Enzymatic Biofuel Cells

Total Page:16

File Type:pdf, Size:1020Kb

Enzymatic Biofuel Cells Enzymatic Biofuel Cells by Plamen Atanassov, Chris Apblett, Scott Banta, Susan Brozik, Scott Calabrese Barton, Michael Cooney, Bor Yann Liaw, Sanjeev Mukerjee, and Shelley D. Minteer hat would it be like if you are also incredibly abundant and also green, and can be grown in could recharge your cell cheap to produce, something that the quantity whenever they are needed, Wphone battery instantly by wine and detergent industries have as opposed to the metal catalysts, pouring your soft drink into it? known for decades. But applying which need to be mined and Such applications may be a long way enzymes to power electronics is very purified using expensive and less off, but the U.S. Air Force Office of different from getting enzymes to environmentally friendly processes. Scientific Research is investing in clean our clothes. For one, enzymes They are also “selective,” a word such a future now. Under a Multi do not like to give up electrons as that scientists use to describe an University Research Initiative, easily as metal catalysts do, which enzyme’s ability to work with a very university professors from around the means that generating an electric specific fuel, and only that fuel, so country are now focused on a five- current from enzymes is much that the byproduct of one oxidation year research program to look at the tougher. Enzymes can be made step could be the fuel for another technical challenges surrounding a to give up their electrons with enzyme. By doing this step, enzymes fuel cell that will run on such simple mediators, but using mediators can could conceivably reproduce what sugars as those found in our everyday cause other problems in the fuel cell. animals already know how to do: foodstuffs. Enzymes also are not used to staying convert the sugars into just water The challenges are great. Most put. In animals, enzymes are floating and carbon dioxide. After all, there fuel cells in the world today run on freely in the cells of the body, but is as much energy in one jelly donut hydrogen. However, as the fuel gets to work in a fuel cell, they have to as you can find in 77 cell phone more complex, this oxidation process be put in a specific place and stay batteries. If you can get that energy becomes vastly more complicated. there, a process that scientists call out, it could have pretty, ahem, sweet Once carbon atoms are in the fuel, immobilizing the enzymes. Finally, consequences. The basic enzymatic biofuel cell contains many of the same components as a hydrogen/oxygen fuel cell: an anode, a cathode, and a separator. However, rather than employing metallic electrocatalysts at the anode and the cathode, the electrocatalyst used are oxidoreductase enzymes. This is a class of enzymes that can catalyze oxidation–reduction reactions. Since these enzymes are selective electrocatalysts, the separator could be an electrolyte solution, gel, or polymer. Figure 1 shows a schematic of a generic biofuel cell oxidizing glucose as fuel at the bioanode and reducing oxygen to water at the biocathode. Biofuel cells were first introduced FIG. 1. Generalized schematics of an enzyme biofuel cell consisting of an anode, catalyzed by in 1911 when Potter cultured yeast oxidases suitable for conversion of fuels of choice or a complex of such enzymes for a complete and E. Coli cells on platinum oxidation of biofuels. The cathode usually features an oxidoreductase that uses molecular oxygen as electrodes,1 but it was not until 1962 the ultimate electron acceptor and catalyzes reduction to water in neutral or slightly acidic media. that the enzymatic biofuel cell was invented employing the enzyme carbon monoxide poisoning of naturally occurring enzymes do not glucose oxidase to oxidize glucose at typical fuel cell catalysts becomes last that long. A typical enzyme in the anode.2 Over the last 45 years, problematic. Researchers are turning the human body lasts only a couple many improvements have been to the natural world in an effort of days, but to be effective in a laptop made in enzymatic biofuel cells and to see how sugars are oxidized by or an automobile, an enzyme is going those can be found in several review animals to produce power. to have to last for months or years articles.3-6 However, there are still Using enzymes (nature’s catalysts) before needing replacement. several main issues to consider with seems to be the answer, since they do The benefits of the technology biofuel cells. These include short not suffer from the contamination are as big as the risks, however. active lifetimes, low power densities, problems that more traditional Enzymes, as we mentioned before, and low efficiency due to normally metallic catalysts suffer from. They are cheap and plentiful. They are only incorporating a single enzyme 28 The Electrochemical Society Interface • Summer 2007 to do a partial oxidation of complex Electron Transport nanotube-modified porous matrix biofuels. There are a number of shows that we can make an anode strategies for solving these problems, The key issue in biofuel cells, as operational at about 400 mV (vs. Ag/ but our group is focused on strategies well as in any other type of low- AgCl).11 This means that we can start for immobilization and stabilization temperature fuel cells, is the catalysis “burning” the fuel at a potential very of the enzymes, engineering of of electrode processes. Oxidation of close to the one provided to us by the enzymes to function optimally at the fuel, let say glucose, catalyzed thermodynamics of the system (see electrode surfaces, electron transport by enzymes such as glucose oxidase Fig. 2). between the enzyme and the current (the biosensor’s favorite enzyme of all When we combine this with collector, optimization of multi- times) may be accomplished directly direct reduction of oxygen, which enzyme systems, and developing or may involve redox mediators. is catalyzed by copper-containing standardized characterization Direct enzymatic oxidation requires enzymes (laccases, bilirubin protocols for the biofuel cell research that the active site of the enzyme oxidases, or ascorbate oxidases) at community at large. communicates immediately with a potential just 50 mV below the the electrode surface. That seemed thermodynamic value,12 this gives us Enzyme Immobilization and Stabilization rather impossible for the best beloved the option of making a biofuel cell glucose oxidase because it flavin- with as high open circuit voltage as One strategy for enzyme type active site is “buried” too deep 1 V. For all this to happen, a lot of immobilization and stabilization has in the protein “shell” of the quite things need to be fine-tuned, the been the use of micellar polymers. large enzyme molecule. Sandia enzyme surface interactions most Enzymes in solution are typically National Laboratories addresses of all. Charge transfer processes and active for a few hours to a few this issue by genetically modifying enzyme orientation are of immense days. This lifetime can be extended to 7-20 days by entrapment in hydrogels and binding to electrode surfaces.4 However, researchers at Saint Louis University have extended active enzyme lifetimes at electrode surfaces to greater than one year by immobilization within hydrophobically modified micellar polymers.7-9 Micellar polymers, such as, Nafion and chitosan, can be hydrophobically modified to tailor the micellar pore or pocket structure to be the optimal size for enzyme immobilization, while also ensuring a hydrophobic and buffered pH microenvironment for optimal enzyme activity. This strategy has been shown both to increase the active lifetime of the enzyme, but also to increase the enzymatic activity of IG 10 F . 2. Principles of biofuel cell design indicting the maximum oxidation potentials for glucose the enzyme by up to 2.5-fold. and the corresponding thermodynamic potential for oxygen reduction at neutral pH. Redox The appropriate design of the potentials of several enzymes and their corresponding co-factors are shown along with the enzyme–electrode interface is a key potential “zone” containing the redox potentials of the usual mediators. Polarization curves depict consideration for the creation of typical current performances for direct and mediated electron transfer in biofuel cell electrodes. new bioelectrochemical systems like biofuel cells and biosensors. These systems generally involve complex the enzyme to make its active site importance in direct electron transfer. arrangements of immobilization more accessible for communication The rest is “simple” engineering of polymers, redox mediators, and with the electrode. A lot of mutant the materials, which should allow us enzymes that must interact with proteins can be made in a day. to draw as much current as possible. the electrode substrate. At Columbia Knowing which one will work is a big There is indeed another way: we University, researchers are using part of the problem. Fast screening can use mediators. These are redox protein engineering to design of genetically modified enzymes for couples that can easily communicate multifunctional proteins and their electrocatalytic properties is the with both the enzyme and the peptides that can both simplify and task of a collaborative effort between electrode. The use of mediators improve enzymatic electrodes. To Sandia National Laboratories and the should be well measured because if this end, they are creating proteins University of New Mexico. their potential is too close to that of that can self-assemble into bioactive Researchers at the University of New the enzyme, the driving force of the hydrogels with redox enzyme Mexico are also looking at the problem enzyme/mediator “cascade” will be activities. This eliminates the need of enzyme/electrode interactions too low. If their potential falls too far for the incorporation of polymers from a different angle: let us leave the from that of the enzyme active site, in the system.
Recommended publications
  • Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers
    energies Review Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers Ana L. Santos 1,2, Maria-João Cebola 3,4,5 and Diogo M. F. Santos 2,* 1 TecnoVeritas—Serviços de Engenharia e Sistemas Tecnológicos, Lda, 2640-486 Mafra, Portugal; [email protected] 2 Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal 3 CBIOS—Center for Research in Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisbon, Portugal; [email protected] 4 CERENA—Centre for Natural Resources and the Environment, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal 5 Escola Superior Náutica Infante D. Henrique, 2770-058 Paço de Arcos, Portugal * Correspondence: [email protected] Abstract: Environmental issues make the quest for better and cleaner energy sources a priority. Worldwide, researchers and companies are continuously working on this matter, taking one of two approaches: either finding new energy sources or improving the efficiency of existing ones. Hydrogen is a well-known energy carrier due to its high energy content, but a somewhat elusive one for being a gas with low molecular weight. This review examines the current electrolysis processes for obtaining hydrogen, with an emphasis on alkaline water electrolysis. This process is far from being new, but research shows that there is still plenty of room for improvement. The efficiency of an electrolyzer mainly relates to the overpotential and resistances in the cell. This work shows that the path to better Citation: Santos, A.L.; Cebola, M.-J.; electrolyzer efficiency is through the optimization of the cell components and operating conditions.
    [Show full text]
  • Nitrogen-Rich Graphitic-Carbon@Graphene As A
    www.nature.com/scientificreports OPEN Nitrogen‑rich graphitic‑carbon@ graphene as a metal‑free electrocatalyst for oxygen reduction reaction Halima Begum, Mohammad Shamsuddin Ahmed & Young‑Bae Kim* The metal‑free nitrogen‑doped graphitic‑carbon@graphene (Ng‑c@G) is prepared from a composite of polyaniline and graphene by a facile polymerization following by pyrolysis for electrochemical oxygen reduction reaction (ORR). Pyrolysis creates a sponge‑like with ant‑cave‑architecture in the polyaniline derived nitrogenous graphitic‑carbon on graphene. The nitrogenous carbon is highly graphitized and most of the nitrogen atoms are in graphitic and pyridinic forms with less oxygenated is found when pyrolyzed at 800 °C. The electrocatalytic activity of Ng-C@G-800 is even better than the benchmarked Pt/C catalyst resulting in the higher half-wave potential (8 mV) and limiting current density (0.74 mA cm−2) for ORR in alkaline medium. Higher catalytic performance is originated from the special porous structure at microscale level and the abundant graphitic‑ and pyridinic‑n active sites at the nanoscale level on carbon-graphene matrix which are benefcial to the high O2‑mass transportation to those accessible sites. Also, it possesses a higher cycle stability resulting in the negligible potential shift and slight oxidation of pyridinic‑n with better tolerance to the methanol. To save the world from day-by-day increasing energy demands and environmental concerns, the clean, highly efcient and renewable energy technologies are immediately required to be implemented 1. Among various renewable energy technologies, fuel cells (FCs) and metal-air batteries are regarded as the promising clean energy sources because of their high energy conversion efciency and emission-free power generation 2,3.
    [Show full text]
  • Fuel Properties Comparison
    Alternative Fuels Data Center Fuel Properties Comparison Compressed Liquefied Low Sulfur Gasoline/E10 Biodiesel Propane (LPG) Natural Gas Natural Gas Ethanol/E100 Methanol Hydrogen Electricity Diesel (CNG) (LNG) Chemical C4 to C12 and C8 to C25 Methyl esters of C3H8 (majority) CH4 (majority), CH4 same as CNG CH3CH2OH CH3OH H2 N/A Structure [1] Ethanol ≤ to C12 to C22 fatty acids and C4H10 C2H6 and inert with inert gasses 10% (minority) gases <0.5% (a) Fuel Material Crude Oil Crude Oil Fats and oils from A by-product of Underground Underground Corn, grains, or Natural gas, coal, Natural gas, Natural gas, coal, (feedstocks) sources such as petroleum reserves and reserves and agricultural waste or woody biomass methanol, and nuclear, wind, soybeans, waste refining or renewable renewable (cellulose) electrolysis of hydro, solar, and cooking oil, animal natural gas biogas biogas water small percentages fats, and rapeseed processing of geothermal and biomass Gasoline or 1 gal = 1.00 1 gal = 1.12 B100 1 gal = 0.74 GGE 1 lb. = 0.18 GGE 1 lb. = 0.19 GGE 1 gal = 0.67 GGE 1 gal = 0.50 GGE 1 lb. = 0.45 1 kWh = 0.030 Diesel Gallon GGE GGE 1 gal = 1.05 GGE 1 gal = 0.66 DGE 1 lb. = 0.16 DGE 1 lb. = 0.17 DGE 1 gal = 0.59 DGE 1 gal = 0.45 DGE GGE GGE Equivalent 1 gal = 0.88 1 gal = 1.00 1 gal = 0.93 DGE 1 lb. = 0.40 1 kWh = 0.027 (GGE or DGE) DGE DGE B20 DGE DGE 1 gal = 1.11 GGE 1 kg = 1 GGE 1 gal = 0.99 DGE 1 kg = 0.9 DGE Energy 1 gallon of 1 gallon of 1 gallon of B100 1 gallon of 5.66 lb., or 5.37 lb.
    [Show full text]
  • Recent Technologies of Electrode and System in the Enzymatic Biofuel Cell (EBFC)
    applied sciences Review Mini-Review: Recent Technologies of Electrode and System in the Enzymatic Biofuel Cell (EBFC) Nabila A. Karim 1,* and Hsiharng Yang 2,3,* 1 Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia 2 Graduate Institute of Precision Engineering, National Chung Hsing University, 145 Xingda Road, South District, Taichung City 402, Taiwan 3 Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, 145 Xingda Road, South District, Taichung City 402, Taiwan * Correspondence: [email protected] (N.A.K.); [email protected] (H.Y.) Abstract: Enzymatic biofuel cells (EBFCs) is one of the branches of fuel cells that can provide high potential for various applications. However, EBFC has challenges in improving the performance power output. Exploring electrode materials is one way to increase enzyme utilization and lead to a high conversion rate so that efficient enzyme loading on the electrode surface can function correctly. This paper briefly presents recent technologies developed to improve bio-catalytic proper- ties, biocompatibility, biodegradability, implantability, and mechanical flexibility in EBFCs. Among the combinations of materials that can be studied and are interesting because of their properties, there are various nanoparticles, carbon-based materials, and conductive polymers; all three have the advantages of chemical stability and enhanced electron transfer. The methods to immobilize enzymes, and support and substrate issues are also covered in this paper. In addition, the EBFC system is also explored and developed as suitable for applications such as self-pumping and microfluidic EBFC. Citation: A. Karim, N.; Yang, H. Keywords: electrode; support; immobilization; enzyme; EBFC Mini-Review: Recent Technologies of Electrode and System in the Enzymatic Biofuel Cell (EBFC).
    [Show full text]
  • Steering CO2 Electroreduction Toward Ethanol Production by a Surface-Bound Ru Polypyridyl Carbene Catalyst on N-Doped Porous Carbon
    Steering CO2 electroreduction toward ethanol production by a surface-bound Ru polypyridyl carbene catalyst on N-doped porous carbon Yanming Liua,b, Xinfei Fanc, Animesh Nayakb, Ying Wangb, Bing Shanb, Xie Quana, and Thomas J. Meyerb,1 aKey Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; bDepartment of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and cCollege of Environmental Science and Engineering, Dalian Maritime University, Dalian 116024, China Contributed by Thomas J. Meyer, November 10, 2019 (sent for review May 6, 2019; reviewed by Andrew B. Bocarsly and Clifford P. Kubiak) Electrochemical reduction of CO2 to multicarbon products is a sig- necessitates coupling reactions between a CO intermediate and/or nificant challenge, especially for molecular complexes. We report intermediates from CO protonation (29–31). Assembling the Ru(II) here CO2 reduction to multicarbon products based on a Ru(II) poly- polypyridyl carbene on an electrode surface that is capable of pyridyl carbene complex that is immobilized on an N-doped porous C–C dimerization offers an attractive strategy for reducing CO2 carbon (RuPC/NPC) electrode. The catalyst utilizes the synergistic to multicarbon products. effects of the Ru(II) polypyridyl carbene complex and the NPC N-doped carbon nanomaterials have been widely used for interface to steer CO2 reduction toward C2 production at low electroreduction due to their electrocatalytic activity and low cost. overpotentials. In 0.5 M KHCO3/CO2 aqueous solutions, Faradaic N-doped carbon electrodes have been shown to be capable of C–C efficiencies of 31.0 to 38.4% have been obtained for C2 production dimerization (6, 32).
    [Show full text]
  • Making Markets for Hydrogen Vehicles: Lessons from LPG
    Making Markets for Hydrogen Vehicles: Lessons from LPG Helen Hu and Richard Green Department of Economics and Institute for Energy Research and Policy University of Birmingham Birmingham B15 2TT United Kingdom Hu: [email protected] Green: [email protected] +44 121 415 8216 (corresponding author) Abstract The adoption of liquefied petroleum gas vehicles is strongly linked to the break-even distance at which they have the same costs as conventional cars, with very limited market penetration at break-even distances above 40,000 km. Hydrogen vehicles are predicted to have costs by 2030 that should give them a break-even distance of less than this critical level. It will be necessary to ensure that there are sufficient refuelling stations for hydrogen to be a convenient choice for drivers. While additional LPG stations have led to increases in vehicle numbers, and increases in vehicles have been followed by greater numbers of refuelling stations, these effects are too small to give self-sustaining growth. Supportive policies for both vehicles and refuelling stations will be required. 1. Introduction While hydrogen offers many advantages as an energy vector within a low-carbon energy system [1, 2, 3], developing markets for hydrogen vehicles is likely to be a challenge. Put bluntly, there is no point in buying a vehicle powered by hydrogen, unless there are sufficient convenient places to re-fuel it. Nor is there any point in providing a hydrogen refuelling station unless there are vehicles that will use the facility. What is the most effective way to get round this “chicken and egg” problem? Data from trials of hydrogen vehicles can provide information on driver behaviour and charging patterns, but extrapolating this to the development of a mass market may be difficult.
    [Show full text]
  • Prospects for Bi-Fuel and Flex-Fuel Light Duty Vehicles
    Prospects for Bi-Fuel and Flex-Fuel Light-Duty Vehicles An MIT Energy Initiative Symposium April 19, 2012 MIT Energy Initiative Symposium on Prospects for Bi-Fuel and Flex-Fuel Light-Duty Vehicles | April 19, 2012 C Prospects for Bi-Fuel and Flex-Fuel Light-Duty Vehicles An MIT Energy Initiative Symposium April 19, 2012 ABOUT THE REPORT Summary for Policy Makers The April 19, 2012, MIT Energy Initiative Symposium addressed Prospects for Bi-Fuel and Flex-Fuel Light-Duty Vehicles. The symposium focused on natural gas, biofuels, and motor gasoline as fuels for light-duty vehicles (LDVs) with a time horizon of the next two to three decades. The important transportation alternatives of electric and hybrid vehicles (this was the subject of the 2010 MITEi Symposium1) and hydrogen/fuel-cell vehicles, a longer-term alternative, were not considered. There are three motivations for examining alternative transportation fuels for LDVs: (1) lower life cycle cost of transportation for the consumer, (2) reduction in the greenhouse gas (GHG) footprint of the transportation sector (an important contributor to total US GHG emissions), and (3) improved energy security resulting from greater use of domestic fuels and reduced liquid fuel imports. An underlying question is whether a flex-fuel/bi-fuel mandate for new LDVs would drive development of a robust alternative fuels market and infrastructure versus alternative fuel use requirements. Symposium participants agreed on these motivations. However, in this symposium in contrast to past symposiums, there was a striking lack of agreement about the direction to which the market might evolve, about the most promising technologies, and about desirable government action.
    [Show full text]
  • 90 Day Taxi Report May Through July 2019
    DATE: October 10, 2019 TO: SFMTA Board of Directors Malcolm Heinicke, Chair Gwyneth Borden, Vice Chair Cheryl Brinkman, Director Amanda Eaken, Director Steve Heminger, Director Cristina Rubke, Director Art Torres, Director THROUGH: Tom Maguire Interim Director of Transportation FROM: Kate Toran Director of Taxis and Accessible Services SUBJECT: Second Quarterly Report on Taxi Medallion Rules at San Francisco International Airport: May – July 2019 Introduction The San Francisco Municipal Transportation Agency (SFMTA) is providing a regular quarterly update to the Board regarding the implementation of the new airport taxi rules, which imposed restrictions on the types of taxi medallions that are authorized to provide a taxicab trip originating at San Francisco International Airport (SFO or Airport). The first quarterly report provides background information and tracks the first quarter of implementation of the new SFO rules, February through April 2019. This second quarterly report tracks progress in meeting the policy goals, from the time period from May through July, comparing the three-month time period in 2018 “before” with the same three-month period in 2019 “after” the Airport rule changes. Comparing the same three-month period from year to year helps exclude any seasonal variation, and assures the comparison is for the same number of days in the quarter; both factors can significantly impact taxi ridership. One major continuing issue is with poor data quality sent by the taxicabs, aggregated by color scheme, and transmitted by their dispatch service and/or data provider. The transmittals contain a large amount of data that do not appear to be valid trip or activity records, and inconsistencies vary across different dispatch companies.
    [Show full text]
  • Electrocatalyst Development for PEM Water Electrolysis and DMFC: Towards the Methanol Economy
    Electrocatalyst development for PEM water electrolysis and DMFC: towards the methanol economy Radostina Vasileva Genova-Koleva ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • 2009 Fuel Cell Market Report, November 2010
    Energy Efficiency & Renewable Energy 2009 FUEL CELL MARKET REPORT NOVEMBER 2010 Authors This report was written primarily by Bill Vincent of the Breakthrough Technologies Institute in Washington, DC, with significant assistance from Jennifer Gangi, Sandra Curtin, and Elizabeth Delmont. Acknowledgement This report was the result of hard work and valuable contributions from government staff and the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland and the staff of the U.S. Department of Energy’s Fuel Cell Technologies Program for their support and guidance in the preparation of this report. The authors also wish to thank Robert Rose and Robert Wichert of the U.S. Fuel Cell Council, Lisa Callaghan-Jerram of Fuel Cell Today Consulting, Rachel Gelman of the National Renewable Energy Laboratory, Jennifer Gangi, Sandra Curtin, and Elizabeth Delmont from Fuel Cells 2000, and the many others who made this report possible. Table of Contents List of Acronyms ............................................................................................................................................ 1 Introduction .................................................................................................................................................. 2 Executive Summary ....................................................................................................................................... 3 Financials......................................................................................................................................................
    [Show full text]
  • Section 3.4 Fuel Cells
    2016 FUEL CELLS SECTION 3.4 Fuel Cells Fuel cells efficiently convert diverse fuels directly into electricity without combustion, and they are key elements of a broad portfolio for building a competitive, secure, and sustainable clean energy economy. They offer a broad range of benefits, including reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power (through the use of hydrogen derived from renewable resources as a transportation fuel as well as for energy storage and transmission); highly efficient energy conversion; fuel flexibility (use of diverse, domestic fuels, including hydrogen, natural gas, biogas, and methanol); reduced air pollution, criteria pollutants, water use; and highly reliable grid support. Fuel cells also have numerous advantages that make them appealing for end users, including quiet operation, low maintenance needs, and high reliability. Because of their broad applicability and diverse uses, fuel cells can address critical challenges in all energy sectors: commercial, residential, industrial, and transportation. The fuel cell industry had revenues of approximately $2.2 billion in 2014, an increase of almost $1 billion over revenues in 2013.1 The largest markets for fuel cells today are in stationary power, portable power, auxiliary power units, backup power, and material handling equipment. Approximately 155,000 fuel cells were shipped worldwide in the four-year period from 2010 through 2013, accounting for 510–583 MW of fuel cell capacity.2 In 2014 alone, more than 50,000 fuel cells accounting for over 180 MW of capacity were shipped.1 In transportation applications, manufacturers have begun to commercialize fuel cell electric vehicles (FCEVs). Hyundai and Toyota have recently introduced their FCEVs in the marketplace, and Honda is set to launch its new FCEV in the market in 2016.
    [Show full text]
  • Analysis of Fuel Cell Integration with Biofuels Production
    XI.11 Analysis of Fuel Cell Integration with Biofuels Production • Milestone 1.14: Complete analysis of the job impact from Mark F. Ruth (Primary Contact), Mark Antkowiak fuel cell growth in stationary power generation sector National Renewable Energy Laboratory through 2020. (4Q, 2015) 15013 Denver West Pkwy. • Milestone 1.16: Complete analysis of program Golden, CO 80401 performance, cost status, and potential use of fuel cells Phone: (303) 384-6874 for a portfolio of commercial applications. (4Q, 2018) Email: [email protected] • Milestone 1.17: Complete analysis of program technology DOE Manager performance and cost status, and potential to enable use Fred Joseck of fuel cells for a portfolio of commercial applications. Phone: (202) 586-7932 (4Q, 2018) Email: [email protected] • Milestone 1.19: Complete analysis of the potential for Project Start Date: May 1, 2012 hydrogen, stationary fuel cells, fuel cell vehicles, and Project End Date: July 1, 2013 other fuel cell applications such as material handling equipment including resources, infrastructure and system effects resulting from the growth in hydrogen market shares in various economic sectors. (4Q, 2020) Overall Objectives • Milestone 1.20: Complete review of fuel cell and • Identify opportunities for using fuel cells in biorefineries hydrogen markets. (4Q, 2011 through 4Q, 2020) • Analyze potential benefits of fuel cells in biorefineries • Milestone 3.3: Complete review of status and outlook of • Report the effects of integration on levelized costs, non-automotive fuel cell
    [Show full text]