Determination of geochronology and sedimentation rates of shallow lakes in the middle Yangtze reaches using 210Pb, 137Cs and spheroidal carbonaceous particles Xu Chen1*, Qianglong Qiao1, Suzanne McGowan2, Linghan Zeng1,2, Mark A Stevenson3, Lei Xu1, Chunling Huang1, Jia Liang1, Yanmin Cao4 1State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China 2School of Geography, University of Nottingham, Nottingham NG7 2RD, UK 3School of Natural and Environmental Sciences, Newcastle University, Newcastle- upon-Tyne NE1 7RU, UK 4College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China *Corresponding author; e-mail address:
[email protected] https://doi.org/10.1016/j.catena.2018.11.041 Catena Abstract: Accurate chronologies for recent sediments of shallow lakes in the Yangtze floodplain are critical to calibrate proxy records for reconstructing environmental changes during the past century. This study presents the results of detailed 210Pb analysis from eight lake sediment cores collected from the middle Yangtze reaches, 210 southeast China. Unsupported Pb activities generally declined exponentially with mass depth in the eight cores. The chronologies and sedimentation rates for the sediment cores were calculated using different 210Pb-based mathematical models. The 137Cs chronomarker (i.e. the 1963 fallout peak) and the spheroidal carbonaceous particle (SCP) chronomarker (i.e. the start of the rapid increase in 1970 AD) were selected to validate the 210Pb dating. Sedimentation rates derived from different models were validated using historical data including lake area, arable land area, sediment discharge and reservoir volume in the Yangtze basin. The SCP-corrected CRS (constant rate of supply) model performs better than other models, based on validation using historical documents in the Yangtze basin.