Passive Fire Protection, Part I

Total Page:16

File Type:pdf, Size:1020Kb

Passive Fire Protection, Part I Facts Don’t Matter: Passive Fire Protection, Part I he Alliance for Fire and Smoke Containment and private property.” Hence, the basic premise of Mr. Licht’s paper Control (AFSCC) Inc., is a trade association that repre- is in error. Tsents manufacturers and installers of passive fire protec- Of course, there are many in the code enforcement field who tion products. The January 2002 issue of the trade association’s would argue that property protection should be a basic part of newsletter indicates the goals of the organization, which are: any building code. To some extent, those who make this argu - ment are correct. It is a legitimate concern of government that “The promotion of the passive protection as part of a ‘bal - property owners not be allowed to construct buildings that anced design’ap p r oach to fire prot e c t i o n . ” would endanger their neighbor’s property; however, the protec- “The promotion of prop e r ty protection and public welfare, tion of one’s own property against economic loss should not be as well as life safety.” a concern of government. More than likely, most Am e r i c a n s “The education of code officials and [building] designers on would agree that the government should not dictate where peo- fi r e protection issues.” “The promotion of fire fighter safety and the facilitation of fi r e fighting activities.” There are many in the code In order to promote one of the goals of the AFSCC, the edu- enforcement field who would cation of both code officials and building designers, AF S C C argue that property protection technical director Richard Licht has written two papers on the subject of the fire protection requirements contained in building should be a basic part of any codes. These two papers are titled “Maintaining Life Safety building code. Ef fectiveness in the New Building Codes” and “Balancing Active and Passive Fire Protection Systems in the Building Codes.” In the interest of furthering the AF S C C ’ s goal of edu- cating both code officials and building designers, as well as ple live in an effort to minimize property damage caused by other building professionals, a discussion of both papers writ- earthquakes, storms or floods, or dictate the specific auto some- ten by Mr. Licht is warranted. This month, we’ll take a look at one drives in order to minimize damage to the vehicle in the “Maintaining Life Safety Effectiveness in the New Building event of an accident. Why then should the government be in the Codes.” Mr. Licht’s second paper, titled “Balancing Active and business of telling building owners how to protect their own Passive Fire Protection Systems in the Building Codes,” will be property from loss? analyzed in a future column. Mr . Licht also states in his paper that “smoke detectors, con- The abstract of the paper titled “Maintaining Life Safety tainment area, passive fire protection and automatic fire sprin- Ef fectiveness in the New Building Codes” puts forth the klers – taken in concert – this quartet of construction features is premise that “the challenge [to the writers of building codes] is responsible for an improving record of life and property protec- to support construction economy and practicality while pre- tion in commercial buildings that have been constructed in the serving life safety and property protection.” While on the sur- U.S. over the past several decades.” While most involved in face, this statement seems reasonable enough, it is, in fact, a building regulation would accept this statement as being true, it misstatement of the purpose of both the International Building is not actually supported by any research. We can state with cer- Code and NFPA5000. Section 1.2 in the 2003 edition of NFPA ta i n t y , however, that the number of fire responses by fire depart- 5000 states that “the purpose of the Code is to provide mini- ments in the United States has plummeted since 1980, despite mum design regulations to safeguard life, health, property, and the fact that the population of the United States has increased, public welfare and to minimize injuries.” While the purpose from 226 million in 1980 to 281 million in 2000. According to statement in NFPA5000 seems to support Mr. Licht’s reference statistics published by the National Fire Protection As s o c i a t i o n to property protection, explanatory material contained in An n e x (N F P A), there were more than 2,988,000 fire responses in the Aof NFPA5000 clarifies the intent of the code with respect to United States in 1980, but only 1,708,000 fire responses in property protection by stating, “it is not the purpose of the code 2000. Given these statistics, the improved fire safety record in to provide design regulations that solely affect economic loss to Continued page 10 Page 8/Plumbing Engineer Copyright © 2003 TMB Publishing. All Rights Reserved August 2003 Fire Protection Continued from page 8 the United States in the last 20 years or NF P A 5000 are limited. In other words, “pressure is being applied by certain spe- so can certainly be attributed to the large simply because a building is protected cial interest groups to move away from drop in the number of fires occurring, throughout by a sprinkler system does not proven and tested life safety practices in combined with the installation of smoke mean that all other fire protection features the model Building Codes for reasons of detectors in residential occupancies. are permitted to be eliminated from a ec o n o m y . These interest groups propose Although this may be considered to be building. For instance, sprinklered build- eliminating penetration firestops, fire- heresy in some circles, the extent of the ings are still required to be provided with rated gypsum board, fire doors, fire ef fect of “containment area, passive fire protection and automatic fire sprinklers” on the fire safety record of commercial Most Americans would agree that the buildings in the United States is government should not dictate where people un k n o w n . Mr . Licht further states in his paper, “it live in an effort to minimize property damage. is crucial that the new Building Codes reflect a clear understanding of the sys- tems nature of effective fire protection if we are to avoid sanctioning the construc- egress routes and exits, and exit stairs are dampers, structural fire-proofing and tion of buildings that are code-compliant, still required to be enclosed. In many fire-rated ceiling tiles from the Building but unsafe for life and property.” Ag r e e d cases, the rating of corridor wall con- Code in favor of sprinkler systems.” – the protection afforded to the occu- struction is only permitted to be reduced, Again, these statements are exaggera- pants of a particular building (and the not eliminated. It appears that Mr. Licht tions of the actual facts about sprinkler building itself) is dependent upon the would like us to believe that the fire safe- “t r a d e - o f fs.” First, many of the “trade- interaction of building features, but ty of occupants of sprinklered buildings is of fs” in passive fire protection have been before making too much of this, it is crit- totally dependent upon the successful included in the model building code pub- ical to understand that the “trade-offs” in operation of sprinklers, but this simply is lished by BOCA and in the Life Safety passive fire protection incorporated into not true. Code for more than 25 years. Hence, it the International Building Code and Mr . Licht also asserts in his paper, can be stated that many of the “trade- of fs” in passive fire protection have actu- ally been “field tested” in jurisdictions that have utilized either one of these two construction codes. Given this, it would be difficult for anyone to assert that many of the “trade-offs” in passive fire protec- tion are not proven and tested life safety practices. Indeed, one of the advantages of having multiple model building codes in use in the United States is that various fire safety schemes can be “field tested” and the sprinkler “trade-offs” included in the International Building Code and NF P A 5000 have successfully passed 20 years of “field trials.” Along the same lines as the previous statement, Mr. Licht also writes, “more and more fire ratings are being reduced as a financial incentive to encourage the use of sprinklers. However, as noted in the following material, there are serious questions related to the ultimate safety of this practice.” Given the fact that “trade- of fs” in passive fire protection have been permitted by the BOCA Code and the Life Safety Code for more than 20 years, Mr . Licht should be able to cite a multi- tude of examples of the failure of build- ings designed to comply with the BOCA Code and/or the Life Safety Code to pro- vide adequate protection for the building occupants. Interestingly enough, Mr. Circle 006 on Reader Service Card Continued on page 14 Page 1 0/Plumbing Engineer Copyright © 2003 TMB Publishing. All Rights Reserved August 2003 Fire Protection Continued from page 10 Licht does not provide even a single example in his paper. Th e reason why Mr. Licht doesn’t provide any examples of the “failures” in buildings designed utilizing “trade-offs” in passive fire protection should be obvious – there simply aren’t any. While Mr. Licht doesn’t provide any examples to support his assertions, I can cite a number of examples of major failures of passive fire protection to contain the spread of fire and smoke: the fire at the MGM Grand Hotel in Las Vegas in 1980, the fire at the First Interstate Bank Building in Los Angeles in 1988 and the fire at the One Meridian Plaza Building in Philadelphia in 19 9 1 .
Recommended publications
  • Smoke Alarms in US Home Fires Marty Ahrens February 2021
    Smoke Alarms in US Home Fires Marty Ahrens February 2021 Copyright © 2021 National Fire Protection Association® (NFPA®) Key Findings Smoke alarms were present in three-quarters (74 percent) of the injuries from fires in homes with smoke alarms occurred in properties reported homei fires in 2014–2018. Almost three out of five home with battery-powered alarms. When present, hardwired smoke alarms fire deathsii were caused by fires in properties with no smoke alarms operated in 94 percent of the fires considered large enough to trigger a (41 percent) or smoke alarms that failed to operate (16 percent). smoke alarm. Battery-powered alarms operated 82 percent of the time. Missing or non-functional power sources, including missing or The death rate per 1,000 home structure fires is 55 percent lower in disconnected batteries, dead batteries, and disconnected hardwired homes with working smoke alarms than in homes with no alarms or alarms or other AC power issues, were the most common factors alarms that fail to operate. when smoke alarms failed to operate. Of the fire fatalities that occurred in homes with working smoke Compared to reported home fires with no smoke alarms or automatic alarms, 22 percent of those killed were alerted by the device but extinguishing systems (AES) present, the death rate per 1,000 reported failed to respond, while 11 percent were not alerted by the operating fires was as follows: alarm. • 35 percent lower when battery-powered smoke alarms were People who were fatally injured in home fires with working smoke present, but AES was not, alarms were more likely to have been in the area of origin and • 51 percent lower when smoke alarms with any power source involved in the ignition, to have a disability, to be at least 65 years were present but AES was not, old, to have acted irrationally, or to have tried to fight the fire themselves.
    [Show full text]
  • Fire Protection Application Guide Armacell's Products for Passive Fire Protection
    FIRE PROTECTION APPLICATION GUIDE ARMACELL'S PRODUCTS FOR PASSIVE FIRE PROTECTION Tel.: +49 25 17 60 30 [email protected] www.armacell.eu 02 | Fire protection application guide Foreword “Nine dead in house fire.” Fortunately we don’t read this or similar headlines every day. Nevertheless, around 4,000 people die in fires every year in the EU member countries. In many cases, deaths, injuries and major damage to buildings can be prevented if the fire protection requirements are implemented correctly. Therefore, passive fire protec- tion in buildings aims to design, construct, modify and maintain build- ings in such a way that the outbreak of a fire and the spread of flames and smoke (fire spread) are prevented. And, if a fire does occur, it must be possible to rescue people and animals and carry out fire-fighting operations effectively. In terms of fire protection, building service equipment, such as pipe- work and ventilation systems, represents a particular weak point. Pipe- and ductwork passes through separating building elements (walls and ceilings), stairwells and corridors, and thus forms a path along which flames and smoke can spread. In the event of a fire, pipe- and ductwork has a significant impact on safety in buildings and can soon pose a seri- ous threat. The risk potential rises with the number of pipes and their various tasks, thicknesses, materials and media. Therefore, in order to achieve the necessary fire protection targets, service penetrations in separating building elements must be sealed off. These fire protec- tion measures can be carried out in accordance with the less strin- gent requirements of the MLAR (state building regulations) or with an approval.
    [Show full text]
  • Laser Technology Smoke Detector
    APPLICATIONS GUIDE Laser Technology Smoke Detector APPLICATIONS GUIDE Laser Technology Smoke Detector Contents Section 1 Introduction .....................................................................................................................................................................2 Section 2 Benefits ............................................................................................................................................................................2 Section 3 Applications ....................................................................................................................................................................2 Ideal Applications ..........................................................................................................................................................2 Applications to Avoid ....................................................................................................................................................2 Section 4 How it Works ..................................................................................................................................................................3 The Principles of Laser Detection...............................................................................................................................3 Section 5 Performance ...................................................................................................................................................................4
    [Show full text]
  • Fire Service Features of Buildings and Fire Protection Systems
    Fire Service Features of Buildings and Fire Protection Systems OSHA 3256-09R 2015 Occupational Safety and Health Act of 1970 “To assure safe and healthful working conditions for working men and women; by authorizing enforcement of the standards developed under the Act; by assisting and encouraging the States in their efforts to assure safe and healthful working conditions; by providing for research, information, education, and training in the field of occupational safety and health.” This publication provides a general overview of a particular standards- related topic. This publication does not alter or determine compliance responsibilities which are set forth in OSHA standards and the Occupational Safety and Health Act. Moreover, because interpretations and enforcement policy may change over time, for additional guidance on OSHA compliance requirements the reader should consult current administrative interpretations and decisions by the Occupational Safety and Health Review Commission and the courts. Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission. Source credit is requested but not required. This information will be made available to sensory-impaired individuals upon request. Voice phone: (202) 693-1999; teletypewriter (TTY) number: 1-877-889-5627. This guidance document is not a standard or regulation, and it creates no new legal obligations. It contains recommendations as well as descriptions of mandatory safety and health standards. The recommendations are advisory in nature, informational in content, and are intended to assist employers in providing a safe and healthful workplace. The Occupational Safety and Health Act requires employers to comply with safety and health standards and regulations promulgated by OSHA or by a state with an OSHA-approved state plan.
    [Show full text]
  • The Rising Cost of Wildfire Protection
    A Research Paper by The Rising Cost of Wildfire Protection Ross Gorte, Ph.D. Retired Senior Policy Analyst, Congressional Research Service Affiliate Research Professor, Earth Systems Research Center of the Earth, Oceans, and Space Institute, University of New Hampshire June 2013 The Rising Cost of Wildfire Protection June 2013 PUBLISHED ONLINE: http://headwaterseconomics.org/wildfire/fire-costs-background/ ABOUT THIS REPORT Headwaters Economics produced this report to better understand and address why wildfires are becoming more severe and expensive. The report also describes how the protection of homes in the Wildland-Urban Interface has added to these costs and concludes with a brief discussion of solutions that may help control escalating costs. Headwaters Economics is making a long-term commitment to better understanding these issues. For additional resources, see: http://headwaterseconomics.org/wildfire. ABOUT HEADWATERS ECONOMICS Headwaters Economics is an independent, nonprofit research group whose mission is to improve community development and land management decisions in the West. CONTACT INFORMATION Ray Rasker, Ph.D. Executive Director, Headwaters Economics [email protected] 406 570-7044 Ross Gorte, Ph.D.: http://www.eos.unh.edu/Faculty/rosswgorte P.O. Box 7059 Bozeman, MT 59771 http://headwaterseconomics.org Cover image “Firewise” by Monte Dolack used by permission, Monty Dolack Gallery, Missoula Montana. TABLE OF CONTENTS SUMMARY .................................................................................................................................................
    [Show full text]
  • Fire Prevention and Control in Compressor Buildings
    THE INGAA FOUNDATION, INC. 10 G Street, NE, Suite 700 • Washington, DC 20002 (202) 216-5900 • FAX (202) 216-0870 • www.ingaa.org Fire Prevention and Control in Compressor Buildings Prepared for The INGAA Foundation, Inc. by: Solomon Associates 13455 Noel Road Suite 1500 Dallas, TX 75240-6634 F-2004-50625 Copyright © 2004 by The INGAA Foundation, Inc. Table of Contents Executive Summary ii Introduction 1 Project Scope and Approach 2 Assumptions and Limitations 3 Project Results 4 Summary 6 Attachment A Master Summary Document A-1 Fire Prevention and Control Survey forDallas Compressor StationsLondon Beijing Shanghai Mexico City i Chennai Solomon Associates #4RL118C Dallas London Beijing Shanghai Mexico City Chennai Executive Summary Solomon Associates (Solomon) is pleased to submit the Fire Prevention and Control Survey for the results obtained from a survey designed to gather information on the fire prevention and control practices of Interstate Natural Gas Association of America (INGAA) membership. Some insurance industry loss control inspectors are recommending or requiring installation of active fire suppression systems in natural gas compressor buildings without due consideration of fire prevention efforts or costs versus benefits. The objective of this INGAA membership survey was to determine the extent to which insurance and risk management companies are requesting natural gas transmission companies to install active fire prevention controls, what types of active and passive controls are being used, and the incidence of fires. Active fire controls include a method of distinguishing the fire after ignition, whereas passive controls are methods to minimize fire risk or alert operators of a fire or fire condition.
    [Show full text]
  • Insight Gaseous Fire Suppression System
    Insight Balanced Risk Engineering Solutions Gaseous Fire Suppression System All businesses are reliant on computer technology in order to survive today. What if there was a fire in the main computer room. Would it put you out of business? Would it impact on sales & profits? If the answer is yes then you need to evaluate computer room and other critical area fire protection measures in order to ensure that they are adequate. What are the consequences to business survival and employee security? We are all too aware of businesses which have had fires and have failed to restart. All commercial premises now use computers and other high tech electronic systems in order to record sales, purchases, financial information, control production, allow communication and facilitate email correspondence - the modern way of conducting business. Gaseous fire suppression systems are particularly applicable for high value risks where a minor fire within a critical area could have serious financial repercussions for the business far beyond the cost of physical damage and lost production. System Operation Types of Gaseous Fire Suppression Systems Gaseous fire suppression system activation can be There are two main types of gaseous fire suppression manual, automatic or auto/manual. Gas is discharged systems comprising inert gas and chemical agents. The through a pipe network system and enters the protected main agents that are encountered today include: environment through appropriately designed spray nozzles. • Inergen • Argonite Gaseous fire suppression systems when designed and • FM 200 installed correctly should ensure that high value assets are protected from fire and the effects of fire fighting.
    [Show full text]
  • Separation Distances in NFPA Codes and Standards
    Separation Distances in NFPA Codes and Standards Final Report Prepared by: Dr. Ted Argo and Mr. Evan Sandstrom Applied Research Associates, Inc. Rocky Mountain Division 7921 Shaffer Parkway Littleton, CO 80127 © 2014 Fire Protection Research Foundation THE FIRE PROTECTION RESEARCH FOUNDATION ONE BATTERYMARCH PARK QUINCY, MASSACHUSETTS, U.S.A. 02169-7471 E-MAIL: [email protected] WEB: www.nfpa.org/Foundation —— Page c —— —— Page ii —— FOREWORD Many NFPA codes and standards, in particular NFPA 400, Hazardous Materials Code, specify separation/clearance distances for hazardous chemical storage and processes from other equipment and occupied buildings. Many of these requirements have historical undocumented origins. Guidance, which may inform a sound technical basis for adjusting these distances, has been requested by NFPA Technical Committees. There are a number of methodologies in the literature, both risk and hazard based, which are used in the chemical safety process safety field that may be relevant to the calculation of these distances. The purpose of this project is to provide guidance to NFPA technical committees on methodologies to develop technically based separation/clearance distances for hazardous chemical storage/processes and their application to the chemical storage and processes. The specific focus of the project is those hazards within the scope of NFPA 400. The Research Foundation expresses gratitude to the report author Dr. Ted Argo and Mr. Evan Sandstrom, who is with Applied Research Associates, Inc located in Littleton, CO. The Research Foundation appreciates the guidance provided by the Project Technical Panelists and all others that contributed to this research effort. Thanks are also expressed to the National Fire Protection Association (NFPA) for providing the project funding through the NFPA Annual Code Fund.
    [Show full text]
  • Fire Extinguisher Brochure
    Common Fire Extinguishers Learn More About Safety: www.urbandale.org - UFD website www.nfpa.org - National Fire Protection Associa- tion (NFPA) www.homefiresprinkler.org - Home Fire Sprinkler F i r e Coalition Extinguisher Left: Class ABC Dry Chemical Extinguisher www.ready.gov - FEMA Emergency Preparedness Information site www.bereadyiowa.org – IA Homeland Security and Emergency Management 3927 121st St. Would you be able to use Urbandale, IA 50323 Phone: (515) 278-3970 one in the event of a fire? Email: [email protected] www.facebook.com/urbandalefiredepartment Above: Class K Extinguisher. This is a wet chemical based extinguisher common in res- taurant kitchens. It is designed for fires in- volving grease and oils from cooking opera- tions. When To Use A Fire Extinguisher Extinguisher Classifications Make sure you are trained on how to Extinguishers are vital as the first line of properly deploy a fire extinguisher. During defense to use during a small fire. There Anatomy Of A Fire a fire is not the time to learn! are several classifications of fire extinguish- Extinguisher: ers depending on the type and size of the Make sure you know what is burning. building in which they may be needed. Be- low is a list of the classifications, which can Make sure the fire is not spreading quickly. be found on the side of the extinguisher: Make sure heat and smoke have not filled the area/room. Make sure you have a clear path of escape. Make sure someone has called 9-1-1. P.A.S.S. Method To operate an extinguisher, remember the word PASS: P—”pull” the pin at the top of the extinguisher that keeps the handle from being depressed.
    [Show full text]
  • Use of Gaseous Suppression Systems in High Air Flow Environments – Phase 1 FINAL REPORT
    Use of Gaseous Suppression Systems in High Air Flow Environments – Phase 1 FINAL REPORT PREPARED BY: Eric Forssell Jensen Hughes Baltimore, MD, USA © September 2015 Fire Protection Research Foundation FIRE PROTECTION RESEARCH FOUNDATION ONE BATTERMARCH PARK | QUINCY, MASSACHUSETTS, USA 02169-7471 E-MAIL: [email protected] | WEB: WWW.NFPA.ORG/FOUNDATION — — Page ii — — FOREWORD Information-technology and telecommunications (IT/telecom) facilities provide critical services in today’s world. From a risk standpoint, the indirect impact of fire loss due to business interruption and loss of critical operations, sometimes geographically very distant from the IT/telecom facility itself, can far outweigh the direct property loss. In the past few years, there have been dramatic changes in the equipment housed in these facilities, which have placed increased demands on HVAC systems. As a result, engineered-airflow containment solutions are being introduced to enhance heat extraction and increase energy efficiency. From the perspective of fire-suppression system design, the use of airflow containment systems creates areas of high-air velocities within an increasingly obstructed equipment space, which could affect the effectiveness of transport of suppression agents throughout the protected volume. Requirements related to use of gaseous-agent fire extinguishing systems in IT/telecom facilities are directly addressed by NFPA 75, Standard for the Fire Protection of Information Technology Equipment, and NFPA 76, Standard for the Fire Protection of Telecommunications Facilities. NFPA 75, 2013 edition, addresses these issues related to gaseous agent systems in several places. 5.6.7 Where aisle containment systems are installed, the existing suppression and detection systems shall be evaluated, modified, and tested as necessary to maintain compliance with the applicable codes and standards.
    [Show full text]
  • OSHA Fact Sheet: Fire Safety in the Workplace
    FactSheet Fire Safety Employers should train workers about fire hazards in the workplace and about what to do in a fire emergency. If you want your workers to evacuate, you should train them on evacuation procedures. If you expect your workers to use fire fighting equipment, you should provide the appropriate equipment and train workers to use it safely. (See Title 29 of the Code of Federal Regulations (CFR) Part 1910 Subparts E and L; and Part 1926 Subparts C and F.) What actions should employers • Grain Handling – 1910.272 take to help ensure safe evacuations • Ethylene Oxide – 1910.1047 of buildings? • Methylenedianiline – 1910.1050 Every workplace must have enough exits • 1,3 Butadiene – 1910.1051 suitably located to enable everyone to get out of the facility quickly. Considerations include the type of structure, the number of persons When required, employers must exposed, the fire protection available, the type develop an emergency action plan that: of industry involved, and the height and type • Describes the routes for workers to use and of construction of the building or structure. procedures to follow. In addition, exit doors must not be blocked or • Accounts for all evacuated employees. locked when employees are inside. Delayed • Remains available for employee review. opening of exit doors, however, is permitted • Includes procedures for evacuating when an approved alarm system is integrated disabled employees. into the exit door design. Exit routes from • Addresses evacuation of employees who stay buildings must be free of obstructions and behind to shut down critical plant equipment. properly marked with exit signs. See 29 CFR Part • Includes preferred means of alerting 1910.36 for details about these requirements.
    [Show full text]
  • Overview of the Legal Design Basis for Passive Fire Protection in Korea and the Direction of Further Development
    Article Overview of the Legal Design Basis for Passive Fire Protection in Korea and the Direction of Further Development Jae-Young Choi and Sang-Hoon Byeon * Department of Health and Safety Convergence Science, Korea University, Seoul 02841, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-3290-5693 Abstract: The design of passive fire protection is applied to minimize the domino effect when a liquid pool fire occurs due to the facilities inside a process plant. In general, the design of passive fire protection has been applied using the API RP 2218 guideline as the basis regardless of the country or owner of the process plant. However, in Korea, legal regulations dictate that explosive areas should be regarded as fireproofing zones rather than following the API RP 2218 guideline. Because liquid pool fires and explosive gas atmospheres are different concepts, it is wrong from an engineering perspective to regard them as the same. Therefore, when a liquid pool fire occurs in a process plant in Korea, it may be more dangerous than in any other countries. In this study, we investigated three categories of fire risk. Korean safety regulations for the design of passive fire protection and others that are not reasonable from an engineering perspective need to be studied and revised. Specifically, Korea needs to revise the design basis of passive fire protection based on the API RP 2218 guideline as a legal standard in accordance with global trends. Keywords: passive fire protection; fireproofing; API RP 2218; hazardous area classification; loss pre- vention Citation: Choi, J.-Y.; Byeon, S.-H.
    [Show full text]