Host Mrna Decay Proteins Influence HIV-1 Replication and Viral Gene

Total Page:16

File Type:pdf, Size:1020Kb

Host Mrna Decay Proteins Influence HIV-1 Replication and Viral Gene Rao et al. Retrovirology (2019) 16:3 https://doi.org/10.1186/s12977-019-0465-2 Retrovirology RESEARCH Open Access Host mRNA decay proteins infuence HIV-1 replication and viral gene expression in primary monocyte-derived macrophages Shringar Rao1,2†, Raquel Amorim1,3†, Meijuan Niu1, Yann Breton4, Michel J. Tremblay4,5 and Andrew J. Mouland1,2,3* Abstract Background: Mammalian cells harbour RNA quality control and degradative machineries such as nonsense-medi- ated mRNA decay that target cellular mRNAs for clearance from the cell to avoid aberrant gene expression. The role of the host mRNA decay pathways in macrophages in the context of human immunodefciency virus type 1 (HIV-1) infection is yet to be elucidated. Macrophages are directly infected by HIV-1, mediate the dissemination of the virus and contribute to the chronic activation of the infammatory response observed in infected individuals. Therefore, we characterized the efects of four host mRNA decay proteins, i.e., UPF1, UPF2, SMG6 and Staufen1, on viral replication in HIV-1-infected primary monocyte-derived macrophages (MDMs). Results: Steady-state expression levels of these host mRNA decay proteins were signifcantly downregulated in HIV-1-infected MDMs. Moreover, UPF2 and SMG6 inhibited HIV-1 gene expression in macrophages to a similar level achieved by SAMHD1, by directly infuencing viral genomic RNA levels. Staufen1, a host protein also involved in UPF1- dependent mRNA decay and that acts at several HIV-1 replication steps, enhanced HIV-1 gene expression in MDMs. Conclusions: These results provide new evidence for roles of host mRNA decay proteins in regulating HIV-1 replica- tion in infected macrophages and can serve as potential targets for broad-spectrum antiviral therapeutics. Keywords: HIV-1, Macrophages, UPF1, UPF2, SMG6, Staufen1 Background Macrophages play multiple roles in human immuno- Macrophages are cells of the myeloid lineage that serve defciency virus type 1 (HIV-1) pathogenesis (reviewed important functions in the host innate immune response. in [4–6]) as they express the host cell surface receptors Tey recognise and phagocytose invading pathogens and CD4 and CCR5 required for HIV-1 entry and thus, can play many roles in tissue development, homeostasis and be directly infected by HIV-1 [7, 8]. Tey promote the repair [1]. Tey are present in most tissues in the body dissemination and cell-to-cell transmission of HIV-1 via and arise from the terminal diferentiation of infltrating virological synapses [9–11] and they can also be infected monocytes [2]. Examples of tissue-resident macrophages in trans by the selective capture and engulfment of HIV- are the alveolar macrophages in the lung, Kupfer cells in 1-infected CD4+ T cells [12]. Furthermore, they directly the liver and the microglial cells of the central nervous contribute to pathogenesis via the activation of infam- system [3]. matory pathways resulting in the cognitive dysfunc- tion, respiratory dysfunction, cardiovascular disease and microbial translocation in the intestine associated with *Correspondence: [email protected] HIV-1 infection (reviewed in [5]). †Shringar Rao and Raquel Amorim contributed equally to this work Te ability of HIV-1 to rapidly form a stable viral res- 1 HIV-1 RNA Trafcking Laboratory, Lady Davis Institute at the Jewish ervoir upon infection is the major obstacle towards an General Hospital, Montréal, Québec, Canada Full list of author information is available at the end of the article HIV-1 cure [13]. Most studies on HIV-1 latency have © The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/ publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Rao et al. Retrovirology (2019) 16:3 Page 2 of 15 focused on CD4+ T cells. However, the contribution of SMG5 and SMG7, resulting in the degradation of aber- cells of the myeloid lineage to the maintenance of HIV-1 rant mRNAs (reviewed in [30, 31]). UPF1 is also involved latency has recently been recognised [14]. Macrophages in the mRNA decay process of SMD that is mediated by have been proposed to represent a long-lived HIV-1 viral the host protein Staufen1 [32]. reservoir [5, 15–17], as they have a longer life-span than In our earlier studies, we demonstrated that the HIV-1 CD4+ T cells and possess self-renewing properties [18]. genomic RNA (vRNA) is able to evade mRNA surveil- During HIV-1 infection, macrophages are more resistant lance in HeLa cells and CD4+ T cells [33–35]. Moreover, to the cytopathic efects of the virus and display increased HIV-1 hijacks UPF1 and Staufen1 to promote vRNA sta- telomerase activity which contributes to their increased bility and ensure viral gene expression and production of longevity [19, 20]. In in vivo studies using humanised the main HIV-1 structural protein, pr55Gag. Te vRNA mouse models, tissue-resident macrophages sustain and assembles into an HIV-1-dependent ribonucleoprotein propagate HIV-1 infection independently of CD4+ T complex (RNP) with UPF1 and Staufen1, resulting in cells [21]. In follow-up studies using the same humanized enhanced vRNA stability, nucleocytoplasmic export and myeloid-only mouse model, HIV-1 infection was rap- translation [33, 36]. UPF2 is excluded from this RNP idly suppressed by combination antiretroviral treatment and is detrimental to the nucleocytoplasmic export of (cART) and viral rebound was observed in a third of the the vRNA, with an overexpression of UPF2 resulting in mice following the discontinuation of cART, thus repre- nuclear sequestration of the vRNA and reduced expres- senting the frst direct evidence of HIV-1 persistence in sion of pr55Gag [34]. UPF1 also has characterised roles in tissue macrophages in vivo [17]. Moreover, macrophages facilitating HIV-1 reverse transcription [37]. In CD4 + T were also demonstrated to function as a latent reservoir cells, both SMG6, the endonuclease involved in the fnal in SIV-infected, ART-treated macaques [22]. step of the degradation of aberrant RNA in NMD, and One of the strategies to cure HIV-1 infection is the UPF2 are detrimental to vRNA expression in a UPF1- “kick and kill” approach. Tis strategy involves the use dependent manner [35]. Staufen1 also plays roles at of latency-reversing agents (LRAs) to stimulate virus various steps of virus replication including pr55 Gag mul- production from latently-infected cells; followed by timerisation, vRNA encapsidation [38–42] and, more their elimination by the host immune system, cytopathic recently, in countering host stress responses [43]. efects of virus production or cART [23]. Tese LRAs In this study, we have characterised the efects of induce viral production in CD4+ T cells [24]. However, UPF1, UPF2, SMG6 and Staufen1 on viral replication in LRA treatment in macrophages resulted in decreased primary monocyte-derived macrophages (MDMs). We viral release due to the activation of autophagy by the observed that these proteins had signifcant efects on LRAs and the degradation of intracellular viral proteins HIV-1 replication in MDMs. Te identifcation of novel [25]. Moreover, in a study evaluating the efcacy of a host proteins capable of restricting HIV-1 replication in combination of two LRAs (i.e. byrostatin and JQ1), latent MDMs will pave the way for novel targets for therapeutic proviruses were more efciently reactivated in monocytic intervention. cells that in lymphoid cells [26]. Tese results highlighted diferential responses to LRAs that exist between T cells Results and macrophages during HIV-1 infection. Terefore, a Relative protein expression levels for UPF1, UPF2 greater understanding for the roles of host cell proteins and SMG6 are decreased in HIV‑1‑infected MDMs that control HIV-1 gene expression in macrophages is Previous work from our group has demonstrated that the needed. NMD proteins UPF1, UPF2 and SMG6 have diferential mRNA surveillance pathways are host quality control efects on vRNA metabolism in cells of the lymphoid lin- mechanisms that degrade aberrant mRNA to prevent eage [33–35]. Terefore, we hypothesized that RNA sur- the accumulation of potentially toxic truncated or mis- veillance proteins can also impact HIV-1 gene expression folded proteins. Examples of these pathways include the in primary MDMs. To determine whether the expression nonsense-mediated mRNA decay (NMD) and Staufen1- of these proteins is modulated during HIV-1 infection, mediated decay (SMD) [27, 28]. Up-frameshift protein 1 we assessed the levels of UPF1, UPF2 and SMG6 expres- (UPF1), the central player in these mechanisms, is a mul- sion in HIV-1-infected primary MDMs using an HIV-1 tifunctional RNA-binding protein that has ATPase and reporter construct called NL4-3-Bal-IRES-HSA [44–46]. RNA helicase activity [29]. During the process of NMD, Tis an infectious molecular clone of HIV-1 that can UPF1 interacts with a family of up-frameshift proteins infect myeloid cells including human monocyte-derived such as UPF2, UPF3A and UPF3B, and its associated macrophages and expresses the gp160 HIV-1 enve- suppressor for morphological defects in genitalia (SMG) lope of the Env gene of the R5-tropic HIV-1 Bal and all proteins such as a kinase SMG1, an endonuclease SMG6, other viral genes of the T-cell tropic HIV-1 isolate NL4.3 Rao et al. Retrovirology (2019) 16:3 Page 3 of 15 [44]. Additionally, this viral construct also expresses a c), with a decrease of 0.71 (± 0.09) log for UPF1, 0.63 murine heat-stable antigen (HSA), a cell surface reporter (± 0.10) log for UPF2 and 0.71 (± 0.15) log for SMG6.
Recommended publications
  • Human Nonsense-Mediated RNA Decay Initiates Widely by Endonucleolysis and Targets Snorna Host Genes
    Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Human nonsense-mediated RNA decay initiates widely by endonucleolysis and targets snoRNA host genes Søren Lykke-Andersen,1,4 Yun Chen,2,4 Britt R. Ardal,1 Berit Lilje,2 Johannes Waage,2,3 Albin Sandelin,2 and Torben Heick Jensen1 1Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark; 2The Bioinformatics Centre, Department of Biology and Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen DK-2200, Denmark Eukaryotic RNAs with premature termination codons (PTCs) are eliminated by nonsense-mediated decay (NMD). While human nonsense RNA degradation can be initiated either by an endonucleolytic cleavage event near the PTC or through decapping, the individual contribution of these activities on endogenous substrates has remained unresolved. Here we used concurrent transcriptome-wide identification of NMD substrates and their 59–39 decay intermediates to establish that SMG6-catalyzed endonucleolysis widely initiates the degradation of human nonsense RNAs, whereas decapping is used to a lesser extent. We also show that a large proportion of genes hosting snoRNAs in their introns produce considerable amounts of NMD-sensitive splice variants, indicating that these RNAs are merely by-products of a primary snoRNA production process. Additionally, transcripts from genes encoding multiple snoRNAs often yield alternative transcript isoforms that allow for differential expression of individual coencoded snoRNAs. Based on our findings, we hypothesize that snoRNA host genes need to be highly transcribed to accommodate high levels of snoRNA production and that the expression of individual snoRNAs and their cognate spliced RNA can be uncoupled via alternative splicing and NMD.
    [Show full text]
  • A Genome-Wide Association Study of a Coronary Artery Disease Risk Variant
    Journal of Human Genetics (2013) 58, 120–126 & 2013 The Japan Society of Human Genetics All rights reserved 1434-5161/13 www.nature.com/jhg ORIGINAL ARTICLE A genome-wide association study of a coronary artery diseaseriskvariant Ji-Young Lee1,16, Bok-Soo Lee2,16, Dong-Jik Shin3,16, Kyung Woo Park4,16, Young-Ah Shin1, Kwang Joong Kim1, Lyong Heo1, Ji Young Lee1, Yun Kyoung Kim1, Young Jin Kim1, Chang Bum Hong1, Sang-Hak Lee3, Dankyu Yoon5, Hyo Jung Ku2, Il-Young Oh4, Bong-Jo Kim1, Juyoung Lee1, Seon-Joo Park1, Jimin Kim1, Hye-kyung Kawk1, Jong-Eun Lee6, Hye-kyung Park1, Jae-Eun Lee1, Hye-young Nam1, Hyun-young Park7, Chol Shin8, Mitsuhiro Yokota9, Hiroyuki Asano10, Masahiro Nakatochi11, Tatsuaki Matsubara12, Hidetoshi Kitajima13, Ken Yamamoto13, Hyung-Lae Kim14, Bok-Ghee Han1, Myeong-Chan Cho15, Yangsoo Jang3,17, Hyo-Soo Kim4,17, Jeong Euy Park2,17 and Jong-Young Lee1,17 Although over 30 common genetic susceptibility loci have been identified to be independently associated with coronary artery disease (CAD) risk through genome-wide association studies (GWAS), genetic risk variants reported to date explain only a small fraction of heritability. To identify novel susceptibility variants for CAD and confirm those previously identified in European population, GWAS and a replication study were performed in the Koreans and Japanese. In the discovery stage, we genotyped 2123 cases and 3591 controls with 521 786 SNPs using the Affymetrix SNP Array 6.0 chips in Korean. In the replication, direct genotyping was performed using 3052 cases and 4976 controls from the KItaNagoya Genome study of Japan with 14 selected SNPs.
    [Show full text]
  • TERRA: Telomeric Repeat-Containing RNA
    The EMBO Journal (2009) 28, 2503–2510 | & 2009 European Molecular Biology Organization | Some Rights Reserved 0261-4189/09 www.embojournal.org TTHEH E EEMBOMBO JJOURNALOURN AL Focus Review TERRA: telomeric repeat-containing RNA Brian Luke1,2 and Joachim Lingner1,2,* lytic processing of chromosome ends and the end replication problem. This shortening can be counteracted by the cellular 1EPFL-Ecole Polytechnique Fe´de´rale de Lausanne, ISREC-Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland and reverse-transcriptase telomerase, which uses an internal RNA 2‘Frontiers in Genetics’ National Center for Competence in Research moiety as a template for the synthesis of telomere repeats (NCCR), Geneva, Switzerland (Cech, 2004; Blackburn et al, 2006). Telomerase is regulated at individual chromosome ends through telomere-binding Telomeres, the physical ends of eukaryotic chromosomes, proteins to mediate telomere length homoeostasis; however, consist of tandem arrays of short DNA repeats and a large in humans, telomerase is expressed in most tissues only set of specialized proteins. A recent analysis has identified during the first weeks of embryogenesis (Ulaner and telomeric repeat-containing RNA (TERRA), a large non- Giudice, 1997). Repression of telomerase in somatic cells is coding RNA in animals and fungi, which forms an integral thought to result in a powerful tumour-suppressive function. component of telomeric heterochromatin. TERRA tran- Short telomeres that accumulate following an excessive scription occurs at most or all chromosome ends and it number of cell division cycles induce cellular senescence, is regulated by RNA surveillance factors and in response to and this counteracts the growth of pre-malignant lesions.
    [Show full text]
  • Common Genetic Variants and Subclinical Atherosclerosis: the Multi-Ethnic Study of Atherosclerosis
    Common Genetic Variants and Subclinical Atherosclerosis: The Multi-Ethnic Study of Atherosclerosis (MESA). Authors Authors: Jose D. Vargas, Ani Manichaikul, Xin Q. Wang, Stephen S. Rich, Jerome I. Rotter, Wendy S. Post, Joseph F. Polak, Matthew J. Budoff, and David A. Bluemke. Abstract Background: Subclinical atherosclerosis (sCVD), measured by coronary artery calcium (CAC) and carotid intima media thickness (CIMT) has been associated with cardiovascular disease (CVD). Genome Wide Association Studies (GWAS) of CVD have focused on Caucasian populations. We hypothesized that these associations would differ in populations from distinct genetic backgrounds. Methods and Results: The associations between sCVD and 66 single nucleotide polymorphisms (SNPs) from published GWAS of sCVD and CVD were tested in 8224 Multi-Ethnic Study of Atherosclerosis (MESA) and MESA Family participants (2685 Caucasians (EUA), 777 Chinese (CHN), 2588 African Americans (AFA), and 2174 Hispanic (HIS)) using an additive model adjusting for CVD risk factors, with SNP significance defined by a Bonferroni-corrected p < 7.6 x 10-4 (0.05/66). Results: In EUA there were significant associations with CAC in 9p21 (rs1333049, P=2 x 10-9; rs4977574, P= 4 x 10-9), COL4A1 (rs9515203, P=9 x 10-6), and PHACTR1 (rs9349379, P= 4 x 10-4). In HIS, SNPs were associated with CAC in 9p21 (rs1333049, P=8 x 10-5; rs4977574, P=5 x 10-5), APOA5 (rs964184, P=2 x 10-4), and ADAMTS7 (rs7173743, P=4 x 10-4). There were no associations with the 9p21 region in AFA and CHN. Fine mapping of the 9p21 region revealed SNPs with robust associations with CAC in EUA and HIS but no significant associations in AFA and CHN.
    [Show full text]
  • Identifying Genetic Risk Variants for Coronary Heart Disease in Familial Hypercholesterolemia: an Extreme Genetics Approach
    European Journal of Human Genetics (2015) 23, 381–387 & 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15 www.nature.com/ejhg ARTICLE Identifying genetic risk variants for coronary heart disease in familial hypercholesterolemia: an extreme genetics approach Jorie Versmissen1,31, Danie¨lla M Oosterveer1,31, Mojgan Yazdanpanah1,31, Abbas Dehghan2, Hilma Ho´lm3, Jeanette Erdman4, Yurii S Aulchenko2,5, Gudmar Thorleifsson3, Heribert Schunkert4, Roeland Huijgen6, Ranitha Vongpromek1, Andre´ G Uitterlinden1,2, Joep C Defesche6, Cornelia M van Duijn2, Monique Mulder1, Tony Dadd7, Hro´bjartur D Karlsson8, Jose Ordovas9, Iris Kindt10, Amelia Jarman7, Albert Hofman2, Leonie van Vark-van der Zee1, Adriana C Blommesteijn-Touw1, Jaap Kwekkeboom11, Anho H Liem12, Frans J van der Ouderaa13, Sebastiano Calandra14, Stefano Bertolini15, Maurizio Averna16, Gisle Langslet17, Leiv Ose17, Emilio Ros18,19,Fa´tima Almagro20, Peter W de Leeuw21, Fernando Civeira22, Luis Masana23, Xavier Pinto´ 24, Maarten L Simoons25, Arend FL Schinkel1,25, Martin R Green7, Aeilko H Zwinderman26, Keith J Johnson27, Arne Schaefer28, Andrew Neil29, Jacqueline CM Witteman2, Steve E Humphries30, John JP Kastelein6 and Eric JG Sijbrands*,1 Mutations in the low-density lipoprotein receptor (LDLR) gene cause familial hypercholesterolemia (FH), a disorder characterized by coronary heart disease (CHD) at young age. We aimed to apply an extreme sampling method to enhance the statistical power to identify novel genetic risk variants for CHD in individuals with FH. We selected cases and controls with an extreme contrast in CHD risk from 17 000 FH patients from the Netherlands, whose functional LDLR mutation was unequivocally established. The genome-wide association (GWA) study was performed on 249 very young FH cases with CHD and 217 old FH controls without CHD (above 65 years for males and 70 years of age for females) using the Illumina HumanHap550K chip.
    [Show full text]
  • Cotranscriptional Effect of a Premature Termination Codon Revealed by Live-Cell Imaging
    Downloaded from rnajournal.cshlp.org on December 14, 2011 - Published by Cold Spring Harbor Laboratory Press Cotranscriptional effect of a premature termination codon revealed by live-cell imaging VALERIA DE TURRIS,1 PAMELA NICHOLSON,2 RODOLFO ZAMUDIO OROZCO,2 ROBERT H. SINGER,1,3 and OLIVER MU¨ HLEMANN2,3 1Albert Einstein College of Medicine, Bronx, New York 10461, USA 2Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland ABSTRACT Aberrant mRNAs with premature translation termination codons (PTCs) are recognized and eliminated by the nonsense- mediated mRNA decay (NMD) pathway in eukaryotes. We employed a novel live-cell imaging approach to investigate the kinetics of mRNA synthesis and release at the transcription site of PTC-containing (PTC+) and PTC-free (PTCÀ) immunoglob- ulin-m reporter genes. Fluorescence recovery after photobleaching (FRAP) and photoconversion analyses revealed that PTC+ transcripts are specifically retained at the transcription site. Remarkably, the retained PTC+ transcripts are mainly unspliced, and this RNA retention is dependent upon two important NMD factors, UPF1 and SMG6, since their depletion led to the release of the PTC+ transcripts. Finally, ChIP analysis showed a physical association of UPF1 and SMG6 with both the PTC+ and the PTCÀ reporter genes in vivo. Collectively, our data support a mechanism for regulation of PTC+ transcripts at the transcription site. Keywords: live-cell imaging; NMD; retention; splicing; UPF1; SMG6 INTRODUCTION substrates, manifesting an additional role of NMD in the post-transcriptional regulation of gene expression (Rehwinkel Nonsense-mediated mRNA decay (NMD) is a eukaryotic et al. 2006). translation-dependent mechanism that recognizes and de- The NMD pathway in human cells includes the evolution- grades mRNAs with a termination codon (TC) in an unfavor- arily conserved proteins UPF1, UPF2, UPF3A, and UPF3B, as able environment for efficient translation termination (Amrani well as additional metazoan-specific factors, such as SMG1, et al.
    [Show full text]
  • A Large Multi-Ethnic Genome-Wide Association Study Identifies Novel
    ARTICLE DOI: 10.1038/s41467-017-01913-6 OPEN A large multi-ethnic genome-wide association study identifies novel genetic loci for intraocular pressure Hélène Choquet1, Khanh K. Thai1, Jie Yin1, Thomas J. Hoffmann2,3, Mark N. Kvale2, Yambazi Banda2, Catherine Schaefer1, Neil Risch1,2,3, K. Saidas Nair4, Ronald Melles5 & Eric Jorgenson 1 1234567890 Elevated intraocular pressure (IOP) is a major risk factor for glaucoma, a leading cause of blindness. IOP heritability has been estimated to up to 67%, and to date only 11 IOP loci have been reported, accounting for 1.5% of IOP variability. Here, we conduct a genome-wide association study of IOP in 69,756 untreated individuals of European, Latino, Asian, and African ancestry. Multiple longitudinal IOP measurements were collected through electronic health records and, in total, 356,987 measurements were included. We identify 47 genome- wide significant IOP-associated loci (P < 5×10−8); of the 40 novel loci, 14 replicate at Bonferroni significance in an external genome-wide association study analysis of 37,930 individuals of European and Asian descent. We further examine their effect on the risk of glaucoma within our discovery sample. Using longitudinal IOP measurements from electronic health records improves our power to identify new variants, which together explain 3.7% of IOP variation. 1 Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA 94612, USA. 2 Institute for Human Genetics, University of California San Francisco (UCSF), San Francisco, CA 94143, USA. 3 Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA 94158, USA. 4 Departments of Ophthalmology and Anatomy, School of Medicine, UCSF, San Francisco, CA 94143, USA.
    [Show full text]
  • The No-Go and Nonsense-Mediated RNA Decay
    Diabetes Volume 67, October 2018 2019 The No-Go and Nonsense-Mediated RNA Decay Pathways Are Regulated by Inflammatory Cytokines in Insulin-Producing Cells and Human Islets and Determine b-Cell Insulin Biosynthesis and Survival Seyed Mojtaba Ghiasi,1 Nicolai Krogh,2 Björn Tyrberg,3 and Thomas Mandrup-Poulsen1 Diabetes 2018;67:2019–2037 | https://doi.org/10.2337/db18-0073 Stress-related changes in b-cell mRNA levels result from Proinflammatory cytokines have been implied in b-cell a balance between gene transcription and mRNA decay. failure and apoptosis in type 1 and type 2 diabetes (T1D The regulation of RNA decay pathways has not been and T2D) in part by regulation of the b-cell transcriptome investigated in pancreatic b-cells. We found that no-go (1). The levels of ;20% of the .29,000 transcripts in and nonsense-mediated RNA decay pathway compo- human islets are altered by cytokines, including apoptosis- nents (RDPCs) and exoribonuclease complexes were fl and in ammation-related genes (2). Interestingly, 35% of ISLET STUDIES expressed in INS-1 cells and human islets. Pelo, Dcp2, the genes expressed in human islets undergo alternative Dis3L2, Upf2, and Smg1/5/6/7 were upregulated by in- splicing, and cytokines cause substantial changes in the fl ammatory cytokines in INS-1 cells under conditions number of spliced transcripts (2). Most human genes b where central -cell mRNAs were downregulated. These exhibit alternative splicing, but not all alternatively spliced changes in RDPC mRNA or corresponding protein transcripts are translated into functional proteins. This levels were largely confirmed in INS-1 cells and rat/ varies in a cell-specific manner, contributing to tissue human islets.
    [Show full text]
  • A Novel Phosphorylation-Independent Interaction Between SMG6 And
    Published online 22 July 2014 Nucleic Acids Research, 2014, Vol. 42, No. 14 9217–9235 doi: 10.1093/nar/gku645 A novel phosphorylation-independent interaction between SMG6 and UPF1 is essential for human NMD Pamela Nicholson1, Christoph Josi1, Hitomi Kurosawa2, Akio Yamashita2 and Oliver Muhlemann¨ 1,* 1Department of Chemistry and Biochemistry, University of Berne, Berne, CH-3012, Switzerland and 2Department of Microbiology, Yokohama City University, School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan Received April 7, 2014; Revised June 30, 2014; Accepted July 2, 2014 ABSTRACT teins. However, NMD also targets various physiological mRNAs, signifying a role for NMD in post-transcriptional Eukaryotic mRNAs with premature translation- gene expression regulation in eukaryotes (1–3). Therefore, termination codons (PTCs) are recognized and elim- NMD probably controls a large and diverse inventory of inated by nonsense-mediated mRNA decay (NMD). transcripts which reflects the important influence of NMD NMD substrates can be degraded by different routes on the metabolism of the cell and consequently in many that all require phosphorylated UPF1 (P-UPF1) as human diseases (4,5). In order to develop pharmacological a starting point. The endonuclease SMG6, which reagents and to better understand the influence of NMD on cleaves mRNA near the PTC, is one of the three disease, it is essential to unravel the molecular mechanisms known NMD factors thought to be recruited to non- that underpin NMD. sense mRNAs via an interaction with
    [Show full text]
  • The RNA Surveillance Proteins UPF1, UPF2 and SMG6 Affect HIV-1 Reactivation at a Post-Transcriptional Level
    Rao et al. Retrovirology (2018) 15:42 https://doi.org/10.1186/s12977-018-0425-2 Retrovirology RESEARCH Open Access The RNA surveillance proteins UPF1, UPF2 and SMG6 afect HIV‑1 reactivation at a post‑transcriptional level Shringar Rao1,2, Raquel Amorim1,3, Meijuan Niu1, Abdelkrim Temzi1 and Andrew J. Mouland1,2,3* Abstract Background: The ability of human immunodefciency virus type 1 (HIV-1) to form a stable viral reservoir is the major obstacle to an HIV-1 cure and post-transcriptional events contribute to the maintenance of viral latency. RNA surveil- lance proteins such as UPF1, UPF2 and SMG6 afect RNA stability and metabolism. In our previous work, we dem- onstrated that UPF1 stabilises HIV-1 genomic RNA (vRNA) and enhances its translatability in the cytoplasm. Thus, in this work we evaluated the infuence of RNA surveillance proteins on vRNA expression and, as a consequence, viral reactivation in cells of the lymphoid lineage. Methods: Quantitative fuorescence in situ hybridisation—fow cytometry (FISH-fow), si/shRNA-mediated deple- tions and Western blotting were used to characterise the roles of RNA surveillance proteins on HIV-1 reactivation in a latently infected model T cell line and primary CD4 T cells. + Results: UPF1 was found to be a positive regulator of viral reactivation, with a depletion of UPF1 resulting in impaired vRNA expression and viral reactivation. UPF1 overexpression also modestly enhanced vRNA expression and its ATPase activity and N-terminal domain were necessary for this efect. UPF2 and SMG6 were found to negatively infuence viral reactivation, both via an interaction with UPF1.
    [Show full text]
  • The Genetic Effect on Muscular Changes in an Older Population
    G C A T T A C G G C A T genes Article The Genetic Effect on Muscular Changes in an Older Population: A Follow-Up Study after One-Year Cessation of Structured Training Lingxiao He 1,2, Evelien Van Roie 1 , An Bogaerts 1 , Sabine Verschueren 3, Christophe Delecluse 1, Christopher I. Morse 2 and Martine Thomis 1,* 1 Department of Movement Sciences, Physical Activity, Sports & Health Research Group, KU Leuven, 3001 Leuven, Belgium; [email protected] (L.H.); [email protected] (E.V.R.); [email protected] (A.B.); [email protected] (C.D.) 2 Department of Sport and Exercise Sciences, Manchester Metropolitan University, Oxford Road, Manchester M15 6BH, UK; [email protected] 3 Department of Musculoskeletal Rehabilitation, Rehabilitation Sciences Research Group, KU Leuven, 3001 Leuven, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-16-32-90-80 Received: 30 July 2020; Accepted: 19 August 2020; Published: 21 August 2020 Abstract: Older adults lose muscle mass and strength at different speeds after the cessation of physical exercise, which might be genotype related. This study aimed to explore the genetic association with changes in muscle mass and strength one year after the cessation of structured training in an older population. Participants (n = 113, aged between 61 and 81 years) who performed one-year of combined fitness (n = 44) or whole-body vibration (n = 69) training were assessed one year after the cessation of the training. Whole-body skeletal muscle mass and knee strength were measured. Data-driven genetic predisposition scores (GPSs) were calculated and analysed in a general linear model with sex, age, body mass index and post-training values of skeletal muscle mass or muscle strength as covariates.
    [Show full text]
  • Cpg-Island Promoters Drive Transcription of Human Telomeres
    Downloaded from rnajournal.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press CpG-island promoters drive transcription of human telomeres SOLOMON G. NERGADZE,1,3 BENJAMIN O. FARNUNG,2,3 HARRY WISCHNEWSKI,2 LELA KHORIAULI,1 VALERIO VITELLI,1 RAGHAV CHAWLA,2 ELENA GIULOTTO,1 and CLAUS M. AZZALIN2 1Dipartimento di Genetica e Microbiologia Adriano Buzzati-Traverso, Universita` di Pavia, 2700 Pavia, Italy 2Institute of Biochemistry, Eidgeno¨ssische Technische Hochschule Zu¨rich (ETHZ), CH-8093 Zu¨rich, Switzerland ABSTRACT The longstanding dogma that telomeres, the heterochromatic extremities of linear eukaryotic chromosomes, are transcription- ally silent was overturned by the discovery that DNA-dependent RNA polymerase II (RNAPII) transcribes telomeric DNA into telomeric repeat-containing RNA (TERRA). Here, we show that CpG dinucleotide-rich DNA islands, shared among multiple human chromosome ends, promote transcription of TERRA molecules. TERRA promoters sustain cellular expression of reporter genes, are located immediately upstream of TERRA transcription start sites, and are bound by active RNAPII in vivo. Finally, the identified promoter CpG dinucleotides are methylated in vivo, and cytosine methylation negatively regulates TERRA abundance. The existence of subtelomeric promoters, driving TERRA transcription from independent chromosome ends, supports the idea that TERRA exerts fundamental functions in the context of telomere biology. Keywords: telomeres; TERRA; promoters; transcription; CpG methylation INTRODUCTION
    [Show full text]