Biodiesel Production from Jatropha Curcas: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jatropha: a Multipurpose Plant with Considerable Potential for the Tropics
Scientific Research and Essays Vol. 6(13), pp. 2597-2605, 4 July, 2011 Available online at http://www.academicjournals.org/SRE DOI: 10.5897/SRE10.611 ISSN 1992-2248 ©2011 Academic Journals Review Jatropha: A multipurpose plant with considerable potential for the tropics A. K. M. A. Islam*, Z. Yaakob and N. Anuar Department of Chemical and Process Engineering, Faculty of Engineering, National University of Malaysia (UKM), Bangi, Selangor, 43600, Malaysia. Accepted 10 June, 2011 Jatropha curcas L is a multipurpose shrub and a member of the family Euphorbeaceae with several attributes and considerable potential. The present review article discussed the reported recent research on the cultivation and utilization of various parts of jatropha plant for different applications. J. curcas L is a tropical plant that can be grown in marginal lands of low to high rainfall areas and can be used as a commercial crop. The plant can be used to prevent and/or control erosion, to reclaim land, grown as a live fence to protect agricultural fields from farm animals and can be planted as an alternate commercial crop. The plant produces many useful products, especially the seed, from which oil can be extracted; this oil can be used as a feed stock for biodiesel. The extracted oil can also be used for making soap, glue, dye, etc. The leaves, shoot latex, roots and seed oil has medicinal properties. The fruit exocarp (coat), seed shell and processed seed cake are rich in nitrogen, phosphorous and potassium and can be used as fertilizer. It could provide employment, save foreign exchanges, improve environment and develop the socio-economic status of poor resource farmers in developing countries. -
Is Biodiesel As Attractive an Economic Alternative As Ethanol?
PURDUE EXTENSION Bio ID-341 Fueling America ThroughE Renewablenergy Resources Is Biodiesel as Attractive an Economic Alternative as Ethanol? Allan Gray Department of Agricultural Economics Purdue University What Is Biodiesel? and as a lubricant additive to low sulfur diesel Biodiesel is a renewable fuel alternative to fuel. A change in environmental laws associ- standard on-road diesel. Biodiesel is made ated with sulfur emissions from diesel has from plant oils, such as soybean oil; animal caused the industry to move from a standard fat from slaughter facilities; or used greases. number 2 diesel to a cleaner burning number Seventy-three percent of biodiesel produced 1 diesel with much lower sulfur emission. in the United States comes from soybean oil. The remaining 27% is produced from the However, number 1 diesel fuel has a much other feedstocks. lower lubricity than number 2 diesel, causing additional wear on diesel engines. By blending The ability to use a variety of feedstocks to number 1 diesel with at least 2% biodiesel, the make biodiesel differentiates this biofuel mar- lubricity properties of the fuel can be the same ket from the current ethanol market, which as number 2 diesel fuel. And, because biodie- is dominated by corn in the U.S. and sugar sel contains only small traces of sulfur when in South America. The ability to use various burned, the sulfur emission standards can still feedstocks is one of the reasons that biodiesel be met. production facilities are not as concentrated in the Midwest as ethanol plants. In 2005, approximately 75 million gallons of biodiesel were produced in 65 plants scattered How Is Biodiesel Used? across the United States (Figure 1). -
Global Production of Second Generation Biofuels: Trends and Influences
GLOBAL PRODUCTION OF SECOND GENERATION BIOFUELS: TRENDS AND INFLUENCES January 2017 Que Nguyen and Jim Bowyer, Ph. D Jeff Howe, Ph. D Steve Bratkovich, Ph. D Harry Groot Ed Pepke, Ph. D. Kathryn Fernholz DOVETAIL PARTNERS, INC. Global Production of Second Generation Biofuels: Trends and Influences Executive Summary For more than a century, fossil fuels have been the primary source of a wide array of products including fuels, lubricants, chemicals, waxes, pharmaceuticals and asphalt. In recent decades, questions about the impacts of fossil fuel reliance have led to research into alternative feedstocks for the sustainable production of those products, and liquid fuels in particular. A key objective has been to use feedstocks from renewable sources to produce biofuels that can be blended with petroleum-based fuels, combusted in existing internal combustion or flexible fuel engines, and distributed through existing infrastructure. Given that electricity can power short-distance vehicle travel, particular attention has been directed toward bio-derived jet fuel and fuels used in long distance transport. This report summarizes the growth of second-generation biofuel facilities since Dovetail’s 2009 report1 and some of the policies that drive that growth. It also briefly discusses biofuel mandates and second-generation biorefinery development in various world regions. Second generation biorefineries are operating in all regions of the world (Figure 1), bringing far more favorable energy balances to biofuels production than have been previously realized. Substantial displacement of a significant portion of fossil-based liquid fuels has been demonstrated to be a realistic possibility. However, in the face of low petroleum prices, continuing policy support and investment in research and development will be needed to allow biofuels to reach their full potential. -
Production of Biodiesel from Soybean and Jatropha Curcas Oils with KSF
Calgaroto et al. Sustainable Chemical Processes 2013, 1:17 http://www.sustainablechemicalprocesses.com/content/1/1/17 RESEARCH ARTICLE Open Access Production of biodiesel from soybean and Jatropha Curcas oils with KSF and amberlyst 15 catalysts in the presence of co-solvents Cleber Calgaroto1, Selma Calgaroto1, Marcio A Mazutti2*, Debora de Oliveira3, Sibele Pergher4 and J Vladimir de Oliveira3 Abstract Experimental conditions for the production of fatty acid methyl esters (FAME) from Jatropha curcas and soybean oils using two acid heterogeneous catalysts (Amberlyst15 and KSF) was optimized, in the presence of different co-solvents (THF, acetone, petroleum ether and n-hexane) in a batch reactor at fixed conditions: oil to methanol molar ratio (1:9), catalyst concentration (4.8 wt%), co-solvent mass ratio (1:1), 160°C and 6 hours. Results showed that the use of co-solvents led to a reduction in the FAME conversion. Higher conversions were obtained for Jatropha curcas compared to soybean oil. The Amberlyst15 presented an enhancement in the catalytic activity after regeneration, providing high biodiesel conversions compared to the fresh resin. The catalyst also presented stability after 5 cycles of reuse. Activity lost was observed for KSF after 2 successive batch experiments, probably due to a deactivation of acid sites. Keywords: Biodiesel, Jatropha curcas oil, Soybean oil, Reuse, Heterogeneous catalysis Background than 0.5 wt% and 2% (v/v), respectively, are used as reac- The global interest in renewable combustibles has been tants [10]. intensified nowadays, mainly due to the environmental To overcome these problems, several studies involving concerns related to the use of fossil fuels, reduction on the use of heterogeneous catalysts have been presented petroleum reserves and adaptation to recent legislation in the literature, including zeolites [11,12], clays [13], that poses the need of reduction in vehicles emissions mesoporous silica [14], heteropolyacids [15], resins [16] [1-4]. -
Propagation Methods for Jatropha Curcas
Annex 2: Growing Jatropha Including propagation methods for Jatropha curcas 2010 Author: Ab van Peer Supported by the Global Sustainable Biomass Fund of NL Agency Including propagation methods for Jatropha curcas By Ab van Peer MASc Contents of growing Jatropha curcas.L Page 2 Contents……………………………………………………………………………………………………………. 2 Preface……………………………………………………………………………………………………………… 3 Introduction on Jatropha ……………………………..………………………………………………… 4 Botanical description………………………………………………………………………………………… 5 MODULE 1-Soils Soils……………………………………………………….………………………………………………………… 6-13 Simple characterization of soils Soil structure and texture Nutrients Soil pH Soils and water Practical solutions for yield improvement MODULE 2-Propagation Selecting planting material……………………………………………………………………………… 14-21 The nursery………………………………………………………………………………………………………… Propagation methods Generative propagation……………………………………………………………… o Seeding. Direct seeding in the field . Direct seeding in poly bags . Seeding in seedbeds . Transplanting in poly bags . Transplanting from seedbed to field Vegetative propagation………………………………………………………………… o Hard cuttings . Transplanting in poly bags . Direct planting in the field o Soft cuttings o Tissue culture and Grafting MODULE 3 - Field Planting……………………………………………………………………………………………………………… 22-30 Pruning……………………………………………………………………………………………………………… ….. Flowering, fruiting and picking…………………………………………………………………….…… Alley cropping………………………………………………………………………………………………… Diseases………………………………………………………………………………………………………… MODULE 4 – Jatropha -
Biodiesel Production from Microalgae
J. Biol. Today's World. 2013 Feb; 2 (2): 38-42 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ Journal of Biology and Today's World ISSN 2322-3308 Journal home page: http://journals.lexispublisher.com/jbtw/ Received: 26 January 2013 • Accepted: 10 February 2013 Review doi:10.15412/J.JBTW. 01020204 Biodiesel Production from Microalgae Mahya Mohammadi, Morteza Azizollahi-Aliabadi* Department of Microbiology, Faculty of Basic Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran *correspondence should be addressed to Morteza Azizollahi-Aliabadi, Department of Microbiology, Faculty of Basic Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran; Tell: +98; Fax: +98; Email: [email protected]. ABSTRACT Technology for creating also applying biodiesel has been recognized for more than 50 years. Microalgae are a various type of prokaryotic as well as eukaryotic photosynthetic microorganisms that grow rapidly due to their simple structure. Biodiesel is considered as a renewable fuel because it can be obtained from the transformation of vegetable oils, cooking greases or animal fats. Microalgae are sunlight-driven cell factories that convert carbon dioxide to potential biofuels, foods, nourish also high-value bioactives. In addition, these photosynthetic microorganisms are beneficial in bioremediation applications nitrogen fixing biofertilizers. This article focuses on microalgae as a potential source -
A Study on Structural Features in Early Flower Development of Jatropha Curcas L
African Journal of Agricultural Research Vol. 6(2), pp. 275-284, 18 January, 2011 Available online at http://www.academicjournals.org/AJAR DOI: 10.5897/AJAR09.727 ISSN 1991-637X ©2011 Academic Journals Full Length Research Paper A study on structural features in early flower development of Jatropha curcas L. and the classification of its inflorescences Jun Wu, Yuan Liu, Lin Tang, Fuli Zhang and Fang Chen* College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China. Accepted 26 November, 2010 Jatropha curcas L. produces seed oil that is viewed as having tremendous potential as an economical alternative for diesel fuel. Seed yield, the main factor determining jatropha oil production, is highly associated with flower development, especially with the number of female flowers. However, little was known regarding floral development in this species. Accordingly, studies were undertaken to develop more information on the developmental process of floral organs. The early floral development was divided into 12 phases. The present study illustrated that, the sex differentiation of male or female flowers occurred in phase-VII; earlier phases presented unapparent structural differences. The male flowers always had unisexual tissues during floral development. In contrast, early development of female flowers presented bisexual tissues, with male sexual degradation occurring at the later developmental phases. There was significant location specificity with respect to the inflorescence of male and female flowers. Based on this, the present study combined the total number of female flowers, and divided the inflorescence into three types, which had significant differences in the number of female flowers; they likewise presented different probabilities of occurrence in terms of different growing seasons. -
Novel Mutant Camelina and Jatropha As Valuable Feedstocks for Biodiesel
www.nature.com/scientificreports OPEN Novel mutant camelina and jatropha as valuable feedstocks for biodiesel production Muhammad Mahran Aslam1, Asif Ali Khan1,2, Hafza Masooma Naseer Cheema1, Muhammad Asif Hanif3*, Muhammad Waqar Azeem3 & Muhammad Abubakkar Azmat4 Novel mutant camelina has become a crop of interest inspired by its short growing season, low harvesting costs and high oil composition. Despite those advantages, limited research has been done on novel mutant lines to determine applicability for biodiesel production. Jatropha is an extremely hardy, frugal and high oil yielding plant species. The major aim of the present study was not only to compare biodiesel production from jatropha and camelina but was also to test the efcacy of camelina mutant lines (M6 progenies) as superior feedstock. The biodiesel yield from camelina oil and jatropha oil was 96% and 92%, respectively. The gas chromatographic analysis using fame ionization detector (GC-FID) showed that mutant camelina oil biodiesel sample contain major amount of oleic acid (46.54 wt%) followed by linolenic acid (20.41 wt%) and linoleic acid (16.55 wt%). Jatropha biodiesel found to contain major amount of oleic acid (45.03 wt%) followed by linoleic acid (25.07 wt%) and palmitic acid (19.31 wt%). The fuel properties of produced biodiesel were found in good agreement with EN14214 and ASTM D6751 standards. The mutant camelina lines biodiesel have shown comparatively better fuel properties than jatropha. It has shown low saponifcation value (120.87–149.35), high iodine value (130.2–157.9) and better cetane number (48.53–59.35) compared to jatropha biodiesel which have high saponifcation value (177.39–198.9), low iodine value (109.7– 123.1) and lesser cetane number (47.76–51.26). -
Photosynthesis and Antioxidant Activity in Jatropha Curcas L. Under Salt Stress
2012 BRAZILIAN SOCIETY OF PLANT PHYSIOLOGY RESEARCH ARTICLE Photosynthesis and antioxidant activity in Jatropha curcas L. under salt stress Mariana Lins de Oliveira Campos1, Bety Shiue de Hsie1, João Antônio de Almeida Granja1, Rafaela Moura Correia1, Jarcilene Silva de Almeida-Cortez1, Marcelo Francisco Pompelli1* 1Plant Ecophysiology Laboratory, Federal University of Pernambuco, Department of Botany, Recife, PE, Brazil. *Corresponding author: [email protected] Received: 11 August 2011; Accepted: 10 May 2012 ABSTRACT Biodiesel is an alternative to petroleum diesel fuel. It is a renewable, biodegradable, and nontoxic biofuel. Interest in the production of biodiesel from Jatropha curcas L. seeds has increased in recent years, but the ability of J. curcas to grow in salt-prone areas, such as the Caatinga semiarid region, has received considerably meager attention. The aim of this study was to identify the main physiological processes that can elucidate the pattern of responses of J. curcas irrigated with saline water, which commonly occurs in the semiarid Caatinga region. This study measured the activity of the antioxidant enzymes involved in the scavenging of reactive oxygen species, which include catalase (CAT) and ascorbate peroxidase (APX), as well as malondialdehyde (MDA) levels. The levels of chlorophyll (Chl), carotenoids, amino acids, proline, and soluble proteins were also analyzed. The net carbon assimilation rate (PN), stomata conductance (gs), and transpiration rate (E) decreased with salt stress. The activities of CAT and APX were decreased, while H2O2 and MDA levels as well as electrolyte leakage were significantly increased in salt-stressed plants compared to the untreated ones. These observations suggest that the ability of J. -
Modeled Spatial Assessment of Biomass Productivity and Technical Potential of Miscanthus × Giganteus, Panicum Virgatum L., and Jatropha on Marginal Land in China
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aberdeen University Research Archive Received: 7 June 2019 | Revised: 28 November 2019 | Accepted: 7 January 2020 DOI: 10.1111/gcbb.12673 ORIGINAL RESEARCH Modeled spatial assessment of biomass productivity and technical potential of Miscanthus × giganteus, Panicum virgatum L., and Jatropha on marginal land in China Bingquan Zhang1 | Astley Hastings2 | John C. Clifton-Brown3 | Dong Jiang4 | André P. C. Faaij1 1Energy and Sustainability Research Institute Groningen, University of Abstract Groningen, Groningen, The Netherlands This article identifies marginal land technically available for the production of energy 2Institute of Biological and Environmental crops in China, compares three models of yield prediction for Miscanthus × giganteus, Science, University of Aberdeen, Aberdeen, Panicum virgatum L. (switchgrass), and Jatropha, and estimates their spatially spe- UK 3 cific yields and technical potential for 2017. Geographic Information System (GIS) Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth analysis of land use maps estimated that 185 Mha of marginal land was technically University, Aberystwyth, UK available for energy crops in China without using areas currently used for food pro- 4 Institute of Geographic Sciences and duction. Modeled yields were projected for Miscanthus × giganteus, a GIS-based Natural Resources Research, Chinese Academy of Sciences, Beijing, China Environmental Policy Integrated Climate model for switchgrass and Global Agro- Ecological Zone model for Jatropha. GIS analysis and MiscanFor estimated more Correspondence than 120 Mha marginal land was technically available for Miscanthus with a total Bingquan Zhang, Energy and Sustainability Research Institute Groningen, University potential of 1,761 dry weight metric million tonne (DW Mt)/year. -
Chinese Tallow Tree (Triadica Sebifera)
THE WEEDY TRUTH ABOUT BIOFUELS TIM LOW & CAROL BOOTH Invasive Species Council October 2007 Title: The Weedy Truth About Biofuels Authors: Tim Low & Carol Booth Published by the Invasive Species Council, Melbourne October 2007 Updated March 2008 The INVASIVE SPECIES COUNCIL is a non-government organisation that works to protect the Australian environment from invasive pest species. Address: PO Box 166, Fairfield, Vic 3078 Email: [email protected] Website: www.invasives.org.au Further copies of this report can be obtained from the ISC website at www.invasives.org.au Cover photo: Spartina alterniflora, by the US Department of Agriculture CCOONNTTEENNTTSS Introduction ............................................................................................................................ 1 What are biofuels? ................................................................................................................ 2 The Biofuel industry .............................................................................................................. 4 The problems with biofuels ................................................................................................ 6 Social and economic issues ............................................................................................ 6 Greenhouse issues ............................................................................................................ 7 Biodiversity issues ........................................................................................................... -
Biochars and Their Use As Transesterification Catalysts for Biodiesel Production
catalysts Review Biochars and Their Use as Transesterification Catalysts for Biodiesel Production: A Short Review John Vakros Department of Chemistry, University of Patras, GR 26504 Patras, Greece; [email protected]; Tel.: +30-26-1099-7143 Received: 16 October 2018; Accepted: 14 November 2018; Published: 20 November 2018 Abstract: Biodiesel can be a significant alternative for diesel. Usually, it is produced through transesterification with a base catalyst. Using heterogeneous catalysts for transesterification, the process can be more efficient. Among the possible catalysts that can be used, biochars combine high performance for transesterification and valorization of waste biomass. Biochars are cheap materials, and are easy to activate through chemical treatment with acid or base solutions. In this short review, the application of biochar as solid heterogeneous catalysts for transesterification of lipids to produce biodiesel is discussed. Keywords: biodiesel; biochar; acid modification; base modification; transesterification; pseudocatalytic transesterification 1. Introduction Two great challenges that people are called to face in our time is to meet the increasing demand for energy and to reduce the wastes released in the environment. The energy challenge is approached with CO2 neutral fuels like biofuels. Among them, biodiesel has significant advantages and it is preferable for using in existing engines and transport infrastructures. Biodiesel is usually produced through transesterification/esterification of lipids [1]. This process requires the presence of a catalyst. On the other hand, biomass is a class of solid wastes with interesting properties. Biomass can be used directly as fuel, or through gasification or pyrolysis, and produce valuable products. What is more attractive is that the by-product of the pyrolysis process is a carbon rich solid called biochar.