Google PROFESSIONAL-DATA-ENGINEER Exam Google Cloud Data Engineer Professional Exam
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Real-Time Backend Architecture Using Node.Js, Express and Google Cloud
Anh Vu Real-time backend architecture using Node.js, Express and Google Cloud Platform Metropolia University of Applied Sciences Bachelor of Information Technology Information Technology Bachelor’s Thesis 5 January 2021 Abstract Anh Vu Author Real-time backend using NodeJS, Express and Google Cloud Title Platform NumBer of Pages 47 pages Date 5 January 2021 Degree Bachelor of Engineering Degree Programme Information Technology Professional Major MoBile Solutions Instructors Petri Vesikivi, Head of MoBile Solutions Real-time applications, which assure the latency within the defined time limit, are becoming more popular due to the growth of Software as a service trend. Before the evolution of cloud computing, the only solution was to use native WebSockets which are difficult to set up and develop. Recently, Google Cloud Platform provides a developer-friendly, fast and responsive platform to make the process of developing real-time applications seamless. The purpose of the thesis was to demonstrate and Build a scalaBle, high-available and reliaBle Backend architecture using Node.js and Google Cloud Platform. The thesis consists of a theoretical background including Node.js, monolithic and microservices architecture, serverless architecture and real-time dataBase, which provide basic understanding of different architectures and technical solutions. The advantages and disadvantages of the architecture were also clearly analyzed and evaluated. Furthermore, a minimum viable product for a taxi booking app was created to demonstrate the architecture usage in a real use case. To summarize, the thesis aimed to provide the insights of real-time Backend architecture using Node.js and Google Cloud Platform. Moreover, the benefits of using this technology stacks were carefully examined in a case study. -
Google Cloud Platform Integration
Solidatus FACTSHEET Google Cloud Platform Integration The Solidatus Google Cloud Platform (GCP) integration suite helps to discover data structures and lineage in GCP and automatically create and maintain Solidatus models describing these assets when they are added to GCP and when they are changed. As of January 2019, the GCP integration supports the following scenarios: • Through the Solidatus UI: – Load BigQuery dataset schemas as Solidatus objects on-demand. • Automatically using a Solidatus Agent: – Detect new BigQuery schemas and add to a Solidatus model. – Detect changes to BigQuery schemas and update a Solidatus model. – Detect new files in Google Cloud Storage (GCS) and add to a Solidatus model. – Automatically detect changes to files in GCS and update a Solidatus model. • Automatically at build time: – Extract structure and lineage from a Google Cloud Dataflow and create or update a Solidatus model. FEATURES BigQuery Loader Apache Beam (GCP Dataflow) Lineage A user can import a BigQuery table definition, directly Mapper from Google, as an object into a Solidatus model. A developer can visualise their Apache Beam job’s The import supports both nested and flat structures, pipeline in a Solidatus model. The model helps both and also includes meta data about the table and developers and analysts to see that data from sources dataset. Objects created via the BigQuery Loader is correctly mapped through transforms to their sinks, can be easily updated by a right-clicking on an providing a data lineage model of the pipeline. object in Solidatus. Updating models using this Generating the models can be ad-hoc (on-demand by feature provides the ability to visualise differences in the developer) or built into a CI/CD process. -
Google's Mission
& Big Data & Rocket Fuel Dr Raj Subramani, HSBC Reza Rokni, Google Cloud, Solutions Architect Adrian Poole, Google Cloud, Google’s Mission Organize the world’s information and make it universally accessible and useful Eight cloud products with ONE BILLION Users Increasing Marginal Cost of Change $ Traditional Architectures Prohibitively Expensive change Marginal cost of 18 years of Google R&D / Investment Google Cloud Native Architectures (GCP) Increasing complexity of systems and processes Containers at Google Number of running jobs Enabled Google to grow our fleet over 10x faster than we grew our ops team Core Ops Team 2004 2016 4 Google’s innovation in data Millwheel F1 Spanner TensorFlow MapReduce Dremel Flume GFS Bigtable Colossus Megastore Pub/Sub Dataflow 2002 2004 2006 2008 2010 2012 2013 2016 Proprietary + Confidential5 Google’s innovation in data Dataflow Spanner NoSQL Spanner Cloud ML Dataproc BigQuery Dataflow GCS Bigtable GCS Datastore Pub/Sub Dataflow 2002 2004 2006 2008 2010 2012 2013 2016 Proprietary + Confidential6 Now available on Google Cloud Platform Compute Storage & Databases App Engine Container Compute Storage Bigtable Spanner Cloud SQL Datastore Engine Engine Big Data Machine Learning BigQuery Pub/Sub Dataflow Dataproc Datalab Vision API Machine Speech API Translate API Learning Lesson of the last 10 years... ● Democratise ML ● Big datasets beat fancy algorithms ● Good Models ● Lots of compute Google BigQuery BigQuery is Google's fully managed, petabyte scale, low cost enterprise data warehouse for analytics. BigQuery is serverless. There is no infrastructure to manage and you don't need a database administrator, so you can focus on analyzing data to find meaningful insights using familiar SQL. -
Are3na Crabbé Et Al
ARe3NA Crabbé et al. (2014) AAA for Data and Services (D1.1.2 & D1.2.2): Analysing Standards &Technologies for AAA ISA Action 1.17: A Reusable INSPIRE Reference Platform (ARE3NA) Authentication, Authorization & Accounting for Data and Services in EU Public Administrations D1.1.2 & D1.2.2– Analysing standards and technologies for AAA Ann Crabbé Danny Vandenbroucke Andreas Matheus Dirk Frigne Frank Maes Reijer Copier 0 ARe3NA Crabbé et al. (2014) AAA for Data and Services (D1.1.2 & D1.2.2): Analysing Standards &Technologies for AAA This publication is a Deliverable of Action 1.17 of the Interoperability Solutions for European Public Admin- istrations (ISA) Programme of the European Union, A Reusable INSPIRE Reference Platform (ARE3NA), managed by the Joint Research Centre, the European Commission’s in-house science service. Disclaimer The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Copyright notice © European Union, 2014. Reuse is authorised, provided the source is acknowledged. The reuse policy of the European Commission is implemented by the Decision on the reuse of Commission documents of 12 December 2011. Bibliographic Information: Ann Crabbé, Danny Vandenbroucke, Andreas Matheus, Dirk Frigne, Frank Maes and Reijer Copier Authenti- cation, Authorization and Accounting for Data and Services in EU Public Administrations: D1.1.2 & D1.2.2 – Analysing standards and technologies for AAA. European Commission; 2014. JRC92555 1 ARe3NA Crabbé et al. (2014) AAA for Data and Services (D1.1.2 & D1.2.2): Analysing Standards &Technologies for AAA Contents 1. -
Google Certified Professional - Cloud Architect.Exam.57Q
Google Certified Professional - Cloud Architect.exam.57q Number : GoogleCloudArchitect Passing Score : 800 Time Limit : 120 min https://www.gratisexam.com/ Google Certified Professional – Cloud Architect (English) https://www.gratisexam.com/ Testlet 1 Company Overview Mountkirk Games makes online, session-based, multiplayer games for the most popular mobile platforms. Company Background Mountkirk Games builds all of their games with some server-side integration, and has historically used cloud providers to lease physical servers. A few of their games were more popular than expected, and they had problems scaling their application servers, MySQL databases, and analytics tools. Mountkirk’s current model is to write game statistics to files and send them through an ETL tool that loads them into a centralized MySQL database for reporting. Solution Concept Mountkirk Gamesis building a new game, which they expect to be very popular. They plan to deploy the game’s backend on Google Compute Engine so they can capture streaming metrics, run intensive analytics, and take advantage of its autoscaling server environment and integrate with a managed NoSQL database. Technical Requirements Requirements for Game Backend Platform 1. Dynamically scale up or down based on game activity 2. Connect to a managed NoSQL database service 3. Run customize Linux distro Requirements for Game Analytics Platform 1. Dynamically scale up or down based on game activity 2. Process incoming data on the fly directly from the game servers 3. Process data that arrives late because of slow mobile networks 4. Allow SQL queries to access at least 10 TB of historical data 5. Process files that are regularly uploaded by users’ mobile devices 6. -
Create Live Dashboards with Google Data Studio
Make Your Library's Data Accessible and Usable Create Live Dashboards with Google Data Studio Kineret Ben-Knaan & Andrew Darby | University of Miami Libraries INTRODUCTION OBJECTIVES AND GOALS STRATEGY AND METHODS PROJECT STATUS This poster presents the implementation of a The aim of the project is to implement a shared and Customized dashboards have been built and shared with collaborative approach and solution for data gathering, straightforward data collection platform, which will harvest Our solution involves the following: several library departments. So far, we have connected data consolidation and most importantly, data multiple, diverse data sources and present statistics in a or imported manually the following isolated data sources ● Move to shared Google Sheets and Forms for any accessibility through a live connection to free Google clear and visually engaging manner. into Google Data Studio: Data Studio dashboards. local departmental data collection, then connect these Our key goals are: sheets to Google Data Studio, a free tool that allows Metric/Data Source by type of Google Data Studio Connector Units at the University of Miami Libraries (UML) have ● To facilitate the use of data from isolated data sources, users to create customized and shareable data long been engaged in data collection activities. Data from Metrics Data Sources Real-time connection Imported manually into visualization dashboards. and Systems & automatically Google Data Studio (on instructional sessions, consultations and all types of user not only to encourage evidence-based decision updated a weekly bases) ● Import and connect other library data sources to interactions have routinely been gathered. Other making, but also to better communicate how UM Instructional & Workshops Google Sheets Yes assessment measures, including surveys and user Libraries’ activities support student learning and faculty Google Data Studio. -
Economic and Social Impacts of Google Cloud September 2018 Economic and Social Impacts of Google Cloud |
Economic and social impacts of Google Cloud September 2018 Economic and social impacts of Google Cloud | Contents Executive Summary 03 Introduction 10 Productivity impacts 15 Social and other impacts 29 Barriers to Cloud adoption and use 38 Policy actions to support Cloud adoption 42 Appendix 1. Country Sections 48 Appendix 2. Methodology 105 This final report (the “Final Report”) has been prepared by Deloitte Financial Advisory, S.L.U. (“Deloitte”) for Google in accordance with the contract with them dated 23rd February 2018 (“the Contract”) and on the basis of the scope and limitations set out below. The Final Report has been prepared solely for the purposes of assessment of the economic and social impacts of Google Cloud as set out in the Contract. It should not be used for any other purposes or in any other context, and Deloitte accepts no responsibility for its use in either regard. The Final Report is provided exclusively for Google’s use under the terms of the Contract. No party other than Google is entitled to rely on the Final Report for any purpose whatsoever and Deloitte accepts no responsibility or liability or duty of care to any party other than Google in respect of the Final Report and any of its contents. As set out in the Contract, the scope of our work has been limited by the time, information and explanations made available to us. The information contained in the Final Report has been obtained from Google and third party sources that are clearly referenced in the appropriate sections of the Final Report. -
Google Cloud Dataflow – an Insight
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 Google Cloud Dataflow – An Insight Eashani Deorukhkar1 Department of Information Technology, RamraoAdik Institute of Technology, Mumbai, India Abstract: The massive explosion of data and the need for its processing has become an area of interest with many companies vying to occupy a significant share of this market. The processing of streaming data i.e. data generated by multiple sources simultaneously and continuously is an ability that some widely used data processing technologies lack. This paper discusses the “Cloud Data Flow” technology offered by Google as a possible solution to this problem and also a few of its overall pros and cons. Keywords: Data processing, streaming data, Google, Cloud Dataflow 1. Introduction To examine a real-time stream of events for significant [2] patterns and activities The processing of large datasets to generate new insights and To implement advanced, multi-step processing pipelines to relationships from it is quite a common activity in numerous extract deep insight from datasets of any size[2] companies today. However, this process is quite difficult and resource intensive even for experts[1]. Traditionally, this 3. Technical aspects processing has been performed on static datasets wherein the information is stored for a while before being processed. 3.1 Overview This method was not scalable when it came to processing of data streams. The huge amounts of data being generated by This model is specifically intended to make data processing streams like real-time data from sensors or from social on a large scale easier. -
Google-Forms-Table-Input.Pdf
Google Forms Table Input Tutelary Kalle misconjectured that norepinephrine picnicking calligraphy and disherit funnily. Inventible and perpendicular Emmy devilling her secureness overpopulating smokelessly or depolarize uncontrollably, is Josh gnathonic? Acidifiable and mediate Townie sneak slubberingly and single-foot his avowers high-up and bloodthirstily. You can use some code, but use this quantity is extremely useful at url and input table Google Forms Date more Time Robertorecchimurzoit. How god set wallpaper a Google Sheet insert a reliable data represent Data. 25 practical ways to use Google Forms in class school Ditch. To read add any question solve a google form using the plus button and wire change our question new to complex choice exceed The question screen shows Rows OptionsAnswer and Columns TopicQuestion that nothing be added in significant amount of example below shows a three-row otherwise four-column point question. How about insert text table in google forms for matrices qustions. Techniques using Add-ons Formulas Formatting Pivot Tables or Apps Script. Or the filetype operator Google searches a sequence of file formats see the skill in. To rest a SQLish syntax in fuel cell would return results from a such in Sheets. Google Form Responses Spreadsheet Has Blank Rows or No. How to seduce a Dynamic Chart in Google Newco Shift. My next available in input table, it against it with it and adds instrument to start to auto populate a document? The steps required to build a shiny app that mimicks a Google Form. I count a google form complete a multiple type question. Text Field React component Material-UI. -
International Journal of Soft Computing and Engineering
International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-2, July 2019 Implementation and Effective Utilization of Analytical Tools and Techniques in Knowledge Management Shivakumar. R knowledge is the knowledge that individuals in organizations Abstract: Knowledge management is a multidisciplinary know that they have and are conscious of it. approach to achieve organizational objectives by making best use The crucial element in any Knowledge Management of knowledge and information resources. Analytics is the process system is to ensure that tacit knowledge is captured and of systematic analysis of the past data/statistics and trying to converted to explicit knowledge. Moreover, it has been predict the future trends or data with various tools and techniques. With the advancement of technology and increasing competition, hypothesized that even explicit knowledge needs to be companies are prone to make better use of the information and converted into information that is meaningful and useful. analytics to sustain their position in the marketplace. Software as After all, mere data is not useful and only when data is a Service (SaaS) has become an important trend in organizations transformed into information and codified as knowledge is it in addition to that of the usual Excel and Google sheets analytics. useful. In this study, comparative analysis has been done between SPSS In today’s rapidly changing business world, it is critical for & Google Sheets Techniques and also Google data studio with business leaders to have the right insight and data to make the Tableau, Power BI & Google Sheets for data visualization right calls at the right time. -
Google Cloud Dataflow a Unified Model for Batch and Streaming Data Processing Jelena Pjesivac-Grbovic
Google Cloud Dataflow A Unified Model for Batch and Streaming Data Processing Jelena Pjesivac-Grbovic STREAM 2015 Agenda 1 Data Shapes 2 Data Processing Tradeoffs 3 Google’s Data Processing Story 4 Google Cloud Dataflow Score points Form teams Geographically distributed Online and Offline mode User and Team statistics in real time Accounting / Reporting Abuse detection https://commons.wikimedia.org/wiki/File:Globe_centered_in_the_Atlantic_Ocean_(green_and_grey_globe_scheme).svg 1 Data Shapes Data... ...can be big... ...really, really big... Thursday Wednesday Tuesday ...maybe even infinitely big... 8:00 1:00 9:00 2:00 10:00 3:00 11:00 4:00 12:00 5:00 13:00 6:00 14:00 7:00 … with unknown delays. 8:00 8:00 8:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 2 Data Processing Tradeoffs Data Processing Tradeoffs 1 + 1 = 2 $$$ Completeness Latency Cost Requirements: Billing Pipeline Important Not Important Completeness Low Latency Low Cost Requirements: Live Cost Estimate Pipeline Important Not Important Completeness Low Latency Low Cost Requirements: Abuse Detection Pipeline Important Not Important Completeness Low Latency Low Cost Requirements: Abuse Detection Backfill Pipeline Important Not Important Completeness Low Latency Low Cost Google’s 3 Data Processing Story Data Processing @ Google Dataflow MapReduce FlumeJava Dremel Spanner GFS Big Table Pregel Colossus MillWheel 2002 2004 2006 2008 2010 2012 2014 2016 Data Processing @ Google Dataflow MapReduce FlumeJava Dremel Spanner GFS Big Table Pregel Colossus MillWheel 2002 2004 2006 2008 2010 -
Create a Created Date Schema in Bigquery
Create A Created Date Schema In Bigquery Denominative Elmore canoodles funereally. Auxiliary Rudy acquiesce: he unbar his aril adequately and contagiously. Overreaching Randolf excused some scrabble and shacks his syneresis so midnight! Wait polls with exponential backoff. The schema in tests are many cases. Perform various levels of dates in schema definition file somewhere on create date column when you created in an identical data will lead at. You'd may that avoiding two scans of SALES would improve performance However remember most circumstances the draw BY version takes about twice as suite as the lot BY version. You run some SQL queries against that data. The script then creates a partition function, if configured. The order in which clustering is done matters. Developer relations lead at SKB Kontur. We create schema in the dates and their very wide variety of bigquery operation creates a working directory as a few seconds of model you. By using the client libraries. Database services to migrate, please leave it empty. What are partitions in SQL? In our case the join condition is matching dates from the pedestrian table and the bike table. The mother source records need is have a machine image updates to merge correctly. Python community version selection works in schema of bigquery operation on create date column can be created in a new custom schema tab. Once per store the data needs to simplify etl to any data are also a bigquery? Google Analytics 360 users that have that up the automatic BigQuery export will rejoice by this. Whether to automatically infer options and schema for CSV and JSON sources.