Table S1. Water Level Change Rates of Lakes/Reservoirs in the MLYB

Total Page:16

File Type:pdf, Size:1020Kb

Table S1. Water Level Change Rates of Lakes/Reservoirs in the MLYB Table S1. Water level change rates of lakes/reservoirs in the MLYB during 2002~2017 (“*” indicates a significance level of 0.1 (P<0.1)). Mean Area Start level End level Rates No Lake name Campaigns inliers of Start date End date R^2 P (km2) (m) (m) (m/y) campaigns 1 Wu Lake1 64.844 113 7 2002/7/15 25.372 2017/9/8 22.642 -0.097 0.075 0.003* East Dongting 2 841.366 83 25 2003/10/14 25.932 2017/12/4 22.939 0.026 0.002 0.684 Lake South Dongting 3 435.826 253 14 2002/6/13 28.920 2017/6/18 29.203 0.009 0.001 0.675 Lake 4 Poyang Lake 2835.484 319 38 2002/6/17 14.260 2017/7/8 18.938 0.019 0.002 0.403 5 Shijiu Lake 183.709 45 21 2003/10/31 5.982 2017/11/20 5.616 0.108 0.062 0.099* 6 Chang Lake 123.993 161 5 2002/6/13 32.111 2017/5/22 32.713 -0.081 0.126 0.000* 7 Wu Lake 20.166 66 10 2002/7/9 19.198 2017/9/6 18.783 -0.035 0.014 0.351 8 Dong Lake 32.503 88 6 2002/9/17 20.860 2017/10/5 20.685 -0.026 0.078 0.009* 9 Chi Lake 41.705 101 5 2002/7/6 15.074 2017/8/6 15.346 -0.007 0.001 0.793 10 Hou Lake 14.460 66 4 2002/7/31 18.551 2017/4/19 18.343 0.001 0.000 0.909 11 Futou Lake 101.414 92 9 2002/7/9 19.417 2017/7/12 20.033 0.004 0.000 0.889 12 Liangzi Lake 298.496 152 22 2002/9/4 17.787 2017/9/6 17.779 0.004 0.000 0.803 13 Ci Lake 9.126 75 5 2002/6/20 16.882 2016/4/13 17.320 0.006 0.006 0.524 14 Lu Lake 45.395 38 9 2004/5/18 18.877 2017/4/19 19.539 0.039 0.022 0.378 15 Yandong Lake 5.040 17 5 2004/6/20 18.907 2017/3/21 18.847 0.034 0.156 0.117 16 Tangxun Lake 44.783 146 8 2002/7/9 19.481 2017/7/12 19.733 0.045 0.116 0.000* 17 Wang Lake 45.109 23 11 2004/3/10 11.859 2017/3/18 12.223 0.041 0.066 0.235 18 Ce Lake 9.085 79 6 2002/9/20 16.576 2017/10/3 16.486 0.069 0.121 0.002* 19 Sanchagang Lake 23.298 31 6 2004/11/6 15.981 2017/11/30 17.236 0.090 0.199 0.012* 20 Wangtian Lake 9.893 42 4 2003/10/25 15.901 2017/1/22 16.548 0.116 0.359 0.000* 21 Tuandun Lake 8.916 15 4 2004/5/18 18.523 2017/4/19 19.243 0.109 0.237 0.066* 22 Nan Lake 8.987 60 3 2002/7/31 20.417 2016/7/9 21.946 0.128 0.616 0.000* 23 Datong Lake 81.696 46 13 2002/6/13 27.653 2017/4/22 26.666 -0.013 0.018 0.377 24 Dong Lake1 21.021 69 5 2002/7/12 27.308 2017/10/9 27.336 -0.007 0.003 0.635 25 Lu Lake1 107.301 35 20 2003/3/7 26.261 2017/3/24 26.131 0.001 0.000 0.965 26 Tuxiao Lake 9.744 79 4 2002/7/31 32.470 2017/9/12 32.051 0.007 0.001 0.841 27 Noname Lake2 6.827 19 8 2003/10/26 34.617 2017/12/6 34.877 0.014 0.031 0.468 28 Taxi Lake 8.810 91 6 2002/6/13 27.137 2017/7/16 26.854 0.018 0.027 0.117 29 Xi Lake2 9.030 54 3 2002/7/31 32.480 2017/6/19 29.521 0.035 0.023 0.271 30 Daye Lake 60.204 110 4 2002/7/25 17.162 2017/7/10 16.807 0.037 0.016 0.185 31 Maoyan Lake 19.637 81 5 2002/7/31 32.487 2017/9/12 32.086 0.062 0.067 0.020* 32 Tuantou Lake 8.775 16 3 2003/11/2 27.879 2016/9/7 30.426 0.203 0.440 0.005* 33 Junhsan Lake 156.935 112 28 2002/6/23 16.032 2017/8/4 17.005 0.004 0.001 0.776 34 Yao Lake 18.551 67 3 2002/6/17 15.553 2017/4/14 16.370 0.053 0.126 0.003* 35 Chishan Lake 7.296 75 3 2002/10/13 9.624 2017/10/22 7.830 -0.102 0.353 0.000* 36 Nanyi Lake 148.602 72 11 2002/5/26 9.656 2017/5/5 6.845 -0.076 0.111 0.004* 37 Taibai Lake 31.529 36 10 2003/11/1 12.025 2017/10/30 11.794 0.003 0.000 0.906 38 Bo Lake 128.408 109 13 2002/6/17 12.319 2017/5/11 10.472 0.007 0.001 0.805 39 Chao Lake 786.813 260 37 2002/7/3 8.876 2017/7/4 7.129 0.014 0.010 0.101 40 Daguan Lake 262.028 137 21 2002/6/17 12.121 2017/6/9 10.708 0.021 0.007 0.336 41 Gucheng Lake 57.346 70 10 2002/10/13 7.595 2016/12/16 7.155 0.054 0.048 0.069* 42 Longgan Lake 321.311 66 20 2003/11/15 11.131 2017/12/25 10.185 0.062 0.047 0.082* 43 Baidang Lake 37.285 76 5 2002/10/16 9.079 2017/11/24 8.809 0.073 0.053 0.046* 44 Wuchang Lake 77.669 53 9 2004/3/12 9.276 2017/4/12 10.548 0.103 0.123 0.010* 45 Langan Lake 7.138 32 3 2002/9/17 12.872 2017/8/4 12.832 0.104 0.115 0.058* 46 Dongjiu Lake 8.295 56 2 2002/6/14 4.270 2017/3/9 3.803 -0.044 0.033 0.183 47 Cao Lake 9.338 64 4 2002/5/26 3.803 2017/6/28 2.555 -0.043 0.049 0.080* 48 Ge Lake 205.313 114 26 2002/6/14 2.356 2017/5/3 2.423 0.006 0.008 0.339 49 Tai Lake 2419.008 307 75 2002/6/27 2.490 2017/6/28 2.460 0.008 0.016 0.028* 50 Dianshan Lake 62.341 33 13 2003/11/5 1.808 2017/11/16 2.023 0.028 0.296 0.001* 51 Ezhendang Lake 5.179 54 4 2004/5/30 2.655 2017/6/28 2.402 0.030 0.101 0.019* 52 Xijiu Lake 11.116 18 3 2004/10/27 2.340 2017/11/18 3.165 0.059 0.122 0.155 Yahekou 53 38.964 53 9 2003/10/26 174.818 2017/12/4 174.399 -0.510 0.400 0.000* Reservoir 54 Wuling Reservoir 5.682 28 4 2002/10/25 61.025 2016/11/1 61.634 -0.368 0.133 0.056* 55 Shimen Reservoir 6.201 63 5 2003/1/25 85.210 2017/12/4 88.618 -0.285 0.055 0.064* Xionghe 56 6.025 40 3 2002/9/4 116.855 2017/12/4 123.649 -0.239 0.106 0.040* Reservoir Duangang 57 5.084 21 4 2004/5/24 51.978 2017/7/14 53.643 -0.104 0.037 0.406 Reservoir 58 Huiting Reservoir 17.575 19 6 2003/11/2 81.856 2017/11/5 84.585 0.096 0.017 0.592 Danjiangkou 59 431.874 99 19 2002/6/13 141.523 2017/6/19 157.227 0.375 0.059 0.016* Reservoir 60 Fushui Reservoir 45.378 35 7 2003/5/1 50.724 2017/5/15 51.886 0.046 0.004 0.722 Mingshan 61 6.723 15 2 2004/10/25 84.574 2017/10/3 87.545 0.166 0.102 0.246 Reservoir 62 Niuche Reservoir 6.017 77 5 2002/10/25 68.881 2017/11/1 69.341 0.475 0.340 0.000* Taifumiao 63 16.590 51 3 2002/10/25 96.391 2017/9/12 91.404 -0.513 0.312 0.000* Reservoir 64 Tieshan Reservoir 27.096 15 8 2004/3/13 86.646 2017/6/16 91.547 0.352 0.346 0.021* Dongjiang 65 110.645 32 10 2002/10/31 283.002 2017/12/2 271.345 0.849 0.171 0.019* Reservoir 66 Zhelin Reservoir 198.690 114 8 2002/11/23 62.047 2017/11/28 61.141 0.258 0.198 0.000* 67 Shaheji Reservoir 9.940 38 3 2003/2/17 36.650 2017/12/21 36.054 -0.127 0.259 0.001* Longhekou 68 37.894 92 5 2002/6/17 63.160 2017/7/6 60.656 0.257 0.204 0.000* Reservoir Taipinghu 69 49.021 64 7 2002/8/10 113.395 2017/8/29 113.745 0.412 0.319 0.000* Reservoir 70 Shahe Reservoir 7.929 17 6 2005/10/25 19.053 2017/7/29 18.449 0.099 0.166 0.105 Table S2.
Recommended publications
  • Spatiotemporal Evolution of Lakes Under Rapid Urbanization: a Case Study in Wuhan, China
    water Article Spatiotemporal Evolution of Lakes under Rapid Urbanization: A Case Study in Wuhan, China Chao Wen 1, Qingming Zhan 1,* , De Zhan 2, Huang Zhao 2 and Chen Yang 3 1 School of Urban Design, Wuhan University, Wuhan 430072, China; [email protected] 2 China Construction Third Bureau Green Industry Investment Co., Ltd., Wuhan 430072, China; [email protected] (D.Z.); [email protected] (H.Z.) 3 College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; [email protected] * Correspondence: [email protected]; Tel.: +86-139-956-686-39 Abstract: The impact of urbanization on lakes in the urban context has aroused continuous attention from the public. However, the long-term evolution of lakes in a certain megacity and the heterogeneity of the spatial relationship between related influencing factors and lake changes are rarely discussed. The evolution of 58 lakes in Wuhan, China from 1990 to 2019 was analyzed from three aspects of lake area, lake landscape, and lakefront ecology, respectively. The Multi-Scale Geographic Weighted Regression model (MGWR) was then used to analyze the impact of related influencing factors on lake area change. The investigation found that the total area of 58 lakes decreased by 15.3%. A worsening trend was found regarding lake landscape with the five landscape indexes of lakes dropping; in contrast, lakefront ecology saw a gradual recovery with variations in the remote sensing ecological index (RSEI) in the lakefront area. The MGWR regression results showed that, on the whole, the increase in Gross Domestic Product (GDP), RSEI in the lakefront area, precipitation, and humidity Citation: Wen, C.; Zhan, Q.; Zhan, contributed to lake restoration.
    [Show full text]
  • Seasonal Succession of Bacterial Communities in Three Eutrophic Freshwater Lakes
    International Journal of Environmental Research and Public Health Case Report Seasonal Succession of Bacterial Communities in Three Eutrophic Freshwater Lakes Bin Ji, Cheng Liu, Jiechao Liang and Jian Wang * Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; [email protected] (B.J.); [email protected] (C.L.); [email protected] (J.L.) * Correspondence: [email protected]; Tel.: +86-27-68893616 Abstract: Urban freshwater lakes play an indispensable role in maintaining the urban environment and are suffering great threats of eutrophication. Until now, little has been known about the seasonal bacterial communities of the surface water of adjacent freshwater urban lakes. This study reported the bacterial communities of three adjacent freshwater lakes (i.e., Tangxun Lake, Yezhi Lake and Nan Lake) during the alternation of seasons. Nan Lake had the best water quality among the three lakes as reflected by the bacterial eutrophic index (BEI), bacterial indicator (Luteolibacter) and functional prediction analysis. It was found that Alphaproteobacteria had the lowest abundance in summer and the highest abundance in winter. Bacteroidetes had the lowest abundance in winter, while Planctomycetes had the highest abundance in summer. N/P ratio appeared to have some relationships with eutrophication. Tangxun Lake and Nan Lake with higher average N/P ratios (e.g., N/P = 20) tended to have a higher BEI in summer at a water temperature of 27 ◦C, while Yezhi Lake with a relatively lower average N/P ratio (e.g., N/P = 14) tended to have a higher BEI in spring and autumn at a water temperature of 9–20 ◦C.
    [Show full text]
  • Environmental Changes in Chaohu Lake (Southeast, China) Since the Mid 20Th Century: the Interactive Impacts of Nutrients, Hydrology and Climate
    Limnologica 43 (2013) 10–17 Contents lists available at SciVerse ScienceDirect Limnologica journal homepage: www.elsevier.com/locate/limno Environmental changes in Chaohu Lake (southeast, China) since the mid 20th century: The interactive impacts of nutrients, hydrology and climate Xu Chen a,b, Xiangdong Yang a,∗, Xuhui Dong a, Enfeng Liu a a State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China b Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, People’s Republic of China article info abstract Article history: Chaohu Lake, the fifth largest freshwater lake in the Yangtze floodplain, is faced with multiple stresses Received 21 June 2011 from anthropogenic disturbances and climate change. To explore the ecological changes in Chaohu Lake Received in revised form 31 October 2011 since the mid 20th century, we examined diatoms, geochemical indicators and particle size in 210Pb- Accepted 6 March 2012 dated sediment core from the lake. Diatom succession revealed that the lake had switched to a eutrophic Available online 11 June 2012 state since the late 1970s. Redundancy analysis using limnological data, hydrological and meteorological variables showed that sedimentary total phosphorus (TP) and total organic carbon (TOC), annual mean Keywords: temperature, annual mean wind velocity, and water-level amplitude (WLA) were five significant factors Diatoms Nutrient loading influencing diatom succession. Diatom assemblages from 1950 till 1978 were driven by WLA and wind. Hydrological alteration The establishment of Chaohu Dam baffled hydrological connectivity between the lake and the Yangtze Climate warming River in 1962, and reducing water exchange-induced flow.
    [Show full text]
  • Supplement of a Systematic Examination of the Relationships Between CDOM and DOC in Inland Waters in China
    Supplement of Hydrol. Earth Syst. Sci., 21, 5127–5141, 2017 https://doi.org/10.5194/hess-21-5127-2017-supplement © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Supplement of A systematic examination of the relationships between CDOM and DOC in inland waters in China Kaishan Song et al. Correspondence to: Kaishan Song ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 3.0 License. Figure S1. Sampling location at three rivers for tracing the temporal variation of CDOM and DOC. The average widths at sampling stations are about 1020 m, 206m and 152 m for the Songhua River, Hunjiang River and Yalu River, respectively. Table S1 the sampling information for fresh and saline water lakes, the location information shows the central positions of the lakes. Res. is the abbreviation for reservoir; N, numbers of samples collected; Lat., latitude; Long., longitude; A, area; L, maximum length in kilometer; W, maximum width in kilometer. Water body type Sampling date N Lat. Long. A(km2) L (km) W (km) Fresh water lake Shitoukou Res. 2009.08.28 10 43.9319 125.7472 59 17 6 Songhua Lake 2015.04.29 8 43.6146 126.9492 185 55 6 Erlong Lake 2011.06.24 6 43.1785 124.8264 98 29 8 Xinlicheng Res. 2011.06.13 7 43.6300 125.3400 43 22 6 Yueliang Lake 2011.09.01 6 45.7250 123.8667 116 15 15 Nierji Res. 2015.09.16 8 48.6073 124.5693 436 83 26 Shankou Res.
    [Show full text]
  • Planning Strategy and Practice of Low-Carbon City Construction , 46 Th ISOCARP Congress 2010
    Zhang Wentong, Planning Strategy and Practice of Low-carbon City Construction , 46 th ISOCARP Congress 2010 Planning Strategy and Practice of Low-carbon City Construction Development in Wuhan, China Zhang Wentong Yidong Hu I. Exploration on Planning of Low-carbon City Construction under the Global Context The concept of low-carbon is proposed in the context of responding to global climate change and advocating reducing the discharge of greenhouse gases in human’s production activities. While in the urban area, the low-carbon city is evolved gradually from the concept of ecological city, and these two can go hand in hand. The connotation of low-carbon city has also changed from the environment subject majoring in reducing carbon emission to a comprehensive subject including society, culture, economy and environment. Low-carbon city has become a macro-system synthesizing low-carbon technology, low-carbon production & consumption mode and mode of operation of low-carbon city. At last it will be amplified to the entire level of ecological city. The promotion of low-carbon city construction has a profound background of times and practical significance. Just as Professor Yu Li from Cardiff University of Great Britain has summed up, at least there are reasons from three aspects for the promotion of low-carbon city construction: firstly, reduce the emission of carbon through the building of ecological cities and return to a living style with the harmonious development between man and the nature; secondly, different countries hope to obtain a leading position in innovation through exploration on ecological city technology, idea and development mode and to lead the construction of sustainable city of the next generation; thirdly, to resolve the main problems in the country and local areas as well as the problem of “global warming”.
    [Show full text]
  • Determination of Geochronology and Sedimentation Rates of Shallow Lakes in the Middle Yangtze Reaches Using 210Pb, 137Cs and Spheroidal Carbonaceous Particles
    Determination of geochronology and sedimentation rates of shallow lakes in the middle Yangtze reaches using 210Pb, 137Cs and spheroidal carbonaceous particles Xu Chen1*, Qianglong Qiao1, Suzanne McGowan2, Linghan Zeng1,2, Mark A Stevenson3, Lei Xu1, Chunling Huang1, Jia Liang1, Yanmin Cao4 1State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China 2School of Geography, University of Nottingham, Nottingham NG7 2RD, UK 3School of Natural and Environmental Sciences, Newcastle University, Newcastle- upon-Tyne NE1 7RU, UK 4College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China *Corresponding author; e-mail address: [email protected] https://doi.org/10.1016/j.catena.2018.11.041 Catena Abstract: Accurate chronologies for recent sediments of shallow lakes in the Yangtze floodplain are critical to calibrate proxy records for reconstructing environmental changes during the past century. This study presents the results of detailed 210Pb analysis from eight lake sediment cores collected from the middle Yangtze reaches, 210 southeast China. Unsupported Pb activities generally declined exponentially with mass depth in the eight cores. The chronologies and sedimentation rates for the sediment cores were calculated using different 210Pb-based mathematical models. The 137Cs chronomarker (i.e. the 1963 fallout peak) and the spheroidal carbonaceous particle (SCP) chronomarker (i.e. the start of the rapid increase in 1970 AD) were selected to validate the 210Pb dating. Sedimentation rates derived from different models were validated using historical data including lake area, arable land area, sediment discharge and reservoir volume in the Yangtze basin. The SCP-corrected CRS (constant rate of supply) model performs better than other models, based on validation using historical documents in the Yangtze basin.
    [Show full text]
  • Conservation Status Assessment and a New Method for Establishing Conservation Priorities for Freshwater Mussels
    Received: 8 March 2018 Revised: 9 November 2019 Accepted: 17 December 2019 DOI: 10.1002/aqc.3298 RESEARCH ARTICLE Conservation status assessment and a new method for establishing conservation priorities for freshwater mussels (Bivalvia: Unionida) in the middle and lower reaches of the Yangtze River drainage Xiongjun Liu1,2 | Xue Yang3 | David T. Zanatta4 | Manuel Lopes-Lima5 | Arthur E. Bogan6 | Alexandra Zieritz7,8 | Shan Ouyang3 | Xiaoping Wu1,2,3 1Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Resources Abstract Environmental and Chemical Engineering, 1. The freshwater mussel (Unionida) fauna of the Yangtze River is among the most Nanchang University, Nanchang, People's Republic of China diverse on Earth. In recent decades, human activities have caused habitat degra- 2School of Resources Environmental & dation in the river, and previous studies estimated that up to 80% of the mussel Chemical Engineering, Nanchang University, species in the Yangtze River are Threatened or Near Threatened with extinction. Nanchang, People's Republic of China 3School of Life Sciences, Nanchang University, However, a comprehensive and systematic evaluation of the conservation status Nanchang, People's Republic of China of this fauna has yet to be completed. 4 Central Michigan University, Institute for 2. This study evaluated the conservation status of the 69 recognized freshwater Great Lakes Research, Mount Pleasant, MI mussel species in the middle and lower reaches of the Yangtze River, using the 5CIBIO/InBIO – Research Center
    [Show full text]
  • Technical Assistance Consultant's Report People's Republic of China
    Technical Assistance Consultant’s Report Project Number: 42011 November 2009 People’s Republic of China: Wuhan Urban Environmental Improvement Project Prepared by Easen International Co., Ltd in association with Kocks Consult GmbH For Wuhan Municipal Government This consultant’s report does not necessarily reflect the views of ADB or the Government concerned, and ADB and the Government cannot be held liable for its contents. (For project preparatory technical assistance: All the views expressed herein may not be incorporated into the proposed project’s design. ADB TA No. 7177- PRC Project Preparatory Technical Assistance WUHAN URBAN ENVIRONMENTAL IMPROVEMENT PROJECT Final Report November 2009 Volume I Project Analysis Consultant Executing Agency Easen International Co., Ltd. Wuhan Municipal Government in association with Kocks Consult GmbH ADB TA 7177-PRC Wuhan Urban Environmental Improvement Project Table of Contents WUHAN URBAN ENVIRONMENTAL IMPROVEMENT PROJECT ADB TA 7177-PRC FINAL REPORT VOLUME I PROJECT ANALYSIS TABLE OF CONTENTS Abbreviations Executive Summary Section 1 Introduction 1.1 Introduction 1-1 1.2 Objectives of the PPTA 1-1 1.3 Summary of Activities to Date 1-1 1.4 Implementation Arrangements 1-2 Section 2 Project Description 2.1 Project Rationale 2-1 2.2 Project Impact, Outcome and Benefits 2-2 2.3 Brief Description of the Project Components 2-3 2.4 Estimated Costs and Financial Plan 2-6 2.5 Synchronized ADB and Domestic Processes 2-6 Section 3 Technical Analysis 3.1 Introduction 3-1 3.2 Sludge Treatment and Disposal Component 3-1 3.3 Technical Analysis for Wuhan New Zone Lakes/Channels Rehabilitation, Sixin Pumping Station and Yangchun Lake Secondary Urban Center Lake Rehabilitation 3-51 3.4 Summary, Conclusions and Recommendations 3-108 Section 4 Environmental Impact Assessment 4.1 Status of EIAs and SEIA Approval 4-1 4.2 Overview of Chinese EIA Reports 4-1 Easen International Co.
    [Show full text]
  • Diatom Community Succession and Nutrient Evolution Recorded from a Sediment Core of the Longgan Lake, a Large Shallow Lake in East China
    第 30 卷 第 6 期 水 生 生 物 学 报 Vol . 30 ,No . 6 2 0 0 6 年 1 1 月 ACTA HYDROBIOLOGICA SINICA Nov. , 2 0 0 6 DIATOM COMMUNITY SUCCESSION AND NUTRIENT EVOLUTION RECORDED FROM A SEDIMENT CORE OF THE LONGGAN LAKE, A LARGE SHALLOW LAKE IN EAST CHINA DONG Xu2Hui and YANG Xiang2Dong ( Nanjing Institute of Geography &Limnology , the Chinese Academy of Sciences , Nanjing 210008 , China) Abstract :The Longgan Lake is a shallow mesotrophic macrophyted2ominated lake. According to the high2resolution diatom research from its sediment core , the diatom community succession was built , and the total phosphorus (TP) and chlorophyll2a (Chl2a) con2 centration were quantitatively reconstructed for the past 2000 years , based on the diatom2TP and diatom2Chla transfer functions. The shifts of diatom assemblages also mirrored the developments of aquatic plant , reflecting the characters of aquatic ecosystem evolution. The inferred epilimnetic TP concentration fluctuated within a small range of 36 to 62μg/ L , indicating the lake remained a relative stable mesotrophic status in the long historical period. The periodical variations of the diatom assemblage and trophic sta2 tus suggest a mitigating function of shallow macrophyte2dominated lakes to nutrient input. The changes of lakesptrophic status donpt linearly respond to the human disturbance in the catchment. The dynamics mechanism of phosphorus in macrophyte2dominated lakes , as inferred from diatoms , will provide a scientific foundation for the prediction of trophic status change in a shallow lake , as well as the lake ecological restoration and management decisions. Key words :Diatom assemblage ; Nutrient ; Quantitative reconstruction ; Aquatic macrophyte ; Longgan Lake CLC number :X172 Document code :A Article ID :100023207(2006) 0620702209 The importance of aquatic vegetation to the ecologi2 on the environment reconstruction based on the sediment cal restoration has been recognized commonly by limnolo2 biomarker such as diatom have made rapid gists and lake managements[1 —4 ] .
    [Show full text]
  • Next Tier 3 Suppliers 2020
    TIER 3 SUPPLIER SITES - Produced March 2021 SUPPLIER NAME ADDRESS SPINNING KNITTING WEAVING DYEING PRINTING Bangladesh A One Polar Ltd Vulta, Rupgonj, Nrayangonj ✓ ✓ ✓ AA Spinning Mill Ltd Nagar Howla, Sreepur, Gazipur District, Dhaka ✓ Aaron Denim Ltd Sukran, Mirzanagar, Nobinagar, Savar, Dhaka 1347 ✓ ✓ Abanti Colour Tex Ltd S A-646, Shashongaon, Enayetnagar, Fatullah, Narayanganj 1400 ✓ ✓ ✓ ACS Textiles Ltd Tetlabo, Rupgonj, Ward 3, Narayangonj, Dhaka 1400 ✓ ✓ ✓ Adury Knit Composite Ltd Karadi, Shibpur, Narsingdi Narshingdi Dhaka ✓ ✓ ✓ Akij Textile Mills Ltd Golora, Charkhanda, Manikgonj ✓ ✓ ✓ Al Haj Karim Textiles Ltd Kalampur, Dhamrai, Savar, Dhaka 1351 ✓ Alim Knit BD Ltd Nayapara, Kashimpur, Zitar Moor, Gazipur ✓ ✓ ✓ Alliance Knit Composite Ltd 8/118, Pukurpar, Zirabo, Ashulia, Savar, Dhaka-1341 ✓ ✓ ✓ Aman Spinning Mills Ltd Ashulia Highway, Zirabo, Ashulia, Savar, Dhaka ✓ Amantex Limited Boiragi Challa, Shreepur, Gazipur 1740, Dhaka ✓ ✓ ✓ Amber Cotton Mills Ltd Banglabazar, Bahadurpur, Razendrapur, Gazipur, Dhaka ✓ Amber Denim Mills Ltd (Unit 2) Unit 2, Banglabazar, Bahadurpur, Razendrapur, Gazipur, Dhaka ✓ ✓ Anjum Textile Mills Birampur, Madhobdi, Norshingd ✓ ✓ Anwar Silk Mills Ltd 186 Tongi Industrial Area, Tongi, Gazipur ✓ Apex Weaving and Finishing Mills Ltd East Chundora, Shafipur, Kaliakoar, Gazipur 1751 ✓ ✓ ✓ APS Group Kamar Gaon Pubail Road Gazipur ✓ ✓ Argon Denims Ltd Beraider Chala Po Gilaberaid Ps Sripur, Gazipur, 1742, Gazipur ✓ ✓ ✓ Arif Spinning Mill Ltd Mastarbari, Jamirdia, Valuka, Mymensingh ✓ Armada Spinning Mills
    [Show full text]
  • Report on the State of the Environment in China 2016
    2016 The 2016 Report on the State of the Environment in China is hereby announced in accordance with the Environmental Protection Law of the People ’s Republic of China. Minister of Ministry of Environmental Protection, the People’s Republic of China May 31, 2017 2016 Summary.................................................................................................1 Atmospheric Environment....................................................................7 Freshwater Environment....................................................................17 Marine Environment...........................................................................31 Land Environment...............................................................................35 Natural and Ecological Environment.................................................36 Acoustic Environment.........................................................................41 Radiation Environment.......................................................................43 Transport and Energy.........................................................................46 Climate and Natural Disasters............................................................48 Data Sources and Explanations for Assessment ...............................52 2016 On January 18, 2016, the seminar for the studying of the spirit of the Sixth Plenary Session of the Eighteenth CPC Central Committee was opened in Party School of the CPC Central Committee, and it was oriented for leaders and cadres at provincial and ministerial
    [Show full text]
  • Potential Indicator Value of Subfossil Gastropods in Assessing the Ecological Health of the Middle and Lower Reaches of the Yangtze River Floodplain System (China)
    geosciences Article Potential Indicator Value of Subfossil Gastropods in Assessing the Ecological Health of the Middle and Lower Reaches of the Yangtze River Floodplain System (China) Giri Kattel 1,2,3,*, Yongjiu Cai 1, Xiangdong Yang 1, Ke Zhang 1, Xu Hao 4, Rong Wang 1 and Xuhui Dong 5 1 State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing 210008, China; [email protected] (Y.C.); [email protected] (X.Y.); [email protected] (K.Z.); [email protected] (R.W.) 2 Environmental Hydrology and Water Resources Group, Department of Infrastructure Engineering, University of Melbourne, Melbourne, Parkville, VIC 3010, Australia 3 Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China 4 Hoan Environmental Monitoring Corporation, Nanjing 210008, China; [email protected] 5 School of Geographical Sciences, Gunagzhou University, Guangzhou 510006, China; [email protected] * Correspondence: [email protected]; Tel.: +61-428-171-180 Received: 20 April 2018; Accepted: 15 June 2018; Published: 17 June 2018 Abstract: The lakes across China’s middle and lower reaches of the Yangtze River system have a long history of sustaining human pressures. These aquatic resources have been exploited for fisheries and irrigation over millennia at a magnitude of scales, with the result that many lakes have lost their ecological integrity. The consequences of these changes in the ecosystem health of lakes are not fully understood; therefore, a long-term investigation is urgently needed. Gastropods (aquatic snails) are powerful bio-indicators that link primary producers, herbivores, and detritivores associated with macrophytes and grazers of periphyton and higher-level consumers.
    [Show full text]