Ceratozamia Aurantiaca (Zamiaceae): a New Cycad Species from the Northern Rainforests of Oaxaca, Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Ceratozamia Aurantiaca (Zamiaceae): a New Cycad Species from the Northern Rainforests of Oaxaca, Mexico Article Ceratozamia aurantiaca (Zamiaceae): A New Cycad Species from the Northern Rainforests of Oaxaca, Mexico Miguel Angel Pérez-Farrera 1,2,*, José Said Gutiérrez-Ortega 3,* , Jody L. Haynes 4 , Jeff Chemnick 5, Silvia H. Salas-Morales 6, Michael Calonje 7 and Andrew P. Vovides 8 1 Laboratorio de Ecología Evolutiva, Herbario Eizi Matuda, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez 29039, Mexico 2 Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Ave. De las Ciencias s/n, Juriquilla, Santa Rosa Jáuregui, Querétaro 76230, Mexico 3 Institute for Excellence in Educational Innovation, Chiba University, Chiba 263-8522, Japan 4 Fairchild Tropical Botanic Garden, Coral Gables, FL 33156, USA; [email protected] 5 Ganna Walska Lotusland, Santa Barbara, CA 93108, USA; [email protected] 6 Sociedad para el Estudio de los Recursos Bióticos de Oaxaca, San Sebastián Tutla, Oaxaca 71246, Mexico; [email protected] 7 Montgomery Botanical Center, Coral Gables, FL 33156, USA; [email protected] 8 Red de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa 91070, Mexico; [email protected] * Correspondence: [email protected] (M.A.P.-F.); [email protected] (J.S.G.-O.) Abstract: Ceratozamia aurantiaca, a new cycad species from Oaxaca, Mexico, is described. The new species is endemic to lowland karst tropical rainforests of the northern mountains (Sierra Norte region). This species is related to C. subroseophylla and C. robusta, together considered part of the C. robusta species complex due to their shared characteristics: robust, upright trunk; large and Citation: Pérez-Farrera, M.A.; long leaves with densely armed petioles and linear to subfalcate leaflets; and large megastrobili. Gutiérrez-Ortega, J.S.; Haynes, J.L.; Ceratozamia aurantiaca, as the epithet suggests, is easily distinguished from other species by the orange Chemnick, J.; Salas-Morales, S.H.; color of its emerging leaves, a trait unique in the genus. Additionally, C. aurantiaca is distinguished Calonje, M.; Vovides, A.P. Ceratozamia aurantiaca (Zamiaceae): A New Cycad from C. subroseophylla and C. robusta by having significantly shorter petioles, wider spacing between Species from the Northern leaflets, and wider median leaflets. The taxonomic recognition of this species represents a step toward Rainforests of Oaxaca, Mexico. clarifying species delimitation in the C. robusta complex. Taxonomy 2021, 1, 243–255. https:// doi.org/10.3390/taxonomy1030018 Keywords: cycads; botanic gardens; endangered species; morphological analyses; new species; Mexico Academic Editor: Xian-Chun Zhang Received: 4 August 2021 1. Introduction Accepted: 18 August 2021 The cycad genus Ceratozamia Brongn. (Zamiaceae) currently comprises 33 species from Published: 19 August 2021 Mexico, Guatemala, Belize, and Honduras, with all but three endemic to Mexico [1]. Most species are represented by one to a few narrowly distributed populations separated by a few Publisher’s Note: MDPI stays neutral to several kilometers, generally inhabiting tropical evergreen forest, oak forest, or tropical with regard to jurisdictional claims in montane cloud forest [2]. In Ceratozamia, species that are closely related phylogenetically published maps and institutional affil- also tend to exhibit geographic proximity and similar morphology [3], which are criteria iations. considered as proxy when testing species delimitation. The species definition within the genus has traditionally been based on morpho-geographic criteria, such that each species is represented by one or more geographically close populations that share morphological characteristics [4,5]. Even so, species delimitation among closely related species has been a Copyright: © 2021 by the authors. constant challenge in Ceratozamia [2,6,7]. Licensee MDPI, Basel, Switzerland. Recent reviews of the genus have proposed the recognition of species complexes, This article is an open access article which are groups of species with high morphological resemblance [2,8]. Belonging to a distributed under the terms and species complex in Ceratozamia implies that it can be difficult to correctly identify a member conditions of the Creative Commons Attribution (CC BY) license (https:// taxon within the complex if detailed information about its origin in the wild is unknown. creativecommons.org/licenses/by/ The C. robusta species complex has been considered one of the most taxonomically difficult 4.0/). groups in the genus [2] (Figure1). Plants belonging to this species complex are easily Taxonomy 2021, 1, 243–255. https://doi.org/10.3390/taxonomy1030018 https://www.mdpi.com/journal/taxonomy Taxonomy 2021, 1, FOR PEER REVIEW 2 Taxonomy 2021, 1 244 ber taxon within the complex if detailed information about its origin in the wild is un- known. The C. robusta species complex has been considered one of the most taxonomically difficult groups in the genus [2] (Figure 1). Plants belonging to this species complex are recognizedeasily recognized by their by robust their epigeousrobust epigeous trunks, largetrunks, robust large cones, robust large cones, leaves, large and leaves, petioles and thatpetioles are densely that are armed densely with armed prickles—a with setprickles of traits—a distinct set of traits in the distinct genus. Increasedin the genus. interest In- increased cycads interest in the latein cycads 20th centuryin the late led 20 toth thecentury discovery led to ofthe populations discovery of of populationsC. robusta Miq. of C. inrobusta the states Miq. ofin Chiapas,the states Oaxaca,of Chiapas, and Oaxaca, Veracruz and (Mexico), Veracruz as (Mexico well as), inas well Guatemala as in Guate- and Belizemala and (Figure Belize1). Although(Figure 1). all Although populations all populations from these regionsfrom these share regions the aforementioned share the afore- suitementioned of morphological suite of morphological characteristics, characterist a highics, level a high of variation level of variation among populations among popula- of C.tions robusta of C. sensu robusta lato sensuwas lato previously was previously noted [5 noted] and has[5] and only has been only carefully been carefully examined exam- in recentined in years recent [7, 9years,10]. [7,9,10]. FigureFigure 1. 1.Distribution Distribution map map of of the the known known populations populations of ofCeratozamia Ceratozamia robusta robustaspecies species complex. complex. Black Black circles surrounded by a dotted line indicate the occurrence of populations of C. robusta, as currently circles surrounded by a dotted line indicate the occurrence of populations of C. robusta, as currently circumscribed. The star symbol indicates the neotype locality of C. robusta (Parque Nacional Cañón circumscribed. The star symbol indicates the neotype locality of C. robusta (Parque Nacional Cañón del Sumidero, Chiapas, Mexico). Ceratozamia subroseophylla, previously considered as C. robusta, has delbeen Sumidero, recorded Chiapas, in two areas Mexico). in SantiagoCeratozamia Tuxtla, subroseophylla Veracruz, ,Mexico. previously The consideredputative new as C.species robusta (herein, has beennamed recorded Ceratozamia in two aurantiaca areas in; Santiago see results Tuxtla,) occurs Veracruz, in two localities Mexico. Thein the putative Sierra Norte new speciesregion, (hereinOaxaca, namedMexico;Ceratozamia these populations aurantiaca have; see been results) long occurs considered in two localitiesas C. robusta in the. Green Sierra color Norte scale region, indicates Oaxaca, the Mexico;elevation these in meters populations above havesea level been (m long a.s.l. considered) as recorded as C.in the robusta raster. Green layers color of 30 scale-s resolution indicates of the the elevationNASA Shuttle in meters Radar above Topographic sea level (mMission a.s.l.) as(SRTM recorded) 90 m in Digital the raster Elevation layers ofDatabase 30-s resolution v4.1 deposited of the NASAin DIVA Shuttle-GIS ( Radarhttps://www.diva Topographic-gis.org/, Mission (SRTM)accessed 90 on m 15 Digital July 2021 Elevation). Database v4.1 deposited in DIVA-GIS (https://www.diva-gis.org/, accessed on 15 July 2021). Martínez-Domínguez et al. [7] (2016) demonstrated that populations from the Los TuxtlasMart regionínez-Dom of Veracruz,ínguez et historically al. [7] (2016) recognized demonstrated as Ceratozamia that populations robusta, from were the signifi- Los Tuxtlascantly regiondifferentiated of Veracruz, from historically other populations recognized of asC. Ceratozamiarobusta. The robusta authors, were used significantly qualitative differentiatedmorphological from traits other and populationsmolecular evidence of C. robusta to support. The authors the erection used qualitativeof a new species morpho- that logicalthey named traits C. and subroseophylla molecular evidence Mart.-Domínguez to support & the Nic. erection-Mor. In of a similar a new speciesway, populations that they namedfrom GuerreroC. subroseophylla (MexicoMart.-Dom) reportedlyínguez closely & Nic.-Mor.related to InC. arobusta similar were way, assigned populations to a from new Guerrerotaxon, C. (Mexico)leptoceras reportedlyMart.-Domínguez, closely related Nic-Mor., to C. D.W. robusta Stev.were & Lorea assigned-Hern. to a[9] new. Close taxon, in- C.spection leptoceras of Mart.-Dommorphologicalínguez, variation Nic-Mor., among D.W. populatio Stev. & Lorea-Hern.ns in Chiapas [9]. ( CloseMexico inspection) and Belize of morphologicalrevealed that the variation populations among from populations
Recommended publications
  • Another New Species of Ceratozamia (Zamiaceae) from Chiapas, Mexico
    Botanical Journal of the Linnean Society (2001), 137: 81-85. With 2 figures doi:10.1006/bojl.2001.0459, available online at http://www.idealibrary.com on Another new species of Ceratozamia (Zamiaceae) from Chiapas, Mexico ANDREW P. VOVIDES1*, MIGUEL A. PÉREZ-FARRERA2 and CARLOS IGLESIAS1 1Instituto de Ecología, A.C., Apartado Postal 63, 91000, Xalapa, Veracruz, México 2Escuela de Biología, Universidad de Ciencias y Artes del Estado de Chiapas, Calzada Samuel León Brindis 151, C.P. 29,000, Tuxtla Gutiérrez, Chiapas, México Received April 2000; accepted for publication February 2001 Ceratozamia mirandai sp. nov. from the Sepultura Biosphere reserve of Chiapas, Mexico, is described and illustrated. Its closest affinities are with C. kuesteriana Regel from Tamaulipas of north-east Mexico, but differs in male and female cone and trunk morphology. © 2001 The Linnean Society of London ADDITIONAL KEY WORDS: biosphere reserves - Ceratozamia kuesteriana - Chiapas - Cycad - Mesoamerica - Pleistocene refuges. INTRODUCTION of the Sierra Madre (Chiapas) we collected a Cer- atozamia specimen with a thick, arborescent, branched The genus Ceratozamia or 'horned Zamia' as the name trunk with large leaves and cones. We first considered suggests, is largely restricted to Mexico, with an out- that this taxon formed part of the wide species concept lying species (C. robusta Miq.) in Guatemala and Be- of Ceratozamia norstogii of Stevenson (1982) and Jones lize. Recently a Ceratozamia species has been reported (1993). However, further explorations at the type of from Honduras (Whitelock, pers. comm.). Much of our locality of C. norstogii and other populations of this knowledge of the distribution of Ceratozamia in its species in the states of Chiapas and Oaxaca, as well native Mexico is due to the early exploratory work of as examination of the type of C.
    [Show full text]
  • Botanical Journal of the Linnean Society0024-4074The Linnean Society of London, 2004? 2004 145? 499504 Original Article
    Blackwell Science, LtdOxford, UKBOJBotanical Journal of the Linnean Society0024-4074The Linnean Society of London, 2004? 2004 145? 499504 Original Article 5S rDNA SITES ON CYCAD CHROMOSOMES G. KOKUBUGATA ET AL. Botanical Journal of the Linnean Society, 2004, 145, 499–504. With 6 figures Mapping 5S ribosomal DNA on somatic chromosomes of four species of Ceratozamia and Stangeria eriopus (Cycadales) GORO KOKUBUGATA1*, ANDREW P. VOVIDES2 and KATSUHIKO KONDO3 1Tsukuba Botanical Garden, National Science Museum, Tokyo, Ibaraki 305-0005, Japan 2Instituto de Ecología, A. C., Apartado Postal 63, 91000, Xalapa, Mexico 3Laboratory of Plant Chromosome and Gene Stock, Graduate of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan Received October 2003; accepted for publication February 2004 Somatic chromosomes of four species of Ceratozamia, C. hildae, C. kuesteriana, C. mexicana and C. norstogii, and Stangeria eriopus, were observed and compared by the fluorescence in situ hybridization method using 5S ribosomal (rDNA) probes. The four Ceratozamia species and S. eriopus showed the same chromosome number of 2n = 16, and had similar karyotypes, comprising 12 metacentric (m), two submetacentric (sm) chromosomes and two telocentric (t) chromosomes. The four Ceratozamia species exhibited a proximal 5S rDNA site in the interstitial region of two m chromosomes. Stangeria eriopus exhibited a distal 5S rDNA site in the interstitial region of two m chromosomes, which probably indicates that the two genera differ in chromosome structure by at least one paracentric inversion. © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society, 2004, 145, 499–504. ADDITIONAL KEYWORDS: cycads – cytotaxonomy – fluorescence in situ hybridization. INTRODUCTION Recently, the molecular–cytological techniques of the fluorescence in situ hybridization (FISH) method The genus Ceratozamia (family Zamiaceae; Steven- have been applied to cytotaxonomic studies in some son, 1992) is endemic to Mega-Mexico 2, an extension cycad taxa.
    [Show full text]
  • ORNAMENTAL GARDEN PLANTS of the GUIANAS: an Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana
    f ORNAMENTAL GARDEN PLANTS OF THE GUIANAS: An Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana Vf•-L - - •• -> 3H. .. h’ - — - ' - - V ' " " - 1« 7-. .. -JZ = IS^ X : TST~ .isf *“**2-rt * * , ' . / * 1 f f r m f l r l. Robert A. DeFilipps D e p a r t m e n t o f B o t a n y Smithsonian Institution, Washington, D.C. \ 1 9 9 2 ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Table of Contents I. Map of the Guianas II. Introduction 1 III. Basic Bibliography 14 IV. Acknowledgements 17 V. Maps of Guyana, Surinam and French Guiana VI. Ornamental Garden Plants of the Guianas Gymnosperms 19 Dicotyledons 24 Monocotyledons 205 VII. Title Page, Maps and Plates Credits 319 VIII. Illustration Credits 321 IX. Common Names Index 345 X. Scientific Names Index 353 XI. Endpiece ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Introduction I. Historical Setting of the Guianan Plant Heritage The Guianas are embedded high in the green shoulder of northern South America, an area once known as the "Wild Coast". They are the only non-Latin American countries in South America, and are situated just north of the Equator in a configuration with the Amazon River of Brazil to the south and the Orinoco River of Venezuela to the west. The three Guianas comprise, from west to east, the countries of Guyana (area: 83,000 square miles; capital: Georgetown), Surinam (area: 63, 037 square miles; capital: Paramaribo) and French Guiana (area: 34, 740 square miles; capital: Cayenne). Perhaps the earliest physical contact between Europeans and the present-day Guianas occurred in 1500 when the Spanish navigator Vincente Yanez Pinzon, after discovering the Amazon River, sailed northwest and entered the Oyapock River, which is now the eastern boundary of French Guiana.
    [Show full text]
  • Report and Recommendations on Cycad Aulacaspis Scale, Aulacaspis Yasumatsui Takagi (Hemiptera: Diaspididae)
    IUCN/SSC Cycad Specialist Group – Subgroup on Invasive Pests Report and Recommendations on Cycad Aulacaspis Scale, Aulacaspis yasumatsui Takagi (Hemiptera: Diaspididae) 18 September 2005 Subgroup Members (Affiliated Institution & Location) • William Tang, Subgroup Leader (USDA-APHIS-PPQ, Miami, FL, USA) • Dr. John Donaldson, CSG Chair (South African National Biodiversity Institute & Kirstenbosch National Botanical Garden, Cape Town, South Africa) • Jody Haynes (Montgomery Botanical Center, Miami, FL, USA)1 • Dr. Irene Terry (Department of Biology, University of Utah, Salt Lake City, UT, USA) Consultants • Dr. Anne Brooke (Guam National Wildlife Refuge, Dededo, Guam) • Michael Davenport (Fairchild Tropical Botanic Garden, Miami, FL, USA) • Dr. Thomas Marler (College of Natural & Applied Sciences - AES, University of Guam, Mangilao, Guam) • Christine Wiese (Montgomery Botanical Center, Miami, FL, USA) Introduction The IUCN/SSC Cycad Specialist Group – Subgroup on Invasive Pests was formed in June 2005 to address the emerging threat to wild cycad populations from the artificial spread of insect pests and pathogens of cycads. Recently, an aggressive pest on cycads, the cycad aulacaspis scale (CAS)— Aulacaspis yasumatsui Takagi (Hemiptera: Diaspididae)—has spread through human activity and commerce to the point where two species of cycads face imminent extinction in the wild. Given its mission of cycad conservation, we believe the CSG should clearly focus its attention on mitigating the impact of CAS on wild cycad populations and cultivated cycad collections of conservation importance (e.g., Montgomery Botanical Center). The control of CAS in home gardens, commercial nurseries, and city landscapes is outside the scope of this report and is a topic covered in various online resources (see www.montgomerybotanical.org/Pages/CASlinks.htm).
    [Show full text]
  • Download the PDF File
    ISSN 2473-442X CONTENTS Message from Dr. Patrick Griffith, Co-chair, IUCN/SSC CSG 3 Official newsletter of IUCN/SSC Cycad Specialist Group Botanic Garden: In Focus Vol. IV I Issue 2 I December 2019 Montgomery Botanical Center’s Cycad Collection – Focus on research and conservation 5 Michael Calonje & Patrick Griffith Feature Articles Towards an approach for the conservation and illegal trade prevention of South Africa’s endangered Encephalartos spp. 10 James A. R. Clugston, Michelle Van Der Bankand Ronny M. Kobongo Fire is the most important threat for conservation of Dioon merolae (espadaña) in the hill Nambiyigua, municipality of Villaflores, Chiapas, Mexico 13 Miguel Angel Pérez-Farrera & Mauricio Martínez Martínez Ex-situ Cycad Conservation [1]: Public and Private Collections 16 Chip Jones & JS Khuraijam The Cycad Specialist Group (CSG) is a component of the IUCN Species Research and Conservation News Survival Commission (IUCN/SSC). It consists of a group of volunteer The Cycad Extinction Crisis in South Africa 19 experts addressing conservation Wynand van Eeden & Tim Gregory issues related to cycads, a highly What is Ceratozamia becerrae ? 21 threatened group of land plants. The Andrew P. Vovides, Miguel Angel Pérez-Farrera & José Said Gutiérrez-Ortega CSG exists to bring together the world’s cycad conservation expertise, Preliminary Finding: Seed longevity of Encephalartos in controlled storage 23 and to disseminate this expertise to Ngawethu Ngaka and Phakamani Xaba organizations and agencies which can use this guidance to advance cycad Meeting Reports conservation. 2nd Nong Nooch Cycad Horticulture Workshop 25 Official website of CSG: Anders Lindstrom http://www.cycadgroup.org/ Plant Conservation Genetics Workshop 26 Co-Chairs Caroline Iacuaniello, Stephanie Steele & Christy Powell John Donaldson Patrick Griffith CSG Members 28 Vice Chairs Michael Calonje Cristina Lopez-Gallego Red List Authority Coordinator De Wet Bosenberg CSG Newsletter Committee JS Khuraijam, Editor Irene Terry Andrew P.
    [Show full text]
  • Coevolution of Cycads and Dinosaurs George E
    Coevolution of cycads and dinosaurs George E. Mustoe* INTRODUCTION TOXICOLOGY OF EXTANT CYCADS cycads suggests that the biosynthesis of ycads were a major component of Illustrations in textbooks commonly these compounds was a trait that C forests during the Mesozoic Era, the depict herbivorous dinosaurs browsing evolved early in the history of the shade of their fronds falling upon the on cycad fronds, but biochemical evi- Cycadales. Brenner et al. (2002) sug- scaly backs of multitudes of dinosaurs dence from extant cycads suggests that gested that macrozamin possibly serves a that roamed the land. Paleontologists these reconstructions are incorrect. regulatory function during cycad have long postulated that cycad foliage Foliage of modern cycads is highly toxic growth, but a strong case can be made provided an important food source for to vertebrates because of the presence that the most important reason for the reptilian herbivores, but the extinction of two powerful neurotoxins and carcin- evolution of cycad toxins was their of dinosaurs and the contemporaneous ogens, cycasin (methylazoxymethanol- usefulness as a defense against foliage precipitous decline in cycad popula- beta-D-glucoside) and macrozamin (beta- predation at a time when dinosaurs were tions at the close of the Cretaceous N-methylamine-L-alanine). Acute symp- the dominant herbivores. The protective have generally been assumed to have toms triggered by cycad foliage inges- role of these toxins is evidenced by the resulted from different causes. Ecologic tion include vomiting, diarrhea, and seed dispersal characteristics of effects triggered by a cosmic impact are abdominal cramps, followed later by loss modern cycads. a widely-accepted explanation for dino- of coordination and paralysis of the saur extinction; cycads are presumed to limbs.
    [Show full text]
  • Encephalartos Venetus (Zamiaceae): a New Species from the Northern Province
    S. Afr. I . Bot., 1996.62(2): 71-75 71 Encephalartos venetus (Zamiaceae): a new species from the Northern Province P. Vorster Botany Department, University of Stelienbosch, Private Bag X1, Matieland, 7602 Republic of South Africa Received J 1 September 1995: revised 7 November 1995 Encephalartos venetus is described from the Northern Province. It resembles E. cupidus R.A. Dyer in its glaucous foliage, strongly dentate sub-adult-stage leaflets, glaucous green cones, and the morphology of the micro- and mega­ sporophylls, but differs in being a much larger and arborescent, instead of a more or less aeaulescent plant, with entire instead of conspicuously dentate adult-stage leaflets. Keywords: Encephalartos, new species, Zamiaceae. A critical study of the group of species comprising Encephalar­ rnarginibus ambabus dentatis. foliola malura integra. foliola proxi­ los cupidus R.A. Dyer, E. dolomiticus Lavranos & Goode, E. malia non ad aculeis redacta. Strobili venetL glauci, pedunculati; dyerianus Lavranos & Goode, E. eugene-maraisii Verdoom, and bullae macrostrobilorum perspicuc facetaceae facetis centralibus ele­ E. middelburgensis Vorster (Zamiaceae) led to the conclusion valis, faceta plusminusve laevia velleviter rugosa. that another undescribed species should be distinguished. Encephalarlos cupido R.A. Dyer folioli marginibus submaturis dentatis, strobilis glaucescentibus et pedunculatis, et bullis similis; sed differt praesertim starura rnajore, frondibus petiolatissimi vice Encephalartos venetus Vorster, sp. nov. sessilibus, et foliola matura integra vice conspicua dentata. Strobili Plantae arborescentes, truncus ad 2 m altus. Folia petioiatissima. E. dyeriano Lavranos & Goode similis, sed differt macroslrobilis manifesta glauca et veneta, interdum spiraliler contarta; foliola ad ovoideis versus cyiindraceis, et frondibus peliolalissimis vice fere 200(-270) mm longa et 20(-24) mm lata, in foliolis subrnaturis in sessilibus et foliolis basalibus non ad aculeis redacla.
    [Show full text]
  • 1995-2006 Activities Report
    WILDLIFE WITHOUT BORDERS WILDLIFE WITHOUT BORDERS WITHOUT WILDLIFE M E X I C O The most wonderful mystery of life may well be EDITORIAL DIRECTION Office of International Affairs U.S. Fish & Wildlife Service the means by which it created so much diversity www.fws.gov PRODUCTION from so little physical matter. The biosphere, all Agrupación Sierra Madre, S.C. www.sierramadre.com.mx EDITORIAL REVISION organisms combined, makes up only about one Carole Bullard PHOTOGRAPHS All by Patricio Robles Gil part in ten billion [email protected] Excepting: Fabricio Feduchi, p. 13 of the earth’s mass. [email protected] Patricia Rojo, pp. 22-23 [email protected] Fulvio Eccardi, p. 39 It is sparsely distributed through MEXICO [email protected] Jaime Rojo, pp. 44-45 [email protected] a kilometre-thick layer of soil, Antonio Ramírez, Cover (Bat) On p. 1, Tamul waterfall. San Luis Potosí On p. 2, Lacandon rainforest water, and air stretched over On p. 128, Fisherman. Centla wetlands, Tabasco All rights reserved © 2007, U.S. Fish & Wildlife Service a half billion square kilometres of surface. The rights of the photographs belongs to each photographer PRINTED IN Impresora Transcontinental de México EDWARD O. WILSON 1992 Photo: NASA U.S. FISH AND WILDLIFE SERVICE DIVISION OF INTERNATIONAL CONSERVATION WILDLIFE WITHOUT BORDERS MEXICO ACTIVITIES REPORT 1995-2006 U.S. FISH AND WILDLIFE SERVICE At their roots, all things hold hands. & When a tree falls down in the forest, SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES MEXICO a star falls down from the sky. CHAN K’IN LACANDON ELDER LACANDON RAINFOREST CHIAPAS, MEXICO FOREWORD onservation of biological diversity has truly arrived significant contributions in time, dedication, and C as a global priority.
    [Show full text]
  • Rhyzobius Lophanthae Introduced Against Asian
    ABSTRACT Too Little and Too Late???? Asian Cycad Scale (ACS) Chronology Asian cycad scale (ACS), Aulacaspis yasumatsui, was 1972 – Aulacaspis yasumatsui described in Thailand first detected in Tumon, Guam in December 2003 in front Rhyzobius lophanthae introduced against Asian 1996 – ACS detected in Florida of a hotel where Cycas revoluta, an introduced ornamental 1998 – ACS detected in Hawaii cycad and Cycas micronesica, an indigenous cycad were cycad scale, Aulacaspis yasumatsui, on Guam 2003 – ACS detected on cycads used for landscaping in Guam’s planted. The scale is believed to have been imported from Tumon Bay hotel district Hawaii in 1998 on ornamental cycads. The scale currently R.H. Miller1, A. Moore1, R.N. Muniappan1, A.P. Brooke2 and T.E. Marler1. 2004 – ACS spreads to Cycas revoluta and C. micronesica infests introduced and indigenous cycads on about two 1CNAS-AES, University of Guam, Mangilao, Guam (fadang) throughout Guam thirds of Guam’s 354 square kilometers. Severe 2Guam National Wildlife Refuge, Dededo, Guam 2005 – Ryzobius lophanthae and Coccobius fulvus released on infestations have been observed to kill both species within Guam; Plans made to preserve C. micronesica germplasm from a few months. We fear that C. micronesica may be Guam on the nearby island of Tinian threatened with extinction should the scale spread to the few other Micronesian islands that harbor it. Rhyzobius lophanthae, a coccinellid introduced to Asian Cycad Scale Management Hawaii in 1894 for other scale insects, was imported from Biological Control Agents on Guam Maui to Guam in November 2004 and released on C. Rhyzobius lophanthae micronesica at the Guam National Wildlife Refuge at • Introduced in Hawaii in 1894; Guam ??? 1930s Ritidian point in February 2005.
    [Show full text]
  • Red Palm Mite)
    Crop Protection Compendium Datasheet report for Raoiella indica (red palm mite) Top of page Pictures Picture Title Caption Copyright Adult The red palm mite (Raoiella indica), an invasive species in the Caribbean, may threaten USDA- mite several important palms found in the southern USA. (Original magnified approx. 300x.) ARS Photo by Eric Erbe; Digital colourization by Chris Pooley. Colony Colony of red palm mites (Raoiella indica) on coconut leaflet, from India. Bryony of Taylor mites Colony Close-up of a colony of red palm mites (Raoiella indica) on coconut leaflet, from India. Bryony of Taylor mites Top of page Identity Preferred Scientific Name Raoiella indica Hirst (1924) Preferred Common Name red palm mite International Common Names English: coconut red mite; frond crimson mite; leaflet false spider mite; red date palm mite; scarlet mite EPPO code RAOIIN (Raoiella indica) Top of page Taxonomic Tree Domain: Eukaryota Kingdom: Metazoa Phylum: Arthropoda Subphylum: Chelicerata Class: Arachnida Subclass: Acari Superorder: Acariformes Suborder: Prostigmata Family: Tenuipalpidae Genus: Raoiella Species: Raoiella indica / Top of page Notes on Taxonomy and Nomenclature R. indica was first described in the district of Coimbatore (India) by Hirst in 1924 on coconut leaflets [Cocos nucifera]. A comprehensive taxonomic review of the genus and species was carried out by Mesa et al. (2009), which lists all suspected junior synonyms of R. indica, including Raoiella camur (Chaudhri and Akbar), Raoiella empedos (Chaudhri and Akbar), Raoiella obelias (Hasan and Akbar), Raoiella pandanae (Mohanasundaram), Raoiella phoenica (Meyer) and Raoiella rahii (Akbar and Chaudhri). The review also highlighted synonymy with Rarosiella cocosae found on coconut in the Philippines.
    [Show full text]
  • Comparative Anatomy of Leaflets of Zamia Acuminata and Z
    Comparative anatomy of leaflets of Zamia acuminata and Z. pseudomonticola (Zamiaceae) in Costa Rica Rafael Acuña-Castillo & Walter Marín-Méndez Escuela de Biología, Centro de Investigación en Estructuras Microscópicas (CIEMic), Universidad de Costa Rica, San José, Costa Rica. P.O. Box 11501-2060; [email protected], [email protected] Received 19-III-2012. Corrected 20-VIII-2012. Accepted 24-IX-2012. Abstract: The genus Zamia is morphologically and ecologically the most diverse of the order Cycadales. Throughout its history this genus has been restricted to the New World and is presently almost entirely restricted to the Neotropics. Unusual anatomical traits of the leaflets, such as the sunken stomata and thick cuticle, are common in this and related genera. The objective of this research was to study and compare the leaflet anatomy of Zamia acuminata and Z. pseudomonticola and establish possible phylogenetic relationships between the anatomical traits and the near relatives of these species. The leaf material was obtained from living plants and then processed for electron microscopy study. We found that both species are very similar to each other and to Z. fairchildiana, and that they share several unusual traits with other species of the genus, such as the parenchyma morphology, the spatial distribution of tissues between the veins and the stomata morphology. The main differ- ences between these species were seen in their fiber clusters and in the abundance of trichome basal cells on the epidermis. The anatomical similarities between the three species could be the result of their close phylogenetic relationship and the divergences between them could be the result of recent speciation during the Pleistocene, resulting from geological changes in Southern Costa Rica.
    [Show full text]
  • A Global Analysis of the Distribution and Conservation Status Of
    Journal of Biogeography (J. Biogeogr.) (2015) 42, 809–820 SYNTHESIS Fighting their last stand? A global analysis of the distribution and conservation status of gymnosperms Yann Fragniere1,Sebastien Betrisey2,3,Leonard Cardinaux1, Markus Stoffel4,5 and Gregor Kozlowski1,2* 1Natural History Museum Fribourg, CH-1700 ABSTRACT Fribourg, Switzerland, 2Department of Biology Aim Gymnosperms are often described as a marginal and threatened group, and Botanic Garden, University of Fribourg, members of which tend to be out-competed by angiosperms and which therefore CH-1700 Fribourg, Switzerland, 3Conservation Biogeography, Department of preferentially persist at higher latitudes and elevations. The aim of our synthesis Geosciences, University of Fribourg, CH-1700 was to test these statements by investigating the global latitudinal and elevational Fribourg, Switzerland, 4Dendrolab.ch, distribution of gymnosperms, as well as their conservation status, using all extant Institute of Geological Sciences, University of gymnosperm groups (cycads, gnetophytes, ginkgophytes and conifers). 5 Bern, CH-3012 Bern, Switzerland, Institute Location Worldwide. for Environmental Sciences, Climatic Change and Climate Impacts, University of Geneva, Methods We developed a database of 1014 species of gymnosperms containing CH-1227 Carouge, Switzerland latitudinal and elevational distribution data, as well as their global conservation status, as described in the literature. The 1014 species comprised 305 cycads, 101 gnetophytes, the only living representative of ginkgophytes, and 607 conifers. Generalized additive models, frequency histograms, kernel density estimations and distribution maps based on Takhtajan’s floristic regions were used. Results Although the diversity of gymnosperms decreases at equatorial lati- tudes, approximately 50% of the extant species occur primarily between the tropics. More than 43% of gymnosperms can occur at very low elevations (≤ 200 m a.s.l.).
    [Show full text]