Small Format

Total Page:16

File Type:pdf, Size:1020Kb

Small Format NEWSLETTER OF THE VANCOUVER CENTRE RASC VOLUME 2003 ISSUE 4 JULY/AUGUST 2003 Where Can I Begin...? 1 Where Can I Begin...? by Craig Breckenridge Coming Home 2 First and foremost, I would previous record for attendance President’s Message 3 like to thank the many was 225 delegates. We had over Observing Sites 4 volunteers who made the 2003 250, not including our Upcoming Events 6 General Assembly the huge speakers. We took the Plenary success it was. Our crew of Session to a new level and Selenography for the Lazy 8 almost 50 yellow shirts is to be made it the focal point for the Astronomy Day Gallery 12 commended for the delegates entire Assembly. We gave them Anne B. Underhill 14 could always their first 2003 GA Gallery 15 count of them Dinner Cruise to be and tours of Looking Ahead courteous, three helpful and telescopes in Remember, you are always welcome to attend meetings of responsive. one day, one of Council, held on the first Tues- On behalf of them a five day of every month at 7:30pm all the team metre liquid in the G.S.O. leaders, I mirror. I guess July 8: Dr. Ingrid Stairs, thank you. the easiest way postdoctoral student at UBC, on “Searching for Radio Pul- The weekend seems like a to capture the feeling is to go sars” blur and that might be just day by day. Aug 12: Members’ Night: because it was. We had so many On Thursday, I arrived at Michael Winther on “The Drake events that the attendees could the Walter Gage Convention Equation” not believe it. According to Centre at UBC around 12:00. Rajiv Gupta, our National The first attendees had been Next Issue Deadline President, we may have had here for several days, so I was Material for the July Nova more events at our GA than at not surprised to see them. Some should submitted by Monday, any previous one. We set of the volunteers were also on Sept. 1, 2003. Please send submissions to: several new records that future hand to start setting up our Gordon Farrell GAs are going to really have registration table and getting ([email protected]) to work at in order to beat: the continued on page 6 Coming Home by Marc Verschueren planets discovered so far around years, and will not happen again The last few months here and other stars, all seem to be of the for a few centuries. Mars will not in my reading, much attention was type of our outer planets. Could look all that different in our paid to the history of the very early we find a rocky planet? Could we telescopes from other close universe. There were several new recognize it if we saw one? It may encounters but to know that this is results published such as the first be too early at this moment to do such a special occasion makes it information collected by the MAP this. Planet formation also covers even more of a thrilling satellite, the discovery of the the presence of the Kuiper belt and experience. Let us hope that we polarization of the Cosmic the Oort cloud, the origin of the have a few nights of the good Microwave Background, and new comets. Far from being an expert weather that livened up Levy’s measurements of the density on this, I thought that this was talk. Our little part of the solar distribution of galaxies in the mainly a question of distance— system is not too reliable in that universe. All this is very interesting one was farther out than the other. respect. and essential for the understanding It is clear now that the Kuiper belt We were thinking earlier of where we come from, and tells fits well with the planetary system about the origins of the universe. us something of where we are as a kind of ring. The Oort cloud Now we have returned to our home going. But is also very abstract and is more a chaotic collection of in it, the planets and the comets technical. The interpretation of debris ejected by the big planets. and the asteroids. Our home is the these measurements requires at But both give us the comets, latest stage in this long history, least some understanding of some so dear to David Levy. We had the from the very hot big bang through of the basic theories. Fascinating privilege to listen to him this long, long cooling period, to as it is, it carries us far away from introducing us to his universe us. The long, long cooling period our observations, and observing is during the last General Assembly. that makes the complex structures the heart of our astronomical lives. He always likes to come back to possible that make up our It is observing that makes us the planets and their strange planetary system and the life in it. interested in these abstractions in relatives, the comets. We were The cooling connects us with the the first place. We must first find lucky to listen to him during the past. The cooling of the universe the universe before we can get cruise around Vancouver Harbour made life possible out of the big interested in it. so, while listening to him, we bang. You could think of us as In the last few weeks there could admire at the same time the some kind of a mould growing in was a refreshing change of course. beauty of our own planet during a dark, cold cellar. Our planetary Dr. Gladman brought us back in the majestic sunset. David H. likes world is the frost on the universe. our last meeting to the solar to return from time to time to his I like to think of it as the icing on system. One would think, with a earliest telescope and think about the cake. And this is our home. We little bit of arrogance, that we his earliest observations. He likes should never forget to come back pretty well know everything about to go home from time to time. to it. ! the solar system. Now it seems that And now there is the coming we really do not know how the show put on by Mars. That will outer planets were formed. They bring us very close again to the real must have a different origin than world of our neighbours in the the inner members of the solar universe, the planets. The coming family. I had to think that it is opposition of Mars is not unique interesting to realize that of the but it is the closest in thousands of 2 President’s 2003 Vancouver About RASC Message Centre Officers The Vancouver Centre, RASC Wow, it’s over! “GA2003 - meets at 7:30 PM in the auditorium President of the H.R. MacMillan Space Cen- 100 Years of Royal Recognition” Bill Ronald 604-733-7036 tre at 1100 Chestnut St., Vancou- suddenly arrived and after a very [email protected] ver, on the second Tuesday of every long weekend of frenzied activity, Vice-President month. Guests are always wel- it sailed into the history books of Nicole van den Elzen 604-501-2656 come. In addition, the Centre has the RASC. This General Assembly [email protected] an observing site where star par- raised the bar and it is one which Secretary ties are regularly scheduled. Ron Jerome 604-298-3292 Membership is currently $51.00 will be remembered for a long time [email protected] per year ($26.00 for persons under to come. Craig will tell you the Treasurer 21 years of age) and can be ob- details, but as the President and on Marc Verschueren 604-986-1485 tained by writing to the Treasurer behalf of the Vancouver Centre, I [email protected] at the address below. Annual membership includes the invalu- want to thank all members of the Librarian able Observer’s Handbook, six is- Organizing Committee and the William Fearon 604-939-1895 sues of the RASC Journal, and, of [email protected] many volunteers who made it such course, access to all of the club a great success. National Representatives events and projects. Pomponia Martinez 604-215-8844 For more information regarding Sailed is perhaps a good word [email protected] the Centre and its activities, please for this experience. Craig was our Bob Parry 604-215-8844 contact our P.R. Director. captain who steered us through the [email protected] NOVA, the newsletter of the sometimes rough seas of the GA, Membership Vancouver Centre, RASC, is pub- Dan Collier 604-732-6046 lished on odd numbered months. Pomponia was our navigator who Opinions expressed herein are not stood by the helm with her GA Chair, CARO Committee Bob Parry 604-215-8844 necessarily those of the Vancouver chart to keep us on course, Ron Centre. Director of Telescopes was our purser who kept track of Material on any aspect of as- Phil Morris 604-734-8708 tronomy should be e-mailed to the our passengers and cargo and Public Relations editor, mailed to the address on Norman was our liaison officer Norman Song 604-299-7924 page 5, or uploaded to who made contact with local [email protected] SpaceBase™ at 604-473-9358, 59. dignitaries and arranged for the Speakers correct protocols. The rest of the Barry Shanko 604-271-0615 Advertising [email protected] volunteers were the friendly crew Nova encourages free use of its who always tried to smile and be Merchandising classified ads for members with Doug Montgomery 604-596-7058 items for sale or swap.
Recommended publications
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • Origin of the Near-Earth Asteroid Phaethon and the Geminids Meteor Shower
    University of Central Florida STARS Faculty Bibliography 2010s Faculty Bibliography 1-1-2010 Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower J. de León H. Campins University of Central Florida K. Tsiganis A. Morbidelli J. Licandro Find similar works at: https://stars.library.ucf.edu/facultybib2010 University of Central Florida Libraries http://library.ucf.edu This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for inclusion in Faculty Bibliography 2010s by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation de León, J.; Campins, H.; Tsiganis, K.; Morbidelli, A.; and Licandro, J., "Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower" (2010). Faculty Bibliography 2010s. 92. https://stars.library.ucf.edu/facultybib2010/92 A&A 513, A26 (2010) Astronomy DOI: 10.1051/0004-6361/200913609 & c ESO 2010 Astrophysics Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower J. de León1,H.Campins2,K.Tsiganis3, A. Morbidelli4, and J. Licandro5,6 1 Instituto de Astrofísica de Andalucía-CSIC, Camino Bajo de Huétor 50, 18008 Granada, Spain e-mail: [email protected] 2 University of Central Florida, PO Box 162385, Orlando, FL 32816.2385, USA e-mail: [email protected] 3 Department of Physics, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece 4 Departement Casiopée: Universite de Nice - Sophia Antipolis, Observatoire de la Cˆote d’Azur, CNRS 4, 06304 Nice, France 5 Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, 38205 La Laguna, Spain 6 Department of Astrophysics, University of La Laguna, 38205 La Laguna, Tenerife, Spain Received 5 November 2009 / Accepted 26 January 2010 ABSTRACT Aims.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 38, NUMBER 2, A.D. 2011 APRIL-JUNE 71. LIGHTCURVES OF 10452 ZUEV, (14657) 1998 YU27, AND (15700) 1987 QD Gary A. Vander Haagen Stonegate Observatory, 825 Stonegate Road Ann Arbor, MI 48103 [email protected] (Received: 28 October) Lightcurve observations and analysis revealed the following periods and amplitudes for three asteroids: 10452 Zuev, 9.724 ± 0.002 h, 0.38 ± 0.03 mag; (14657) 1998 YU27, 15.43 ± 0.03 h, 0.21 ± 0.05 mag; and (15700) 1987 QD, 9.71 ± 0.02 h, 0.16 ± 0.05 mag. Photometric data of three asteroids were collected using a 0.43- meter PlaneWave f/6.8 corrected Dall-Kirkham astrograph, a SBIG ST-10XME camera, and V-filter at Stonegate Observatory. The camera was binned 2x2 with a resulting image scale of 0.95 arc- seconds per pixel. Image exposures were 120 seconds at –15C. Candidates for analysis were selected using the MPO2011 Asteroid Viewing Guide and all photometric data were obtained and analyzed using MPO Canopus (Bdw Publishing, 2010). Published asteroid lightcurve data were reviewed in the Asteroid Lightcurve Database (LCDB; Warner et al., 2009). The magnitudes in the plots (Y-axis) are not sky (catalog) values but differentials from the average sky magnitude of the set of comparisons. The value in the Y-axis label, “alpha”, is the solar phase angle at the time of the first set of observations. All data were corrected to this phase angle using G = 0.15, unless otherwise stated.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 35, NUMBER 3, A.D. 2008 JULY-SEPTEMBER 95. ASTEROID LIGHTCURVE ANALYSIS AT SCT/ST-9E, or 0.35m SCT/STL-1001E. Depending on the THE PALMER DIVIDE OBSERVATORY: binning used, the scale for the images ranged from 1.2-2.5 DECEMBER 2007 – MARCH 2008 arcseconds/pixel. Exposure times were 90–240 s. Most observations were made with no filter. On occasion, e.g., when a Brian D. Warner nearly full moon was present, an R filter was used to decrease the Palmer Divide Observatory/Space Science Institute sky background noise. Guiding was used in almost all cases. 17995 Bakers Farm Rd., Colorado Springs, CO 80908 [email protected] All images were measured using MPO Canopus, which employs differential aperture photometry to determine the values used for (Received: 6 March) analysis. Period analysis was also done using MPO Canopus, which incorporates the Fourier analysis algorithm developed by Harris (1989). Lightcurves for 17 asteroids were obtained at the Palmer Divide Observatory from December 2007 to early The results are summarized in the table below, as are individual March 2008: 793 Arizona, 1092 Lilium, 2093 plots. The data and curves are presented without comment except Genichesk, 3086 Kalbaugh, 4859 Fraknoi, 5806 when warranted. Column 3 gives the full range of dates of Archieroy, 6296 Cleveland, 6310 Jankonke, 6384 observations; column 4 gives the number of data points used in the Kervin, (7283) 1989 TX15, 7560 Spudis, (7579) 1990 analysis. Column 5 gives the range of phase angles.
    [Show full text]
  • The Complete the Complete Guide to Guide to Guide to Observing Observing Lunar, Grazing and Lunar, Grazing and Asteroid Occulta
    The Complete Guide to Observing Lunar, Grazing and Asteroid Occultations Published by the International Occultation Timing Association Richard Nugent, Editor Copyright 2007 International Occultation Timing Association, Richard Nugent, Editor. All rights reserved. No part of this publication may be reproduced, distributed or copied in any manner without the written permission from the Editor in Chief. No part of this publication may be reproduced, stored in any retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under the 1976 United States Copyright Act and with the written permission of the Editor and Publisher. Request to the Editor should be sent via email: [email protected]. While the Editor, Authors and Publisher have made their best efforts in preparing the IOTA Occultation Manual, they make no representation or warranties with respect to the accuracy and completeness regard to its contents. The Publisher, Editor and Authors specifically disclaim any implied warranties of merchantability or fitness of the material presented herein for any purpose. The advice and strategies contained herein may not be suitable for your situation and the reader and/or user assumes full responsibility for using and attempting the methods and techniques presented. Neither the publisher nor the authors shall be liable for any loss of profit or any damages, including but not limited to special, incidental, consequential, or other damages and any loss or injury. Persons are advised that occultation observations involve substantial risk and are advised to take the necessary precautions before attempting such observations. Editor in Chief: Richard Nugent Assistant Editor: Lydia Lousteaux Contributors: Trudy E.
    [Show full text]
  • Cumulative Index to Volumes 1-45
    The Minor Planet Bulletin Cumulative Index 1 Table of Contents Tedesco, E. F. “Determination of the Index to Volume 1 (1974) Absolute Magnitude and Phase Index to Volume 1 (1974) ..................... 1 Coefficient of Minor Planet 887 Alinda” Index to Volume 2 (1975) ..................... 1 Chapman, C. R. “The Impossibility of 25-27. Index to Volume 3 (1976) ..................... 1 Observing Asteroid Surfaces” 17. Index to Volume 4 (1977) ..................... 2 Tedesco, E. F. “On the Brightnesses of Index to Volume 5 (1978) ..................... 2 Dunham, D. W. (Letter regarding 1 Ceres Asteroids” 3-9. Index to Volume 6 (1979) ..................... 3 occultation) 35. Index to Volume 7 (1980) ..................... 3 Wallentine, D. and Porter, A. Index to Volume 8 (1981) ..................... 3 Hodgson, R. G. “Useful Work on Minor “Opportunities for Visual Photometry of Index to Volume 9 (1982) ..................... 4 Planets” 1-4. Selected Minor Planets, April - June Index to Volume 10 (1983) ................... 4 1975” 31-33. Index to Volume 11 (1984) ................... 4 Hodgson, R. G. “Implications of Recent Index to Volume 12 (1985) ................... 4 Diameter and Mass Determinations of Welch, D., Binzel, R., and Patterson, J. Comprehensive Index to Volumes 1-12 5 Ceres” 24-28. “The Rotation Period of 18 Melpomene” Index to Volume 13 (1986) ................... 5 20-21. Hodgson, R. G. “Minor Planet Work for Index to Volume 14 (1987) ................... 5 Smaller Observatories” 30-35. Index to Volume 15 (1988) ................... 6 Index to Volume 3 (1976) Index to Volume 16 (1989) ................... 6 Hodgson, R. G. “Observations of 887 Index to Volume 17 (1990) ................... 6 Alinda” 36-37. Chapman, C. R. “Close Approach Index to Volume 18 (1991) ..................
    [Show full text]
  • Ocmttmbn@Newstetter
    Ocmttmbn@Newstetter Volume IV, Number 10 December, 1988 ISSN 0737-6766 Occultation Newsletter is published by the International Occul.tation Timing Association. Editor and compos- itor: H. F. DaBo11; 6N106 White Oak Lane; St. Charles, IL 60175; U.S.A. Please send editorial matters, new and renewal memberships and subscriptions, back issue requests, address changes, graze prediction requests, reimbursement requests, special requests, and other IOTA business, but not observation reports, to the above. FROM THE PUBLISHER IOTA NEWS For subscription purposes, this is the fourth and David W. Dunham final issue of 1988. The 1988 annual meeting of IOTA was held at the Lu- If you wish, you may use your VISA or KasterCard for payments to nar and Planetary Institute on November 12th, as IOTA; include account number, expiration date, planned and as announced on p. 215 of the last is- and signature, or phone order to 312,584-1162; ~VLSL ~ \—" if no answer, try 906,477-6957. sue. The executive secretary's report of the meet- ing is given on p. 248. IOTA membership dues, including o.n. and any supplements for U.S.A., Canada, and Mexico $17.00 for all others to cover higher postal rates 22.00 Dues Increase. The main business item was discus- sion of another dues increase, made necessary by the o.n. subscriptioR (I year = 4 issues) increase in size of o.n. issues and postal rates by surface mail for U.S.A., Canada, and Mexic02 14.00 during the past year. When each of the last four for all others 14.00 issues was paid for, the secretary-treasurer had to by air (AO) mai13 give IOTA a loan to prevent a negative bank balance, fOr area "A'n 16.00 for area "g"5 18.00 as documented in his report presented to the meet- for all other countries 20.00 ing.
    [Show full text]
  • Combining Asteroid Models Derived by Lightcurve Inversion With
    Combining asteroid models derived by lightcurve inversion with asteroidal occultation silhouettes Josef Durechˇ a,∗, Mikko Kaasalainenb, David Heraldc, David Dunhamd, Brad Timersone, Josef Hanuˇsa, Eric Frappaf, John Talbotg, Tsutomu Hayamizuh, Brian D. Warneri, Frederick Pilcherj, Adri´an Gal´adk,l aAstronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holeˇsoviˇck´ach 2, CZ-18000 Prague, Czech Republic bDepartment of Mathematics, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland c3 Lupin Pl, Murrumbateman, NSW, Australia dInternational Occultation Timing Association (IOTA) and KinetX, Inc., 7913 Kara Ct., Greenbelt, MD 20770, USA eInternational Occultation Timing Association (IOTA), 623 Bell Rd., Newark, NY, USA f1 bis cours Jovin Bouchard 42000 Saint-Etienne, France gOccultation Section, Royal Astronomical Society of New Zealand, P.O. Box 3181, Wellington, New Zealand hJapan Occultation Information Network (JOIN), Sendai Space Hall, 2133-6 Nagatoshi, Kagoshima pref, Japan iPalmer Divide Observatory, 17955 Bakers Farm Rd., Colorado Springs, CO 80908, USA j4438 Organ Mesa Loop, Las Cruces, NM 88011, USA kModra Observatory, FMFI Comenius University, 842 48 Bratislava, Slovakia lOndˇrejov Observatory, AV CR,ˇ 251 65 Ondˇrejov, Czech Republic Abstract Asteroid sizes can be directly measured by observing occultations of stars by asteroids. When there are enough observations across the path of the shadow, the asteroid’s projected silhouette can be reconstructed. Asteroid shape models derived from photometry by the lightcurve inversion method enable us to predict the orientation of an asteroid for the time of occultation. By scaling the shape model to fit the occultation chords, we can determine the asteroid size with a relative accuracy of typically ∼ 10%.
    [Show full text]
  • Origin of the Near-Earth Asteroid Phaethon and the Geminids Meteor Shower
    A&A 513, A26 (2010) Astronomy DOI: 10.1051/0004-6361/200913609 & c ESO 2010 Astrophysics Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower J. de León1,H.Campins2,K.Tsiganis3, A. Morbidelli4, and J. Licandro5,6 1 Instituto de Astrofísica de Andalucía-CSIC, Camino Bajo de Huétor 50, 18008 Granada, Spain e-mail: [email protected] 2 University of Central Florida, PO Box 162385, Orlando, FL 32816.2385, USA e-mail: [email protected] 3 Department of Physics, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece 4 Departement Casiopée: Universite de Nice - Sophia Antipolis, Observatoire de la Cˆote d’Azur, CNRS 4, 06304 Nice, France 5 Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, 38205 La Laguna, Spain 6 Department of Astrophysics, University of La Laguna, 38205 La Laguna, Tenerife, Spain Received 5 November 2009 / Accepted 26 January 2010 ABSTRACT Aims. In this paper we establish a compositional and dynamical connection between two B-type objects: main belt asteroid (2) Pallas and near-Earth asteroid (3200) Phaethon. The final purpose is to help understand the origin of this very interesting object. Methods. We first compare visible and near-infrared spectra of asteroids Phaethon and Pallas. We then compare the reflectance spectra of Phaethon with all the available visible spectra of B-type asteroids belonging to the Pallas family. One last spectral comparison is then performed to search for any correspondence between Phaethon and any B-type asteroid in the main belt. Numerical simulations are also carried out to explore the dynamical connection between the orbital neighborhoods of Pallas and Phaethon.
    [Show full text]
  • Planetary Science Institute
    (NASA-CR-157630) PLA14ETAR ASTRONOY N79-13958 PROGRAM Final Report, 26 Oct. 1977 - 25 Oct. 1978 (Planetary Science Inst., Tucson, Ariz.) 146 p HC A0/NF A01 CSCI 03A unclas (33/89 15311 PLANETARY SCIENCE INSTITUTE 'CP -NASW-3134 PLANETARY ASTRONOMY PROGRAM ,FINAL REPORT OCTOBER'1978 Submitted by The-Planetary Science Institute 2030 East Speedway, Suite 201 Tucson, Arizona 85719 -I- TASK 1: OBSERVATIONS AND ANALYSES OF ASTEROIDS, TROJANS AND COMETARY NUCLEI Task 1.1: Spectrophotometric Observations and Analysis of Asteroids and Cometary Nuclei Principal Investigator: Clark R. Chapman Co-Investigator: William K. Hartmann Spectrophotometric Observations of Asteroids. Successful observations were obtained in one autumn observing run and in one spring observing run. They have been described in earlier quarterly reports. The reduced data are discussed below. Spectrophotometry of the Nucleus of Comet P/Arend-Rigaux. Successful observations were obtained during the autumn 1977 observing run, as described in an earlier quarterly report. Unfortunately, visual inspection revealed that the comet was active and not simply a stellar nucleus as had been hoped. The data have now been reduced in preliminary form and the resulting spectral reflectance curve is exhibited as Figure 1. There is evidence of emission in some appropriate bands; the reflected sunlight dominates the spectrum, but it has not yet been interpreted. Interpretive Analyses of Asteroid Spectrophotometry Figures 2 and 3 represent the first attempt at synthesizing 1.4 1.3 1.2 1.0 1~ - 0.8 -. 1-4 0°7 H 0.6 0.5 R­ 0.4 0.3­ 0.2­ Comet Arend-Rigaux 2 Runs 0.1 11/01/78 Total Wt 2.0 Std Star: 10 Tau 0 ~~~.......0 " ..........
    [Show full text]
  • Asteroids a Selection of Articles from Wikipedia
    Asteroids A selection of articles from Wikipedia PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sun, 16 Jun 2013 00:34:45 UTC Contents Articles Asteroids overview 1 Asteroid 1 Spectral Types 16 Asteroid spectral types 16 Asteroids in Fiction 19 Asteroids in fiction 19 Ceres in fiction 32 Lists 35 List of minor planets named after people 35 List of minor planets named after rivers 64 List of minor planets named after places 65 References Article Sources and Contributors 79 Image Sources, Licenses and Contributors 81 Article Licenses License 83 1 Asteroids overview Asteroid Asteroids are minor planets (small Solar System bodies and dwarf planets) that are not comets, especially those of the inner Solar System. They have also been called planetoids, especially the larger ones. These terms have historically been applied to any astronomical object orbiting the Sun that did not show the disk of a planet and was not observed to have the characteristics of an active comet, but as small objects in the outer Solar System were discovered, their volatile-based surfaces were found to more closely resemble comets, and so were often distinguished from traditional asteroids.[1] Thus the term asteroid has come increasingly to refer Animation of asteroid 433 Eros in rotation. specifically to the small bodies of the inner Solar System out to the orbit of Jupiter. They are grouped with the outer bodies—centaurs, Neptune trojans, and trans-Neptunian objects—as minor planets, which is the term preferred in astronomical circles.[2] In this article the term "asteroid" refers to the minor planets of the inner Solar System.
    [Show full text]
  • The Minor Planet Bulletin (Warner Et Al., 2008)
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 38, NUMBER 1, A.D. 2011 JANUARY-MARCH 1. 878 MILDRED REVEALED Robert D. Stephens Goat Mountain Astronomical Research Station (GMARS) 11355 Mount Johnson Court, Rancho Cucamonga, CA 91737 [email protected] Linda M. French Illinois Wesleyan University Bloomington, IL 61702 USA (Received: 13 October ) Observations of the main-belt asteroid 878 Mildred made at Cerro Tololo Interamerican Observatory in August 2010 found a synodic period of 2.660 ± 0.005 h and an amplitude of 0.23 ± 0.03 mag. In August, French and Stephens were using the 0.9-m telescope at Cerro Tololo Inter-American Observatory in Chile to study Trojan Asteroid 878 Mildred has a famous history as a small solar system asteroids. While observing a Trojan, we blinked several images body. It was originally discovered on September 6, 1916, by Seth and noticed a moving object tracking the target. A check of the Nicholson (1916) and Harlow Shapley using the 1.5 m Hale field showed the second asteroid was 878 Mildred. Telescope at Mount Wilson Observatory, the world’s largest telescope at the time. Thinking the orbit was unusual; Nicholson Realizing the opportunity, we reduced the images the following and Shapley continued to observe the asteroid until October 18. It day and derived a preliminary lightcurve suggesting a short was then lost for 75 years. rotational period. Mildred was still in the field of the targeted Trojan the next night so more data was obtained.
    [Show full text]