Self-Shielding Copper Substrate Neutron Supermirror Guides

Total Page:16

File Type:pdf, Size:1020Kb

Self-Shielding Copper Substrate Neutron Supermirror Guides Self-Shielding Copper Substrate Neutron Supermirror Guides P. M. Bentley1,5, R. Hall-Wilton1,3,4, C. P. Cooper-Jensen1, N. Cherkashyna1, K. Kanaki1, C. Schanzer2, M. Schneider2, P. B¨oni2 E-mail: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] 1 European Spallation Source ERIC, Box 176, 221 00 Lund, Sweden 2 Swiss Neutronics AG Neutron Optical Components & Instruments, Br¨uhlstrasse 28, CH-5313 Klingnau, Switzerland 3 Universit`adegli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy 4 University of Glasgow, Glasgow, United Kingdom 5 Anderson Butovich Ltd. United Kingdom Abstract. The invention of self-shielding copper substrate neutron guides is described, along with the rationale behind the development, and the realisation of commercial supply. The relative advantages with respect to existing technologies are quantified. These include ease of manufacture, long lifetime, increased thermal conductivity, and enhanced fast neutron attenuation in the keV-MeV energy range. Whilst the activation of copper is initially higher than for other material options, for the full energy spectrum, many of the isotopes are short-lived, so that for realistic maintenance access times the radiation dose to workers is expected to be lower than steel and in the lowest zoning category for radiation safety outside the spallation target monolith. There is no impact on neutron reflectivity performance relative to established alternatives, and the manufacturing cost is similar to other polished metal arXiv:2104.02453v2 [physics.ins-det] 16 Apr 2021 substrates. Keywords: Neutron optics, metal substrate, copper substrate, supermirror, neutron shielding 1. Introduction With the imminent delivery of the first copper substrate neutron guides to the European Spallation Source (ESS), currently under construction in Sweden, it is timely to briefly Self-Shielding Copper Substrate Neutron Supermirror Guides 2 report on the rationale for, and development of, this new technology, and compare it to established alternatives. Neutron guides are solid tubes, usually of rectangular cross section. The optimisation of the geometry of these devices is a very broad topic and out of the scope of this paper. Here it is sufficient to note that instrument angular resolution, transport efficiency and background rejection often — but not always — tend to favour a channel width in the region of 4-6 cm, and due to mechanical stability requirements the substrates themselves are typically around 1 cm thick. On the internal surfaces, neutron mirrors are deposited to maximise the transmission of neutrons to the experimental stations. This allows the placement of the instrument remotely from the neutron source, some 10s or even 100s of metres away, reducing instrumental background and facilitating safe physical access designs. Historically, single, smooth metallic layers were used as neutron mirrors, but modern neutron guides use alternating Ni-Ti layers known as “supermirrors” [1]. In a typical neutron source, one has a means of neutron production (fission, fusion, or spallation) and a volume of temperature-controlled, strongly-scattering material known as a moderator. The optical interface between the neutron guides and the region within a few metres of the moderator is often known as the “beam extraction” area, and specific technology exists to improve the instrument performance. The neutron optics work in the beam extraction area carries greater technical challenges due to: • The energy produced along with neutrons creating a large heat load • A high radiation environment • A need for good reflective properties at large angles near the source High albedo, rad-hard materials are used around the moderator (e.g. beryllium, with some recent interest in nanodiamond, particularly for cold wavelengths [2]) where the grazing angles are large. At distances typically 1-2 metres from the moderator, the grazing angles are below the critical angles on supermirrors, but that still leaves heat- and radiation-loads that must be carefully managed. For the neutron guides entering the beam extraction area, polished metal [3] and glass-ceramic [4] optics have existed for some time and offer a robust, long- lifetime solution for high radiation environments. Indeed, irradiation tests indicate that supermirrors on metallic substrates do not show any degradation to a cumulative neutron fluence of 9 × 1019 n cm−2 [5]. This is comparable to sodium float glass (∼ 1 × 1020 n cm−2), and orders of magnitude higher than boron-containing glass substrates (∼ 1 × 1018 n cm−2 for some borkron variants and ∼ 1 × 1016 n cm−2 for borofloat). These fluences are integrated over the entire source spectrum, based on studies at the reactor source of the Institut Laue-Langevin (ILL, Grenoble, France) and the spallation source of the Paul Scherrer Institut (PSI, Villigen, Switzerland). They are assembled from shapes very similar to the glass guide variants, but instead of bonding by adhesives they are bolted together. In addition to improved lifetime, they also have the potential to enhance the fast neutron and gamma ray shielding Self-Shielding Copper Substrate Neutron Supermirror Guides 3 properties of the guide system, by increasing the density of the material immediately outside the supermirror channel. With the preceding technology, there is always a gap of several centimetres between the supermirror surface and the bulk shielding material, to allow for glass substrates, adjustment, and vacuum housings. The new idea here is to bring dense shielding material into direct contact with the supermirror. This can correspondingly reduce the total volume of shielding needed downstream through geometrical considerations, by placing the most effective shielding in the key locations where it will have the greatest impact. It is important to note that the shielding effect is in the longitudinal direction by virtue of the long line integral for low divergence beams, and thus the advantages are in the far-field sense. The transverse shielding effect is minimal, since the guide substrates themselves are only ∼1 cm thick and perhaps 2 metres of heavy shielding is required in the beam extraction area; indeed locally there should be an enhanced gamma production from neutron capture. Further benefits of metal substrates over glass are improved thermal conductivity, structural properties and robustness, which could allow the guides to be placed close to the neutron source without thermal damage occurring. Of particular interest is using these for guide inserts for in-monolith beam extraction from the target-moderator region at spallation sources. However, regions further out where fast neutrons are present may benefit from strategically placed effective shielding as well. Inspiration for the use of copper as a shielding material for fast neutrons at spallation sources came in part from experience of its use at other accelerator facilities and in high energy physics experiments. The possibility for its application here is motivated by the same advantages: its shielding effect for fast neutrons, thermal conductivity and structural properties. A couple of examples are given below: In the Large Hadron Collider [6] the area with the most intense radiation environment is around the experimental interaction points where the two beams collide. To protect the delicate superconducting accelerator equipment from such intense radiation and thermal loads, there are two key protective elements: the TAS and the TAN. The Tertiary Absorber of Secondaries (TAS) is a 1.8m long block of copper weighing around 2 tonnes and located at ∼20m from the interaction point, which blocks high energy particles from exiting the experimental cavern into the LHC tunnel; and the Tertiary Absorber of Neutrals (TAN) [7], which is a 3.5m long copper block, designed to absorb neutral particles (neutrons and pions) at about 140m from the interaction point, which can have energies up to the beam energy (7 TeV). The hadronic calorimeter of the CMS instrument is made from brass [8], whose stopping power for high energy particles compares favourably with the steel calorimeter on ATLAS [9]. Unpublished concepts from JPARC were also influential, where Cu had been used in the collimation of instruments for the same reasons [10]. This manuscript looks at using copper for the multifunctional purpose as substrate to the neutron supermirror guide, thermal transport and radiation shielding. Cost prevents deploying copper shielding liberally, but in some targeted areas it would be Self-Shielding Copper Substrate Neutron Supermirror Guides 4 Figure 1. Comparison of different spallation target shielding concepts at various leading facilities around the world, both operational and under construction. The ESS has two concepts, a lower part and an upper part. A design change reduced the steel shielding for the lower parts physically below the neutron beam port level to save money. ideal. 2. Shielding at Spallation Sources The initial motivation for the copper guides, and copper shielding in general, was to reduce fast neutron background signals on the instruments of the ESS, based on investigations of challenges faced by similar, operational facilities [11]. Shielding is a significant fraction of a neutron facilities cost, both in terms of shielding the source and shielding the instruments. Indeed, shielding and
Recommended publications
  • A Search for Free Oscillations at the ESS N
    A search for free n → n oscillations at t he ESS π π ? n n π π π D. Milstead Stockholm University Why baryon number violation ? Why baryon number violation ? • Baryon number is not a ”sacred” quantum number – Approximate conservation of BN in SM • ”Accidental” global symmetry at perturbative level – Depends on specific matter content of the SM • BNV in SM by non-perturbative processes –Sphalerons – B-L conserved in SM, not B,L separately. – Generic BNV in BSM theories, eg, SUSY. – BNV a Sakharov condition for baryogenesis Why n→ n ? n→ n • Theory • Baryogenesis via BNV (Sakharov condition) • SM extensions from TeV mass scales scale-upwards • Complementarity with open questions in neutrino physics • Experiment • One of the few means of looking for pure BNV • Stringent limit on stability of matter Neutron oscillations – models • Back-of-envelope dimensional reasoning: cΛ6 6 q operator for ∆B =2, ∆ L = 0⇒ δ m= QCD ⇒ M ∼ 1000 TeV n→ n M 5 • R-parity violating supersymmetry • Unification models: M ∼ 1015 GeV • Extra dimensions models • Post-sp haleron baryogenesis • etc, etc: []arXiv:1410.1100 High precision n→ n search ⇒ Scan over wide range of phase space for generic BNV + ⇒ model constai nts. Extend sensitivity in RPV-SUSY ATLAS multijet ATLAS CMS dijet CMS ESS Arxiv:1602.04821 (hep-ph) Displaced jets RPV-SUSY – TeV-scale sensitivity Neutrino physics ⇔ neutron oscillations Neutrinoless 2β -decay n→ n Eg seesaw mechanism for light ν Eg Unification models ∆L =2, ∆ B = 0, ∆L =0, ∆ B = 2, 2 ∆()B − L = 2 ∆()B − L = Neutrinoless 2β -decay ⇔ nn → linked under BL - viol ation.
    [Show full text]
  • ICANS XXI Dawn of High Power Neutron Sources and Science Applications
    Book of Abstracts ICANS XXI Dawn of high power neutron sources and science applications 29 Sep - 3 Oct 2014, JAPAN Ibaraki Prefectural Culture Center Update : 12 Oct. 2014 Best photography in 7th Oarai Town Photo Contest. WELCOME TO ICANS XXI ICANS (International Collaboration on Advanced Neutron Sources) is a network for scientists who are involved in developing pulsed neutron sources and accelerator based spallation neutron sources. Since 1st ICANS meetings was held in 1977 at Argonne National Laboratory in the day of dawn of spallation neutron technique, ICANS has been continuously held already 20 times somewhere in the world. Now we are extremely happy to announce that the ICANS, the 21st meeting, will be held at Mito hosted by J-PARC this autumn. We have a large number of topics to be discussed, there are twelve topics, such as futuristic idea of neutron source, rapid progress in facilities, integration issues in target-moderator-development, etc. The details can be found in the agenda. The meeting has a two layered structure, one is plenary session and another is workshop. Two of them are complementary and tightly cooperate each other. In the meeting we would like to enhance "workshop style", which is an original and traditional way of ICANS. Actually 2/3 of topics will be discussed in the workshop sessions. It also will be essentially organized/ lead by the workshop chairs. Plenary session shows overall issues in a relevant workshop, whose details should be talked/discussed in the workshop. The venue for the meeting is Mito city, where the 2nd Shogun Family lived for a long period of time during Edo era from 17th to 19th century, when the Tokugawa shogunate ruled the country.
    [Show full text]
  • Neutron Scattering Facilities in Europe Present Status and Future Perspectives
    2 ESFRI Physical Sciences and Engineering Strategy Working Group Neutron Landscape Group Neutron scattering facilities in Europe Present status and future perspectives ESFRI scrIPTa Vol. 1 ESFRI Scripta Volume I Neutron scattering facilities in Europe Present status and future perspectives ESFRI Physical Sciences and Engineering Strategy Working Group Neutron Landscape Group i ESFRI Scripta Volume I Neutron scattering facilities in Europe - Present status and future perspectives Author: ESFRI Physical Sciences and Engineering Strategy Working Group - Neutron Landscape Group Scientific editors: Colin Carlile and Caterina Petrillo Foreword Technical editors: Marina Carpineti and Maddalena Donzelli ESFRI Scripta series will publish documents born out of special studies Cover image: Diffraction pattern from the sugar-binding protein Gal3c with mandated by ESFRI to high level expert groups, when of general interest. lactose bound collected using LADI-III at ILL. Picture credits should be given This first volume reproduces the concluding report of an ad-hoc group to D. Logan (Lund University) and M. Blakeley (ILL) mandated in 2014 by the Physical Science and Engineering Strategy Design: Promoscience srl Work Group (PSE SWG) of ESFRI, to develop a thorough analysis of the European Landscape of Research Infrastructures devoted to Neutron Developed on behalf of the ESFRI - Physical Sciences and Engineering Strategy Scattering, and its evolution in the next decades. ESFRI felt the urgency Working Group by the StR-ESFRI project and with the support of the ESFRI of such analysis, since many reactor-based neutron sources will be closed Secretariat down in the next years due to national decisions, while the European The StR-ESFRI project has received funding from the European Union’s Spallation Source (ESS) in Lund will be fully operative only in the mid Horizon 2020 research and innovation programme under grant agreement or late 2020s.
    [Show full text]
  • PGNAA Neutron Source Moderation Setup Optimization
    Submitted to ‘Chinese Physics C PGNAA neutron source moderation setup optimization Zhang Jinzhao1(张金钊)Tuo Xianguo1(庹先国) (1.Chengdu University of Technology Applied Nuclear Techniques in Geoscience Key Laboratory of Sichuan Province,Chengdu 610059,China) Abstract: Monte Carlo simulations were carried out to design a prompt γ-ray neutron activation analysis (PGNAA) thermal neutron output setup using MCNP5 computer code. In these simulations the moderator materials, reflective materials and structure of the PGNAA 252Cf neutrons of thermal neutron output setup were optimized. Results of the calcuations revealed that the thin layer paraffin and the thick layer of heavy water moderated effect is best for 252Cf neutrons spectrum. The new design compared with the conventional neutron source design, the thermal neutron flux and rate were increased by 3.02 times and 3.27 times. Results indicate that the use of this design should increase the neutron flux of prompt gamma-ray neutron activation analysis significantly. Key word: PGNAA; neutron source; thermal neutron; moderation; reflection 1. Introduction study, Monte Carlo calculation was carried out for the Prompt gamma ray neutron activation analysis design of a 252Cf neutron source moderation setup for the (PGNAA) is a rapid, nondestructive, powerful analysis cement samples[7]. The model of Monte Carlo multielemental analysis technique, large samples of some simulation was verified by experiment[8, 9].We improve minor, trace light elements and is used in industrial the thermal neutron source yield rate of 252Cf neutron by control[1-5]. In a PGNAA analysis, the sample nuclear the PGNAA neutron source structure to the design. The composition is determined from prompt gamma rays calculation results for the new design were compared which produced through neutron inelastic scattering and with the previous, example: themal neutron flux rate, fast thermal neutron capture.
    [Show full text]
  • The HIBEAM Experiment for the European Spallation Source
    The HIBEAM Experiment for the European Spallation Source n ? n D. Milstead Stockholm University Outline 1. The aims of the experiment 2. The physics case 3. The proposed program at the ESS 4. Status HIBEAM High Intensity Baryon Extraction and Measurement Search for • 푛 → 푛ത • 푛 → 푛′ (mirror neutrons) Also measurements of weak nucleon-nucleon interactions. Baryon and lepton number violation • BN,LN ”accidental” SM symmetries at perturbative level – BNV, LNV in SM non-perturbatively (eg instantons) – B-L is conserved, not B, L separately. • BNV, LNV needed for baryogenesis and leptogenesis • BNV,LNV generic features of SM extensions (eg SUSY) nn Dimensional reasoning: c6 6q operator for B 2, L 0 m QCD M 1000 TeV nn M 5 R-parity violating supersymmetry Unification theories: M 1015 GeV Extra dimensions models Post-sphaleron baryogenesis etc, etc: arXiv:1410.1100 High precision n n search Scan over wide range of phase space for generic BNV + model constaints. RPV-SUSY Super-K ILL LHC, flavour Constraints vanish for >> TeV masses nnbar@ESS: extends mass range by up to ~400 TeV cf Super-K : pushes into the PeV scale Complementary B,L-violation observables BL 1, BL 2, 0, BL 0, 2, BL 0 BL 2 BL 2 Symbiosis n n , NN decay. Nucleon decay Stable proton. 0 Few pure BNV searches Neutron oscillations – an experimentalist’s view Hypothesis: baryon number is weakly violated. How do we look for BNV? Single nucleon decay searches, eg, pe 0 ? L-violation, another (likely weakly) violated quantity. Decays without leptons, eg, p , impossible due to angular momentum conservation.
    [Show full text]
  • Instrumental Aspects
    EPJ Web of Conferences 155, 00002 (2017) DOI: 10.1051/epjconf/201715500002 JDN 22 Instrumental aspects Navid Qureshi Institut Laue Langevin, 38000 Grenoble, France Abstract. Every neutron scattering experiment requires the choice of a suited neutron diffractometer (or spectrometer in the case of inelastic scattering) with its optimal configuration in order to accomplish the experimental tasks in the most successful way. Most generally, the compromise between the incident neutron flux and the instrumental resolution has to be considered, which is depending on a number of optical devices which are positioned in the neutron beam path. In this chapter the basic instrumental principles of neutron diffraction will be explained. Examples of different types of experiments and their respective expectable results will be shown. Furthermore, the production and use of polarized neutrons will be stressed. 1. Introduction A successful neutron scattering experiment requires a thorough plan of which instrument to use and how to set up its configuration in order to obtain the best possible results. Optimally, the decision of the set-up is taken beforehand, but in many cases the instrument parameters are modified on-the-fly after analyzing the first results. Due to the different experimental tasks – reaching from magnetic or nuclear structure investigation to the mapping of phase diagrams – and the different sample dimensions (both the crystal size and the lattice parameters), which can be investigated at one and the same instrument, it becomes obvious that the versatility of some instruments has to be adjusted to satisfy the experimental tasks. Obviously, the sample state (powder, single crystal, liquid, etc.) limits the choice of instruments, however, you can find powder diffractometers which differ from each other concerning the used neutron wavelength and particular devices in the beam path in order to maximize the efficiency for a type of experiment.
    [Show full text]
  • Sonie Applications of Fast Neutron Activation Analysis of Oxygen
    S E03000182 CTH-RF- 16-5 Sonie Applications of Fast Neutron Activation Analysis of Oxygen Farshid Owrang )52 Akadenmisk uppsats roir avliiggande~ av ilosofie ficentiatexamen i Reaktorf'ysik vid Chalmer's tekniska hiigskola Examinator: Prof. Imre PiAst Handledare: Dr. Anders Nordlund Granskare: Bitr. prof. G~iran Nyrnan Department of Reactor Physics Chalmers University of Technology G6teborg 2003 ISSN 0281-9775 SOME APPLICATIONS OF FAST NEUTRON ACTIVATION OF OXYGE~'N F~arshid Owrang Chalmers University of Technology Departmlent of Reactor Physics SEP-1-412 96 G~iteborg ABSTRACT In this thesis we focus on applications of neutron activation of oxygen for several purposes: A) measuring the water level in a laboratory tank, B) measuring the water flow in a pipe system set-up, C) analysing the oxygen in combustion products formed in a modern gasoline S engine, and D) measuring on-line the amount of oxygen in bulk liquids. A) Water level measurements. The purpose of this work was to perform radiation based water level measurements, aimed at nuclear reactor vessels, on a laboratory scale. A laboratory water tank was irradiated by fast neutrons from a neutron enerator. The water was activated at different water levels and the water level was decreased. The produced gamma radiation was measured using two detectors at different heights. The results showed that the method is suitable for measurement of water level and that a relatively small experimental set-up can be used for developing methods for water level measurements in real boiling water reactors based on activated oxygen in the water. B) Water flows in pipe.
    [Show full text]
  • Neutron Capture Cross Sections of Cadmium Isotopes
    Neutron Capture Cross Sections of Cadmium Isotopes By Allison Gicking A thesis submitted to Oregon State University In partial fulfillment of the requirements for the degree of Bachelor of Science Presented June 8, 2011 Commencement June 17, 2012 Abstract The neutron capture cross sections of 106Cd, 108Cd, 110Cd, 112Cd, 114Cd and 116Cd were determined in the present project. Four different OSU TRIGA reactor facilities were used to produce redundancy in the results and to measure the thermal cross section and resonance integral separately. When the present values were compared with previously measured values, the differences were mostly due to the kind of detector used or whether or not the samples were natural cadmium. Some of the isotopes did not have any previously measured values, and in that case, new information about the cross sections of those cadmium isotopes has been provided. Table of Contents I. Introduction………………………………………………………………….…….…1 II. Theory………………………………………………………………………...…...…3 1. Neutron Capture…………………………………………………….….……3 2. Resonance Integral vs. Effective Thermal Cross Section…………...………5 3. Derivation of the Activity Equations…………………………………....…..8 III. Methods………………………………………………………….................…...…...12 1. Irradiation of the Samples………………………………………….….....…12 2. Sample Preparation and Parameters………………..………...………..……16 3. Efficiency Calibration of Detectors…………………………..………....…..18 4. Data Analysis…………………………………...…….………………...…..19 5. Absorption by 113Cd……………………………………...……...….………20 IV. Results………………………………………………….……………..……….…….22
    [Show full text]
  • Determination of Uranium and Thorium by Neutron Activation Analysis Applied to Fossil Samples Dating
    2011 International Nuclear Atlantic Conference - INAC 2011 Belo Horizonte,MG, Brazil, October 24-28, 2011 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-04-5 DETERMINATION OF URANIUM AND THORIUM BY NEUTRON ACTIVATION ANALYSIS APPLIED TO FOSSIL SAMPLES DATING Regina B. Ticianelli 1, Ana Maria Graciano Figueiredo 1, Guilherme S. Zahn 1, 2,3 2 Angela Kinoshita , Oswaldo Baffa 1 Instituto de Pesquisas Energéticas e Nucleares –IPEN-CNEN/SP, C.P. 11049, 05422-970, São Paulo, SP. [email protected] 2 Departamento de Física, FFCRLP- USP, Ribeirão Preto, SP 3 Universidade Sagrado Coração, Bauru, SP ABSTRACT Electron Spin Resonance (ESR) dating is based on the fact that ionizing radiation can create stable free radicals in insulating materials, like tooth enamel and bones. The concentration of these radicals - determined by ESR - is a function of the dose deposed in the sample along the years. The accumulated dose of radiation, called Archeological Dose, is produced by the exposition to environmental radiation provided by U, Th, K and cosmic rays. If the environmental dose rate in the site where the fossil sample is found is known, it is possible to convert this dose into the age of the sample. The annual dose rate coming from the radioactive elements present in the soil and in the sample itself can be calculated by determining the U, Th and K concentration. Therefore, the determination of the dose rate depends on the concentration of these main radioactive elements. Neutron Activation Analysis has the sensitivity and the accuracy necessary to determine U, Th and K with this objective.
    [Show full text]
  • LENS Report Low Energy Accelerator-Driven Neutron Sources
    LENS Report Low Energy Accelerator-driven Neutron Sources LENS Ad-hoc Working Group CANS Nov. 2020 2 www.lens-initiative.org Table of Content 1 Foreword ................................................................................................................................6 2 Executive summary .................................................................................................................8 3 Neutrons for science and industry ......................................................................................... 12 4 Neutron production and landscape of neutron Infrastructures in Europe .............................. 16 4.1 Neutron production ........................................................................................................... 16 4.2 Situation in Europe ............................................................................................................ 16 4.3 Situation outside Europe ................................................................................................... 18 5 Capabilities of CANS .............................................................................................................. 22 5.1 What is a CANS ? ............................................................................................................... 22 5.2 What are the different types of facilities that can be considered? ...................................... 22 5.3 What performances can be achieved on a CANS for neutron scattering ............................. 23 6 Advantages / limitations
    [Show full text]
  • Viii-I. Summary of Research Activities
    VIII-I. SUMMARY OF RESEARCH ACTIVITIES VIII-I-1. MEETINGS AND SEMINARS Specialists’ Meetings Held in the FY 2013 1. Issues in Radiogenic Circulatory Disease and Cataracts 2. Proceedings of Workshop on Reactor Physics 3. The Results and Future Prospects of Activation Analysis Using KUR" 4. Workshop on Materials Irradiation Effects and Applications 5. Proceedings of the Specialist Research Meeting on Science and Engineering of Unstable Nuclei and Their Uses on Condensed Matter Physics III 6. Proceedings of the Specialist Research Meeting on “Abnormal Protein Aggregation and the Folding Diseases, and their Protection and Repair System” (VI) 7. Proceedings of the Symposium on Present and Future Statuses of Criticality Safety Research 8. Novel Development of BNCT - From Special to General - 9. Proceedings of the Specialists' Meeting on the Chemistry and Technology of Actinide Elements Proceedings of the Specialist Research Meeting on Science and Engineering of Unstable Nuclei and Their 10. Technological Development, Operation, and Data Analysis of Radiation Mapping Systems in Affected Area of Nuclear Accident 11. Proceedings of the Specialist Meeting on Positron Annihilation Study for Science and Engineering 2013 12. Proceedings of the Specialists' Meeting on Radioactive Wastes Management 13. Neutron Imaging Workshops Organized in the FY 2013 1. Promotion of Leading Research toward Effective Utilization of Multidisciplinary Nuclear Science and Technology 2. Workshop of Next Neutron Source for Beam Utilization after KUR II Special Meeting Held in the FY2013 Meeting on the Future Project of the Kyoto University Research Reactor Institute VIII-I-2. COLLABORATION RESEARCH AND VISITING SCIENTISTS Visiting Scientists The number of project researches .................................................. 11 (The number of allotted research subject) ...............................
    [Show full text]
  • Instrumental Neutron Activation Analysis (INAA)
    Instrumental Neutron Activation Analysis (INAA) Overview: Unlike most analytical techniques INAA requires no chemical processing of the samples, therefore it is described as Instrumental NAA rather than radiochemical NAA. This characteristic has several advantages: (1) Rapid, i.e., less labor required to prepare samples. (2) Precludes the possibility of contaminating the samples. As shown in Fig. 1 (Periodic Table), in terrestrial sediments INAA typically obtains precise abundance data (i.e. duplicate analyses agree within 5%) for many elements, typically occurring as trace elements in the parts per million (by weight) range. The concept of INAA is to produce radioactive isotopes by exposing the samples to a high flux of neutrons in a nuclear reactor. These isotopes typically decay by beta decay and in the process gamma rays (electromagnetic radiation) with discrete energies are emitted). These discrete energies are the fingerprint for an isotope. Note that this technique determines abundance of isotopes, but because isotopic abundances of most, at least high atomic number, elements are constant in natural materials, isotopic abundance is readily translated to elemental abundances. Gamma rays arise from transitions between nuclear energy levels whereas X-rays arise from transitions between electron energy levels. An advantage of gamma rays is that many are much more energetic than X-rays; therefore gamma rays are less readily absorbed and matrix corrections (see lecture on electron microprobe) are not usually important. 1 Periodic Table
    [Show full text]