local and universal representation of the measure. We illustrate some properties of the generalized criterion by means of examples. DOI: 10.1103/PhysRevA.92.042108 PACS number(s): 03.65.Yz, 03.65.Ta, 03.67.−a, 02.50.−r I. INTRODUCTION to the characterization proposed in this article, which turns out to be equivalent to divisibility in terms of positive maps Even though experimental techniques are developing (P divisibility) and has in addition a clear-cut connection rapidly, perfect isolation of fragile quantum systems from to classical Markov stochastic processes. The generalized noisy environments cannot be warranted in general, which ne- criterion introduced in Sec. II thus combines a physical cessitates effective descriptions for nonunitary dynamics [1]. interpretation of non-Markovianity in terms of an information A well-known treatment of the dynamics of such systems is flow and a relation to the well-known classical definition. provided by a quantum dynamical semigroup represented by Moreover, the associated measure has mathematical fea- a generator of the Gorini-Kossakowski-Sudarshan-Lindblad tures and representations similar to those found for the original form [2,3]. definition [14,15], which simplify its analytical, numerical, However, this description uses several rather drastic ap- and experimental determination drastically. Indeed, we prove proximations that do not apply to open quantum systems in in Sec. III A that, first, optimal initial states for non-Markovian general. The mismatch is typically associated with the neglect dynamics, experiencing a maximal backflow of information, of memory effects. Classically, there exists a well-established must be orthogonal and, second, the measure admits a local mathematical theory dealing with stochastic dynamics fea- representation showing locality and universality of quantum turing memory effects, based on the theory of stochastic memory effects. processes, yet the definition of classical Markovian stochastic An illustration of the essential features of the generalized processes cannot be straightforwardly carried over to the characterization of non-Markovianity in comparison with the quantum regime. This led to an intense debate along with original definition and approaches based on CP divisibility different proposals for the characterization and quantification is provided in Sec. III B. The examples show the sensitivity of memory effects in the dynamics of open quantum systems. of the present approach to memory effects of dynamics to Among others, approaches to non-Markovianity were based which the original definition was unsusceptible and illustrate on deviation from semigroup dynamics [4], on divisibility the existing difference between different types of divisibility in terms of completely positive maps [5], on dynamics of of a dynamical process. Finally, we summarize our results in entanglement [5] and correlations [6], and on the Fisher Sec. IV. information [7](see[8]forareview). In this work we focus on a straightforward extension of the measure of non-Markovianity introduced in Refs. [9,10] and reviewed in [11], which characterizes memory effects II. STATE DISCRIMINATION AND P DIVISIBILITY by an exchange of information between the open quantum system and the environment. This interpretation applies also Henceforth, H refers to the Hilbert space of the open to the generalized measure that uses Helstrom matrices known quantum system and the corresponding set of physical states, from quantum estimation theory [12]. A similar approach was i.e., the set of positive trace class operators with unit trace, is already introduced in Ref. [13], focusing, at variance with the denoted by S(H). Moreover, we assume that the dynamics of present proposal, on divisibility in terms of completely positive the open quantum system is determined by a one-parameter maps (CP divisibility). However, CP divisibility yields only family ={t |0 t T } of completely positive, trace- a sufficient condition for quantum Markovianity with respect preserving linear maps t , where 0 refers to the identity [1]. 1050-2947/2015/92(4)/042108(10) 042108-1 ©2015 American Physical Society WIßMANN, BREUER, AND VACCHINI PHYSICAL REVIEW A 92, 042108 (2015) A. Ensemble discrimination which is maximal if TR is the projection {0} on the The previously introduced definition of quantum non- subspace spanned by eigenvectors corresponding to positive | |= { − Markovianity [9,10], which was based on the concept of an eigenvalues of . Employing that Tr X Tr X({X0} } information flow between system and environment, relied on {X<0}) for any Hermitian operator X, one shows that the maximal success probability for correct discrimination the trace distance between two quantum states ρ1 and ρ2 defined by [16] obeys [17] max 1 1 P = max P = (1 + ). (6) D(ρ ,ρ ) ≡ ρ − ρ . (1) success success 2 1 1 2 2 1 2 1 0TR 1 = | | = − Here A 1√ Tr A , where the modulus of an operator is given Hence, the trace norm of the Helstrom matrix p1ρ1 † by |A|= A A, refers to the so-called trace norm on the p2ρ2 is the bias in favor of the correct state identification set of trace class operators [17]. A natural and interesting of the state prepared by Alice, so it may be interpreted as a generalization of this quantity is obtained when one also allows measure for the distinguishability of the two states ρ1 and ρ2 for biased probability distributions. That is, one considers with associated weights p1 and p2. Due to a result by Kossakowski [19,20], the trace norm can − = | − | p1ρ1 p2ρ2 1 Tr p1ρ1 p2ρ2 , (2) also be used to witness positivity of a trace-preserving map . That is, a trace-preserving map is positive if and only where {pi } refers to an arbitrary binary probability distribution, i.e., p 0 and p + p = 1. Clearly, choosing an unbiased if it defines a contraction for any Hermitian operator X with 1,2 1 2 respect to the trace norm, i.e., distribution, i.e., p1,2 = 1/2, one obtains the original expres- † sion (1). This generalization was first proposed in this context X1 X1 for all X = X . (7) by Chrusci´ nski´ et al. [13]. We thus obtain for two states evolving according to a The Hermitian operator = p1ρ1 − p2ρ2 is also known as the Helstrom matrix [12,18] and we find, applying the triangle dynamical map t , inequality to Eq. (2), p1t (ρ1) − p2t (ρ2)1 p1ρ1 − p2ρ2 (8) | − | + = p1 p2 1 p1 p2 1. (3) for all t where we also used linearity of the map. Adopting the previous characterization for quantum non- Clearly, the lower bound is obtained for ρ1 = ρ2, whereas the Markovianity [9,10], one then directly derives a generalized upper bound is attained if and only if ρ1 ⊥ ρ2, meaning that the two states have orthogonal support (which is defined as the criterion that still relies on the concept of an information flow. subspace spanned by the eigenvectors with nonzero eigenval- Definition 1. A quantum process is defined to be − ues). This is easily shown by means of the characterization of Markovian if p1t (ρ1) p2t (ρ2) 1 is a monotonically { } the trace norm decreasing function of t 0 for all sets pi ,ρi with pi 0, p1 + p2 = 1, and ρi ∈ S(H). 1 = 2maxTr{}+p2 − p1, (4) We stress that the authors of Ref. [13] introduced a different definition for Markovianity, which used the Helstrom matrices where the maximum is taken over all projection operators of a dilated system making it equivalent to CP divisibility of . Here Eq. (4) is derived by employing the Jordan-Hahn the dynamical process. However, as we shall see in Sec. II B, decomposition of the Hermitian Helstrom matrix in terms Markovianity as defined here can be related to the concept of of two positive and orthogonal operators, i.e., = S − Q, P divisibility and provides a clear-cut connection to classical where S,Q 0 and S ⊥ Q. Markov stochastic processes. The interpretation of the trace distance of two states We conclude this section by showing that the previously ρ1,2 ∈ S(H) as a measure of their distinguishability directly developed explanation to substantiate the interpretation of carries over to the trace norm of a Helstrom matrix . Consider quantum memory as an information backflow from the a one-shot two-state discrimination problem where Alice environment to the system [21] also applies here. To this end, prepares one out of two quantum states ρ1,2 with corresponding we define the quantities probability p , i.e., we have p + p = 1.
Recommended publications
  • Front Matter of the Book Contains a Detailed Table of Contents, Which We Encourage You to Browse
    Cambridge University Press 978-1-107-00217-3 - Quantum Computation and Quantum Information: 10th Anniversary Edition Michael A. Nielsen & Isaac L. Chuang Frontmatter More information Quantum Computation and Quantum Information 10th Anniversary Edition One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th Anniversary Edition includes a new Introduction and Afterword from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography, and quantum error-correction. Quantum mechanics and computer science are introduced, before moving on to describe what a quantum computer is, how it can be used to solve problems faster than “classical” computers, and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering. MICHAEL NIELSEN was educated at the University of Queensland, and as a Fulbright Scholar at the University of New Mexico. He worked at Los Alamos National Laboratory, as the Richard Chace Tolman Fellow at Caltech, was Foundation Professor of Quantum Information Science and a Federation Fellow at the University of Queensland, and a Senior Faculty Member at the Perimeter Institute for Theoretical Physics. He left Perimeter Institute to write a book about open science and now lives in Toronto. ISAAC CHUANG is a Professor at the Massachusetts Institute of Technology, jointly appointed in Electrical Engineering & Computer Science, and in Physics.
    [Show full text]
  • Quantifying Bell Nonlocality with the Trace Distance
    PHYSICAL REVIEW A 97, 022111 (2018) Quantifying Bell nonlocality with the trace distance S. G. A. Brito,1 B. Amaral,1,2 and R. Chaves1 1International Institute of Physics, Federal University of Rio Grande do Norte, 59078-970, P. O. Box 1613, Natal, Brazil 2Departamento de Física e Matemática, CAP - Universidade Federal de São João del-Rei, 36.420-000, Ouro Branco, MG, Brazil (Received 15 September 2017; published 21 February 2018) Measurements performed on distant parts of an entangled quantum state can generate correlations incompatible with classical theories respecting the assumption of local causality. This is the phenomenon known as quantum nonlocality that, apart from its fundamental role, can also be put to practical use in applications such as cryptography and distributed computing. Clearly, developing ways of quantifying nonlocality is an important primitive in this scenario. Here, we propose to quantify the nonlocality of a given probability distribution via its trace distance to the set of classical correlations. We show that this measure is a monotone under the free operations of a resource theory and, furthermore, that it can be computed efficiently with a linear program. We put our framework to use in a variety of relevant Bell scenarios also comparing the trace distance to other standard measures in the literature. DOI: 10.1103/PhysRevA.97.022111 I. INTRODUCTION it can stand before becoming local. Interestingly, these two measures can be inversely related as demonstrated by the With the establishment of quantum information science, the fact that in the Clauser-Horne-Shimony-Holt (CHSH) scenario often-called counterintuitive features of quantum mechanics [28], the resistance against detection inefficiency increases as such as entanglement [1] and nonlocality [2] have been we decrease the entanglement of the state [13] (also reducing raised to the status of a physical resource that can be used the violation the of CHSH inequality).
    [Show full text]
  • Arxiv:2102.13630V1 [Quant-Ph] 26 Feb 2021
    Randomness Amplification under Simulated PT -symmetric Evolution Leela Ganesh Chandra Lakkaraju1, Shiladitya Mal1,2, Aditi Sen(De)1 1 Harish-Chandra Research Institute and HBNI, Chhatnag Road, Jhunsi, Allahabad - 211019, India 2 Department of Physics and Center for Quantum Frontiers of Research and Technology (QFort), National Cheng Kung University, Tainan 701, Taiwan PT -symmetric quantum theory does not require the Hermiticity property of observables and hence allows a rich class of dynamics. Based on PT -symmetric quantum theory, various counter- intuitive phenomena like faster evolution than that allowed in standard quantum mechanics, single- shot discrimination of nonorthogonal states has been reported invoking Gedanken experiments. By exploiting open-system experimental set-up as well as by computing the probability of distinguish- ing two states, we prove here that if a source produces an entangled state shared between two parties, Alice and Bob, situated in a far-apart location, the information about the operations performed by Alice whose subsystem evolves according to PT -symmetric Hamiltonian can be gathered by Bob, if the density matrix is in complex Hilbert space. Employing quantum simulation of PT -symmetric evolution, feasible with currently available technologies, we also propose a scheme of sharing quan- tum random bit-string between two parties when one of them has access to a source generating pseudo-random numbers. We find evidences that the task becomes more efficient with the increase of dimension. I. INTRODUCTION shown to be violated in the Gedanken experimental set-up [27]. Violation of these fundamentally signif- Among the postulates of quantum mechanics, the re- icant no-go theorems have deep consequences in the quirement of the Hermiticity property for the observ- verification of the viability of quantum theory.
    [Show full text]
  • Application of Quantum Pinsker Inequality to Quantum Communications
    ISSN 2186-6570 Application of quantum Pinsker inequality to quantum communications Osamu Hirota Research Center for Quantum Communication, Quantum ICT Research Institute, Tamagawa University 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610, Japan Tamagawa University Quantum ICT Research Institute Bulletin, Vol.9, No.1, 1-7, 2019 ©Tamagawa University Quantum ICT Research Institute 2019 All rights reserved. No part of this publication may be reproduced in any form or by any means electrically, mechanically, by photocopying or otherwise, without prior permission of the copy right owner. Tamagawa University Quantum ICT Research Institute Bulletin 1 Vol.9 No.1 : 1―7(2019) Application of quantum Pinsker inequality to quantum communications Osamu Hirota Research Center for Quantum Communication, Quantum ICT Research Institute, Tamagawa University 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610, Japan E-mail: [email protected] Abstract—Back in the 1960s, based on Wiener’s thought, clearly defines very common signals processed in human Shikao Ikehara (first student of N.Wiener) encouraged the social activities and it is applied to the communication progress of Hisaharu Umegaki’s research from a pure system with the operational meanings for the relevant mathematical aspect in order to further develop the research on mathematical methods of quantum information at Tokyo information processing. Quantum information theory as Institute of Technology. Then, in the 1970s, based on the mathematics can be modeled on it. However, unlike Shan- results accomplished by Umegaki Group, Ikehara instructed non information, quantum entropy lacks versatility regard the author to develop and spread quantum information for operational meaning on information transmission.
    [Show full text]
  • Non-Markovian Dynamics in Open Quantum Systems
    Non-Markovian dynamics in open quantum systems Heinz-Peter Breuer Physikalisches Institut, Universit¨atFreiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany Elsi-Mari Laine QCD Labs, COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 13500, FI-00076 AALTO, Finland Jyrki Piilo Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun yliopisto, Finland Bassano Vacchini Dipartimento di Fisica, Universit`adegli Studi di Milano, Via Celoria 16, I-20133 Milan, Italy INFN, Sezione di Milano, Via Celoria 16, I-20133 Milan, Italy (Dated: May 7, 2015) The dynamical behavior of open quantum systems plays a key role in many applica- tions of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body sys- tems, to applications in condensed matter theory, quantum transport, quantum chem- istry and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum fea- tures. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations and entanglement. Here, recent theoretical results on the rich non-Markovian quantum arXiv:1505.01385v1 [quant-ph] 6 May 2015 dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects.
    [Show full text]
  • The Monge Metric on the Sphere and Geometry of Quantum States
    INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 34 (2001) 6689–6722 PII: S0305-4470(01)18080-7 The Monge metric on the sphere and geometry of quantum states Karol Zyczkowski˙ 1,2 and Wojciech Słomczynski´ 3 1 Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Al. Lotnikow´ 32, 02-668 Warszawa, Poland 2 Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagiellonski,´ ul. Reymonta 4, 30-059 Krakow,´ Poland 3 Instytut Matematyki, Uniwersytet Jagiellonski,´ ul. Reymonta 4, 30-059 Krakow,´ Poland E-mail: [email protected] and [email protected] Received 18 October 2000, in final form 14 June 2001 Published 17 August 2001 Online at stacks.iop.org/JPhysA/34/6689 Abstract Topological and geometrical properties of the set of mixed quantum states in the N-dimensional Hilbert space are analysed. Assuming that the corresponding classical dynamics takes place on the sphere we use the vector SU(2) coherent states and the generalized Husimi distributions to define the Monge distance between two arbitrary density matrices. The Monge metric has a simple semiclassical interpretation and induces a non-trivial geometry. Among all pure states the distance from the maximally mixed state ρ∗, proportional to the identity matrix, admits the largest value for the coherent states, while the delocalized ‘chaotic’ states are close to ρ∗. This contrasts the geometry induced by the standard (trace, Hilbert–Schmidt or Bures) metrics, for which the distance from ρ∗ is the same for all pure states. We discuss possible physical consequences including unitary time evolution and the process of decoherence.
    [Show full text]
  • Arxiv:1004.4110V1 [Quant-Ph]
    Computing the distance between quantum channels: Usefulness of the Fano representation 1,2, 3, Giuliano Benenti ∗ and Giuliano Strini † 1CNISM, CNR-INFM, and Center for Nonlinear and Complex Systems, Universit`adegli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy 2Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano, Italy 3Dipartimento di Fisica, Universit`adegli Studi di Milano, via Celoria 16, 20133 Milano, Italy (Dated: April 26, 2010) The diamond norm measures the distance between two quantum channels. From an operational vewpoint, this norm measures how well we can distinguish between two channels by applying them to input states of arbitrarily large dimensions. In this paper, we show that the diamond norm can be conveniently and in a physically transparent way computed by means of a Monte-Carlo algorithm based on the Fano representation of quantum states and quantum operations. The effectiveness of this algorithm is illustrated for several single-qubit quantum channels. PACS numbers: 03.65.Yz, 03.67.-a I. INTRODUCTION cated semidefinite programming or convex optimization. On the other hand, analytical solutions are limited to special classes of channels [7, 8]. In this paper, we pro- Quantum information processes in a noisy environment pose a simple and easily parallelizable Monte-Carlo al- quantum chan- are conveniently described in terms of gorithm based on the Fano representation of quantum nels , that is, linear, trace preserving, completely positive states and quantum operations. We show that our al- maps on the set of quantum states [1, 2]. The problem gorithm provides reliable results for the case, most sig- of discriminating quantum channels is of great interest.
    [Show full text]
  • Command of Quantum Systems Via Rigidity of CHSH Games
    A classical leash for a quantum system: Command of quantum systems via rigidity of CHSH games Ben W. Reichardt Falk Unger Umesh Vazirani University of Southern California Knight Capital Group UC Berkeley Abstract Can a classical system command a general adversarial quantum system to realize arbitrary quantum dynamics? If so, then we could realize the dream of device-independent quantum cryptography: using untrusted quantum devices to establish a shared random key, with security based on the correctness of quantum mechanics. It would also allow for testing whether a claimed quantum computer is truly quantum. Here we report a technique by which a classical system can certify the joint, entangled state of a bipartite quantum system, as well as command the application of specific operators on each subsystem. This is accomplished by showing a strong converse to Tsirelson's optimality result for the Clauser-Horne-Shimony-Holt (CHSH) game: the only way to win many games is if the bipartite state is close to the tensor product of EPR states, and the measurements are the optimal CHSH measurements on successive qubits. This leads directly to a scheme for device-independent quantum key distribution. Control over the state and operators can also be leveraged to create more elaborate protocols for realizing general quantum circuits, and to establish that QMIP = MIP∗. arXiv:1209.0448v1 [quant-ph] 3 Sep 2012 1 Contents 1 Introduction 3 2 Proof sketches 8 2.1 Rigidity of the CHSH game . .8 2.2 Tensor-product structure for repeated CHSH games . .8 2.2.1 Construction of the ideal strategy S^ .......................9 2.2.2 Ideal strategy S^ is close to S ...........................9 2.3 Verified quantum dynamics .
    [Show full text]
  • Computing the Distance Between Quantum Channels: Usefulness of the Fano Representation Giuliano Benenti, Giuliano Strini
    Computing the distance between quantum channels: usefulness of the Fano representation Giuliano Benenti, Giuliano Strini To cite this version: Giuliano Benenti, Giuliano Strini. Computing the distance between quantum channels: usefulness of the Fano representation. Journal of Physics B: Atomic, Molecular and Optical Physics, IOP Publish- ing, 2010, 43 (21), pp.215508. 10.1088/0953-4075/43/21/215508. hal-00569863 HAL Id: hal-00569863 https://hal.archives-ouvertes.fr/hal-00569863 Submitted on 25 Feb 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Confidential: not for distribution. Submitted to IOP Publishing for peer review 24 June 2010 Computing the distance between quantum channels: Usefulness of the Fano representation Giuliano Benenti1,2,∗ and Giuliano Strini3, † 1CNISM, CNR-INFM, and Center for Nonlinear and Complex Systems, Universit`adegliStudidell’Insubria,viaValleggio11,22100Como,Italy 2Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano, Italy 3Dipartimento di Fisica, Universit`adegliStudidiMilano,viaCeloria16,20133Milano,Italy (Dated: June 24, 2010) The diamond norm measures the distance between two quantum channels. From an operational vewpoint, this norm measures how well we can distinguish between two channels by applying them to input states of arbitrarily large dimensions.
    [Show full text]
  • Lecture Notes Live Here
    Physics 239/139: Quantum information is physical Spring 2018 Lecturer: McGreevy These lecture notes live here. Please email corrections to mcgreevy at physics dot ucsd dot edu. THESE NOTES ARE SUPERSEDED BY THE NOTES HERE Schr¨odinger's cat and Maxwell's demon, together at last. Last updated: 2021/05/09, 15:30:29 1 Contents 0.1 Introductory remarks............................4 0.2 Conventions.................................7 0.3 Lightning quantum mechanics reminder..................8 1 Hilbert space is a myth 11 1.1 Mean field theory is product states.................... 14 1.2 The local density matrix is our friend................... 16 1.3 Complexity and the convenient illusion of Hilbert space......... 19 2 Quantifying information 26 2.1 Relative entropy............................... 33 2.2 Data compression.............................. 37 2.3 Noisy channels............................... 43 2.4 Error-correcting codes........................... 49 3 Information is physical 53 3.1 Cost of erasure............................... 53 3.2 Second Laws of Thermodynamics..................... 59 4 Quantifying quantum information and quantum ignorance 64 4.1 von Neumann entropy........................... 64 4.2 Quantum relative entropy......................... 67 4.3 Purification, part 1............................. 69 4.4 Schumacher compression.......................... 71 4.5 Quantum channels............................. 73 4.6 Channel duality............................... 79 4.7 Purification, part 2............................. 84 4.8 Deep
    [Show full text]
  • Quantum Hypothesis Testing in Many-Body Systems Abstract Contents
    SciPost Phys. Core 4, 019 (2021) Quantum hypothesis testing in many-body systems 1? 1† 2,4‡ 2,3‘ Jan de Boer , Victor Godet , Jani Kastikainen and Esko Keski-Vakkuri ◦ 1 Institute for Theoretical Physics, University of Amsterdam, PO Box 94485, 1090 GL Amsterdam, The Netherlands 2 Department of Physics, P.O.Box 64, FIN-00014 University of Helsinki, Finland 3 Helsinki Institute of Physics, P.O.Box 64, FIN-00014 University of Helsinki, Finland 4 APC, AstroParticule et Cosmologie, Université de Paris, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France ? [email protected],† [email protected], ‡ jani.kastikainen@helsinki.fi, esko.keski-vakkuri@helsinki.fi ◦ Abstract One of the key tasks in physics is to perform measurements in order to determine the state of a system. Often, measurements are aimed at determining the values of physical parameters, but one can also ask simpler questions, such as “is the system in state A or state B?”. In quantum mechanics, the latter type of measurements can be studied and optimized using the framework of quantum hypothesis testing. In many cases one can explicitly find the optimal measurement in the limit where one has simultaneous access to a large number n of identical copies of the system, and estimate the expected error as n becomes large. Interestingly, error estimates turn out to involve various quantum information theoretic quantities such as relative entropy, thereby giving these quantities operational meaning. In this paper we consider the application of quantum hypothesis testing to quantum many-body systems and quantum field theory.
    [Show full text]
  • Lecture Notes
    Lecture Notes edX Quantum Cryptography: Week 3 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Licence. Contents 3.1 When are two quantum states almost the same?3 3.1.1 Trace distance...................................................3 3.1.2 Fidelity.........................................................5 3.2 Measuring uncertainty: the min-entropy6 3.2.1 The min-entropy..................................................6 3.2.2 The conditional min-entropy........................................7 3.3 What it means to be ignorant9 3.4 Uncertainty principles: a bipartite guessing game 11 3.4.1 Analysis: winning probability of the guessing game..................... 13 3.5 Extended uncertainty relation principles: A tripartite guessing game 14 3.5.1 Analysis: winning probability of the tripartite guessing game.............. 16 3.1 When are two quantum states almost the same? 3 We have seen in Week 1 an example of communication between Alice and Bob, where the transmitted message is hidden from any eavesdropper Eve. There, we have seen the importance of using a large key K shared between Alice and Bob, but looks completely random from Eve’s perspective. In the next few lectures, we will concern ourselves with how to establish such a key. In this week, we will first learn about ways to quantify quantum information, which will be crucial in formulating what does it mean to be secure in cryptographic protocols. 3.1 When are two quantum states almost the same? It will be important for us to have some notion of what it means to approximately produce a particular quantum state. 3.1.1 Trace distance One measure of closeness that is of extreme importance in quantum cryptography, and also in the design of quantum circuits is the trace distance.
    [Show full text]