Influenza Virus

Total Page:16

File Type:pdf, Size:1020Kb

Influenza Virus 1 | P a g e Influenza virus Introduction: The name Myxovirus is a group of enveloped viruses characterized by their ability to adsorb onto mucoprotein receptors on erythrocytes, causing hemagglutination. They are spherical and filamentous RNA viruses. They are now classified into two separate families: 1. Orthomyxoviridae- consisting of the influenza viruses 2. Paramyxoviridae- consisting of Newcastle disease virus, mumps virus, parainfluenza viruses, measles and respiratory syncytial viruses. Influenza viruses are classic respiratory viruses. Morphology: The influenza virus is typically spherical or filamentous with a diameter of 80-120 nm but pleomorphism is common. The virus consists of ribonucleoprotein in helical symmetry. The negative sense single-stranded RNA genome is segmented and exists as eight pieces. These segments code for different proteins which are NS1, NS2, NP, M1, M2, M3, HA and NA. The genome consists of an RNA-dependent RNA polymerase, which transcribes the negative-polarity genome into mRNA. The genome, therefore, is not infectious. The nucleocapsid is surrounded by an envelope, which has an inner membrane protein layer and an outer lipid layer. The membrane protein is also known as the matrix or ‘M protein’ composed of two components, M1 and M2. The protein part of the envelope is virus coded but the lipid layer is derived from the modified host cell membrane, during the process of replication by budding. Projecting from the envelope are two types of spikes (peplomers): Hemagglutinins (HA) spikes which are triangular in cross-section and 2 | P a g e the mushroom-shaped neuraminidase (NA) peplomers which are less numerous. Viability characteristics: The virus is inactivated by heating at 50 ͦC for 30 minutes. It remains viable at 0-4 ͦ C for about a week. It can be preserved for years at -70 ͦC or by freeze drying. Influenza viruses are resistant to slow drying. The virus survives slow drying and may remain viable on fomites such as blankets for about two weeks. They remain viable in dust up to 2 weeks. Ether, formaldehyde, phenol, salts of heavy metal and many other chemical disinfectants destroy infectivity. Iodine is particularly effective. Hemagglutinating, enzymic and complement-fixing activities of the virus are more stable than infectivity. Antigenic and genomic properties: The antigens of the influenza virus can be classified into two types: 1) Internal Antigens: . The internal antigen is the ribonucleoprotein and is hence called the RNP antigen. Because it is found free in infected tissues and occurs in the supernatant when the virus containing fluidis centrifuged, it was also called as ‘soluble’ (S) antigen. The RNP antigen is type specific and based on its nature, influenza viruses are classified into types A, B and C. The RNP antigens of types A, B and C are distinct but all strains of any one type possess the same antigen. The RNP antigen is stable and does not exhibit any significant antigenic variation. M protein antigen, like the RNP antigen is also type specific and distinct for A, B and C types of influenza viruses. The envelope lipid antigen is 3 | P a g e host specific and is determined by the species in which virus replication takes place. 2) Surface antigen: The term ‘viral’ or V antigen was used to describe the surface antigen of the influenza virus. The V antigen is actually composed of at least two virus-coded proteins, hemagglutinins and neuraminidase. Hemagglutinin is a glycoprotein. It is a trimer. It is strain specific. It undergoes antigenic variation. It is composed of two polypeptides, HA 1 and HA 2. It is responsible for hemagglutination and hemadsorption. It enables the virus to adsorb to mucoprotein receptors on red cells as well as on respiratory epithelial cells. Anti-hemagglutinin antibodies are produced following infection and immunization. This antibody is protective by preventing adsorption of the virus to cells. Hemagglutinins is a strain- specific antigen and is capable of great variation. Fifteen distinct HA subtypes, H1-H15, have been identified in avian influenza viruses, but only four of them have been found in human isolates so far. The hemagglutinin consists of 500 spikes, each measuring 12 nm in length. The triangular shaped HA is inserted into the virus membrane by its tail end. The distal end, which contains five antigenic sites (designated HA1-HA5), is responsible for binding of virion to host cells. Neuraminidase is a glycoprotein enzyme which destroys cell receptors by hydrolytic cleavage. It is a tetramer. It consists of 100 mushroom-shaped spikes. The mushroom-shaped NA is inserted into the virus membrane by its hydrophobic tail end. The distal end contains antigenic as well as enzymatically active sites. The anti-neuraminidase antibody is formed following infection and immunization. It is not as effective in protection as the anti-hemagglutinin antibody. It does not prevent the adsorption of virus onto cells but can inhibit the release and spread of progeny virions and may thus contribute to limiting the infection. It is a strain specific antigen and exhibits variation. Nine different subtypes have been identified (N1-N9). Neuraminidase is an isoenzyme. The function of neuraminidase is to cleave the neuraminic acid and to release progeny virions from the infected host cells. The neuraminidse also degrades the 4 | P a g e mucus layer, thereby exposing the epithelial membrane of the respiratory tract for infection by the virus. Difference between HA and NA: Sr.No. Hemagglutinin (HA) Neuraminidase (NA) 1. It is a trimer. It is a tetramer. 2. It consists of 500 spikes. It consists of 100 spikes. 3. HA is triangular in shape. NA is mushroom-shaped. 4. There are 15 distinct subtypes of There are 9 distinct subtypes of NA HA designated as H1-H15. designated as (N1-N9). 5. Anti-hemagglutinin antibodies are The anti-neuraminidase antibody is produced following infection and formed following infection and immunization and this antibody is immunization which is not as protective by preventing effective in protection as the anti- adsorption of the virus to cells. hemagglutinin antibody. It does not prevent the adsorption of virus onto cells. Antigenic variations: Antigenic variation is a unique feature of influenza virus. The surface antigens HA and NA show variations and are primarily responsible for antigenic variations exhibited by influenza viruses. The internal RNP antigen and M protein are stable, hence do not contribute to the antigenic variations. Antigenic variations are of two types: 1) Antigenic shift and 2) Antigenic drift. 1) Antigenic shift: The abrupt, drastic, discontinuous change is called the antigenic shift. This occurs due to major antigenic changes in HA or NA antigens, and is caused by replacement of the gene for HA by one coding for a completely different amino acid sequence. The antigenic shift is 5 | P a g e characterized by alteration of virtually all the antigenic sites of the HA. This occurs independently in the HA and NA. 2) Antigenic drift: The gradual, sequential, regular antigenic change in influenza virus is known as antigenic drift. This occurs due to minor antigenic changes in the HA or NA occurring at frequent intervals. This is caused by a single mutation affecting HA glycoprotein. The antigenic drift is characterized by changes in certain epitopes in the HA, while others are being conserved. Difference between antigenic shift and antigenic drift: Sr. Antigenic shift Antigenic drift no. 1. Abrupt, drastic and Gradual, sequential and regular discontinuous variation in the variation at periodic intervals antigenic structure 2. Results in a different strain Results in a new strain Related to predecessor strain Not related to predecessor strain 3. Antigenic drift is due to Antigenic shift is due to gene mutation and selection reassortment 4. Responsible for epidemics of Responsible for epidemics as well influenza as pandemics of influenza. Gene Reassortment: Because the influenza virus genome is segmented, genetic reassortment can occur when a host cell is infected simultaneously with viruses of two different parent strains. This process of genetic reassortment accounts for the periodic appearance of the novel types of influenza A strains that cause influenza pandemics. Influenza viruses of animals, such as aquatic birds, chickens, swine, and horses show high host specificity. These animal viruses are the source of the RNA segments that encode the antigenic shift variants that cause epidemics among humans. For example, if a person is infected simultaneously by an avian and 6 | P a g e human influenza strains, then it is possible that a genetic reassortment could occur in infected cells in humans. The reassortment could lead to emergence of a new human influenza A virus, the progeny of which will contain a mixture of genome segments from the two strains (e.g. a new variant of human influenza A virus bearing the avian virus HA). Many studies have conclusively demonstrated that the aquatic birds (such as water fowl) are a common source of these new genes. The pigs act as mixing vessels, where these virulent genes of water fowl mix with the genome of influenza virus giving rise to new variant of influenza virus. Designation of influenza viruses: Influenza virus type A can be classified into subtypes based on the variations in their surface antigens. The WHO proposed a new system of classification in 1971 and was later modified, which takes into account Pathogenicity: The route of entry is the respiratory tract. In experimental infection in volunteers, very small doses (approximately three viable particles) can initiate infection when given as aerosols. Larger doses are required when infection is by intranasal instillation. The viral neuraminidase facilitates infection by reducing the viscosity of the mucus film lining the respiratory tract and exposing the cell surface receptors for virus adsorption. The ciliated cells of the respiratory tract are the main sites of viral infection.
Recommended publications
  • Technical Glossary
    WBVGL 6/28/03 12:00 AM Page 409 Technical Glossary abortive infection: Infection of a cell where there is no net increase in the production of infectious virus. abortive transformation: See transitory (transient or abortive) transformation. acid blob activator: A regulatory protein that acts in trans to alter gene expression and whose activity depends on a region of an amino acid sequence containing acidic or phosphorylated residues. acquired immune deficiency syndrome (AIDS): A disease characterized by loss of cell-mediated and humoral immunity as the result of infection with human immunodeficiency virus (HIV). acute infection: An infection marked by a sudden onset of detectable symptoms usually followed by complete or apparent recovery. adaptive immunity (acquired immunity): See immunity. adjuvant: Something added to a drug to increase the effectiveness of that drug. With respect to the immune system, an adjuvant increases the response of the system to a particular antigen. agnogene: A region of a genome that contains an open reading frame of unknown function; origi- nally used to describe a 67- to 71-amino acid product from the late region of SV40. AIDS: See acquired immune deficiency syndrome. aliquot: One of a number of replicate samples of known size. a-TIF: The alpha trans-inducing factor protein of HSV; a structural (virion) protein that functions as an acid blob transcriptional activator. Its specificity requires interaction with certain host cel- lular proteins (such as Oct1) that bind to immediate-early promoter enhancers. ambisense genome: An RNA genome that contains sequence information in both the positive and negative senses. The S genomic segment of the Arenaviridae and of certain genera of the Bunyaviridae have this characteristic.
    [Show full text]
  • Current and Novel Approaches in Influenza Management
    Review Current and Novel Approaches in Influenza Management Erasmus Kotey 1,2,3 , Deimante Lukosaityte 4,5, Osbourne Quaye 1,2 , William Ampofo 3 , Gordon Awandare 1,2 and Munir Iqbal 4,* 1 West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra P.O. Box LG 54, Ghana; [email protected] (E.K.); [email protected] (O.Q.); [email protected] (G.A.) 2 Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana 3 Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra P.O. Box LG 581, Ghana; [email protected] 4 The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; [email protected] 5 The University of Edinburgh, Edinburgh, Scotland EH25 9RG, UK * Correspondence: [email protected] Received: 20 May 2019; Accepted: 17 June 2019; Published: 18 June 2019 Abstract: Influenza is a disease that poses a significant health burden worldwide. Vaccination is the best way to prevent influenza virus infections. However, conventional vaccines are only effective for a short period of time due to the propensity of influenza viruses to undergo antigenic drift and antigenic shift. The efficacy of these vaccines is uncertain from year-to-year due to potential mismatch between the circulating viruses and vaccine strains, and mutations arising due to egg adaptation. Subsequently, the inability to store these vaccines long-term and vaccine shortages are challenges that need to be overcome. Conventional vaccines also have variable efficacies for certain populations, including the young, old, and immunocompromised.
    [Show full text]
  • Adenoviral Vector-Based Vaccine Platforms for Developing the Next Generation of Influenza Vaccines
    Review Adenoviral Vector-Based Vaccine Platforms for Developing the Next Generation of Influenza Vaccines Ekramy E. Sayedahmed 1 , Ahmed Elkashif 1, Marwa Alhashimi 1, Suryaprakash Sambhara 2,* and Suresh K. Mittal 1,* 1 Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; [email protected] (E.E.S.); [email protected] (A.E.); [email protected] (M.A.) 2 Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA * Correspondence: [email protected] (S.S.); [email protected] (S.K.M.) Received: 2 August 2020; Accepted: 17 September 2020; Published: 1 October 2020 Abstract: Ever since the discovery of vaccines, many deadly diseases have been contained worldwide, ultimately culminating in the eradication of smallpox and polio, which represented significant medical achievements in human health. However, this does not account for the threat influenza poses on public health. The currently licensed seasonal influenza vaccines primarily confer excellent strain-specific protection. In addition to the seasonal influenza viruses, the emergence and spread of avian influenza pandemic viruses such as H5N1, H7N9, H7N7, and H9N2 to humans have highlighted the urgent need to adopt a new global preparedness for an influenza pandemic. It is vital to explore new strategies for the development of effective vaccines for pandemic and seasonal influenza viruses. The new vaccine approaches should provide durable and broad protection with the capability of large-scale vaccine production within a short time. The adenoviral (Ad) vector-based vaccine platform offers a robust egg-independent production system for manufacturing large numbers of influenza vaccines inexpensively in a short timeframe.
    [Show full text]
  • Detection of Influenza a Viruses from Environmental Lake and Pond Ice
    TITLE “DETECTION OF INFLUENZA A VIRUSES FROM ENVIRONMENTAL LAKE AND POND ICE” Zeynep A. Koçer A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2010 Committee: Scott O. Rogers, Advisor W. Robert Midden Graduate Faculty Representative John Castello George Bullerjahn Paul Morris ii ABSTRACT Scott O. Rogers, Advisor Environmental ice is an ideal matrix for the long-term protection of organisms due to the limitation of degradative processes. As a result of global climate change, some glaciers and polar ice fields are melting at rapid rates. This process releases viable microorganisms that have been embedded in the ice, sometimes for millions of years. We propose that viral pathogens have adapted to being entrapped in ice, such that they are capable of infecting naïve hosts after melting from the ice. Temporal gene flow, which has been termed genome recycling (Rogers et al., 2004), may allow pathogens to infect large host populations rapidly. Accordingly, we hypothesize that viable influenza A virions are preserved in lake and pond ice. Our main objective was to identify influenza A (H1-H16) from the ice of a few lakes and ponds in Ohio that have high numbers of migratory and local waterfowl visiting the sites. We developed a set of hemagglutinin subtype-specific primers for use in four multiplex RT-PCR reactions. Model studies were developed by seeding environmental lake water samples in vitro with influenza A viruses and subjecting the seeded water to five freeze-thaw cycles at -20oC and -80oC.
    [Show full text]
  • Evolution and Adaptation of the Avian H7N9 Virus Into the Human Host
    microorganisms Review Evolution and Adaptation of the Avian H7N9 Virus into the Human Host Andrew T. Bisset 1,* and Gerard F. Hoyne 1,2,3,4 1 School of Health Sciences, University of Notre Dame Australia, Fremantle WA 6160, Australia; [email protected] 2 Institute for Health Research, University of Notre Dame Australia, Fremantle WA 6160, Australia 3 Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands WA 6009, Australia 4 School of Medical and Health Sciences, Edith Cowan University, Joondalup WA 6027, Australia * Correspondence: [email protected] Received: 19 April 2020; Accepted: 19 May 2020; Published: 21 May 2020 Abstract: Influenza viruses arise from animal reservoirs, and have the potential to cause pandemics. In 2013, low pathogenic novel avian influenza A(H7N9) viruses emerged in China, resulting from the reassortment of avian-origin viruses. Following evolutionary changes, highly pathogenic strains of avian influenza A(H7N9) viruses emerged in late 2016. Changes in pathogenicity and virulence of H7N9 viruses have been linked to potential mutations in the viral glycoproteins hemagglutinin (HA) and neuraminidase (NA), as well as the viral polymerase basic protein 2 (PB2). Recognizing that effective viral transmission of the influenza A virus (IAV) between humans requires efficient attachment to the upper respiratory tract and replication through the viral polymerase complex, experimental evidence demonstrates the potential H7N9 has for increased binding affinity and replication, following specific amino acid substitutions in HA and PB2. Additionally, the deletion of extended amino acid sequences in the NA stalk length was shown to produce a significant increase in pathogenicity in mice.
    [Show full text]
  • Perspectives
    PERSPECTIVES in humans. In the 1957 H2N2-SUBTYPE pan- OPINION demic virus, both influenza surface proteins, HA and neuraminidase (NA), and one inter- nal protein, polymerase B1 (PB1), were Evidence of an absence: closely related to Eurasian wild waterfowl influenza proteins6,7.In 1968, the H3N2 pan- the genetic origins of the 1918 demic virus contained novel HA and PB1 proteins, also apparently of Eurasian wild waterfowl origin7,8.Although it is not known pandemic influenza virus exactly how these reassortant viruses were generated, pigs can be infected with both Ann H. Reid, Jeffery K. Taubenberger and Thomas G. Fanning avian and human influenza strains and this species has been suggested as a potential ‘mix- Abstract | Annual outbreaks of influenza A (HA) protein on the virus surface can greatly ing vessel’ for the generation of pandemic infection are an ongoing public health threat reduce the effectiveness of existing antibodies, viruses2,9. and novel influenza strains can periodically leaving people vulnerable to repeated influenza In 1918, the most devastating influenza emerge to which humans have little immunity, infections throughout their lives. In addition pandemic in history killed at least 40 million resulting in devastating pandemics. The 1918 to this gradual change in the influenza virus, people10,11.In addition to a death toll that is pandemic killed at least 40 million people which is known as ANTIGENIC DRIFT, influenza A several times higher than that of other worldwide and pandemics in 1957 and 1968 viruses can acquire novel surface proteins influenza pandemics, the 1918 H1N1 virus caused hundreds of thousands of deaths.
    [Show full text]
  • Drift, Shift, and Attenuation
    Cell, Vol. 104, 469±472, February 23, 2001, Copyright 2001 by Cell Press HIV-1 Sequence Variation: Minireview Drift, Shift, and Attenuation Michael H. Malim*²§ and Michael Emerman³§ that there is an exponentially growing population size *Department of Microbiology (Peeters and Sharp, 2000) and highlights the evolution- ² Department of Medicine ary ªsuccessº of HIV-1 in humans. University of Pennsylvania School of Medicine A second mechanism for acquiring sequence diversity Philadelphia, Pennsylvania 19104 is recombination. This can occur when a cell that is ³ Division of Human Biology dually infected with different viruses produces progeny Fred Hutchinson Cancer Research Center virions with genomic RNAs from each virus, and strand- Seattle, Washington 98109 switching takes place during the next round of reverse transcription (Figure 1b). As increasing numbers of full- length viral sequences become available, the number of recombinant or mosaic viruses that are formed in this The introduction and global dissemination of the retrovi- way from parental viruses of different subtypes is being rus human immunodeficiency virus type-1 (HIV-1) in hu- recognized more frequently. Some of these recombinant mans represents a dramatic and deadly example of re- genomes have themselves become established in the cent genome emergence and expansion; since the human population, and are classified as circulating re- beginning of the pandemic, over 50 million people have combinant forms (CRFs) (McCutchan, 2000; Peeters and been infected and over 16 million of those have died Sharp, 2000). Importantly, and unlike the incremental of AIDS. As with all RNA viruses, HIV-1 replication is accumulation of sequence changes that occurs through characterized by very high mutation rates.
    [Show full text]
  • Cdc Pandemic Influenza Questions and Answers 10-20-2017
    CDC PANDEMIC INFLUENZA QUESTIONS AND ANSWERS • What is an influenza pandemic? o An influenza pandemic is a global outbreak of a new influenza A virus that is very different from current and recently circulating human seasonal influenza A viruses. Pandemics happen when new (novel) influenza A viruses emerge which are able to infect people easily and spread from person to person in an efficient and sustained way. • Where do pandemic influenza viruses come from? o Different animals—including birds and pigs—are hosts to influenza A viruses that do not normally infect people. Influenza A viruses are constantly changing, making it possible on very rare occasions for non-human influenza viruses to change in such a way that they can infect people easily and spread efficiently from person to person • How do influenza A viruses change to cause a pandemic? o Influenza A viruses are divided into subtypes based on two proteins on the surface of the virus: the hemagglutinin (H) and the neuraminidase (N). There are 18 different hemagglutinin subtypes and 11 different neuraminidase subtypes (H1 through H18 and N1 through N11). Theoretically, any combination of the 18 hemagglutinins and 11 neuraminidase proteins are possible, but not all have been found in animals and even fewer have been found to infect humans. o Influenza viruses can change in two different ways one of which is called “antigenic shift” and can result in the emergence of a new influenza virus. Antigenic shift represents an abrupt, major change in an influenza A virus. This can result from direct infection of humans with a non- human influenza A virus, such as a virus circulating among birds or pigs.
    [Show full text]
  • Highly Pathogenic Avian Influenza
    Importance Avian Influenza Avian influenza viruses are highly contagious, extremely variable viruses that are widespread in birds. Wild birds in aquatic habitats are thought to be their natural Fowl Plague, Grippe Aviaire reservoir hosts, but domesticated poultry are readily infected. Most viruses cause only mild disease in poultry, and are called low pathogenic avian influenza (LPAI) viruses. Highly pathogenic avian influenza (HPAI) viruses can develop from certain LPAI Last Updated: September 2014 viruses, usually while they are circulating in poultry flocks. HPAI viruses can kill up to 90-100% of the flock, and cause epidemics that may spread rapidly, devastate the poultry industry and result in severe trade restrictions. Infection of poultry with LPAI viruses capable of evolving into HPAI viruses also affects international trade. Avian influenza viruses occasionally affect mammals, including humans, usually after close contact with infected poultry. While many human cases are limited to conjunctivitis An enhanced version of or mild respiratory disease, some viruses tend to cause severe illness. In rare cases, this factsheet, with citations avian influenza viruses can become adapted to circulate in a mammalian species, and is available at these viruses have caused or contributed to at least three pandemics in humans. http://www.cfsph.iastate.edu/ Factsheets/pdfs/highly_patho Etiology genic_avian_influenza- Avian influenza results from infection by viruses belonging to the species citations.pdf influenza A virus, genus influenzavirus A and family Orthomyxoviridae. Influenza A viruses are classified into subtypes based on two surface proteins, the hemagglutinin (HA) and neuraminidase (NA). At least 16 hemagglutinins (H1 to H16), and 9 neuraminidases (N1 to N9) have been found in viruses from birds, while two additional HA and NA types have been identified, to date, only in bats.
    [Show full text]
  • V Iral Evolution
    4 Viral evolution Molecular evidence for evolution 4: Viral evolution | sr0299 teachers guide Molecular evidence for evolution 4: Viral evolution photo by AJ Cann Components NAME DESCRIPTION AUDIENCE Viral evolution This guide explains how to use bioinformatics tools teachers within the Influenza Research Database to build students’ teachers guide understanding of molecular evidence for evolution. Influenza This background sheet for teachers describes the structure teachers and reproduction of influenza viruses. background sheet Investigating influenza This background sheet for teachers describes how influenza teachers viruses evolve and mechanisms of antigenic drift and background sheet shift. It provides an introduction to bioinformatics and the Influenza Research Database. Fighting the ‘flu This factsheet describes the structure of influenza viruses students and how they evolve through antigenic shift and drift. fact sheet Influenza – an evolving This activity sheet guides students through interactive use students problem! of the Influenza Research Database. worksheet Purpose Outcomes Students develop an understanding of how databases Students understand that: may be used to map changes in influenza viruses as • there are different types of influenza virus that they evolve. affect different animal species; • evolution can occur rapidly in viruses, through mechanisms of antigenic drift and antigenic shift; • mutations or changes in nucleotide sequences of viruses mean hosts may not recognise a virus; and • online databases, such as the Influenza Research Database, enable scientists to track strains of viruses and map evolutionary changes, as they occur. Activity summary ACTIVITY POSSIBLE STRATEGY Students read the fact sheet, Fighting the ‘flu, to provide background individually or in pairs information for an online database activity.
    [Show full text]
  • Replication Strategies of RNA Viruses Requiring RNA-Directed Mrna 16 Transcription As CHAPTER the First Step in Viral Gene Expression
    WBV16 6/27/03 11:21 PM Page 257 Replication Strategies of RNA Viruses Requiring RNA-directed mRNA 16 Transcription as CHAPTER the First Step in Viral Gene Expression ✷ REPLICATION OF NEGATIVE-SENSE RNA VIRUSES WITH A MONOPARTITE GENOME ✷ The replication of vesicular stomatitis virus — a model for Mononegavirales ✷ Paramyxoviruses ✷ Filoviruses and their pathogenesis ✷ Bornaviruses ✷ INFLUENZA VIRUSES — NEGATIVE-SENSE RNA VIRUSES WITH A MULTIPARTITE GENOME ✷ Involvement of the nucleus in flu virus replication ✷ Generation of new flu nucleocapsids and maturation of the virus ✷ Influenza A epidemics ✷ OTHER NEGATIVE-SENSE RNA VIRUSES WITH MULTIPARTITE GENOMES ✷ Bunyaviruses ✷ Arenaviruses ✷ VIRUSES WITH DOUBLE-STRANDED RNA GENOMES ✷ Reovirus structure ✷ The reovirus replication cycle ✷ Pathogenesis ✷ SUBVIRAL PATHOGENS ✷ Hepatitis delta virus ✷ Viroids ✷ Prions ✷ QUESTIONS FOR CHAPTER 16 WBV16 6/27/03 3:58 PM Page 258 258 BASIC VIROLOGY A significant number of single-stranded RNA viruses contain a genome that has a sense opposite to mRNA (i.e., the viral genome is negative-sense RNA). To date, no such viruses have been found to infect bacteria and only one type infects plants. But many of the most important and most feared human pathogens, including the causative agents for flu, mumps, rabies, and a number of hemorrhagic fevers, are negative-sense RNA viruses. The negative-sense RNA viruses generally can be classified according to the number of segments that their genomes contain. Viruses with monopartite genomes contain a single piece of virion negative-sense RNA, a situation equivalent to that described for the positive-sense RNA viruses in the last chapter. A number of groups of negative-sense RNA viruses have multipartite (i.e., seg- mented ) genomes.
    [Show full text]
  • Influenza: a Seasonal Disease
    Influenza: A seasonal disease FACTFILE Influenza: A seasonal disease nfluenza or ‘flu’ is a common viral addition, global influenza pandemics proteins that the virus needs in order disease of the upper respiratory tract have been recorded throughout history to replicate inside the infected host cell. Iin humans (in birds it is an infection and they seem to occur every 10 to 40 The genome is protected by a membrane of the gut). There are three types of years. Between 1918 and 1919 flu is envelope. Protruding from the virus influenza virus: influenza A, B and C. thought to have killed over 50 million membrane are hundreds of copies of two However, a fourth type, influenza D, people (6 times as many as died as a different varieties of viral glycoprotein has recently been discovered as a consequence of the first-world war). It spikes. Approximately 80% of the veterinary infection, particularly of was caused by an unusually pathogenic spikes are haemagglutinin (HA) and the cows. Major outbreaks of influenza are strain of influenza A virus. remaining 20% are neuraminidase (NA). associated with influenza virus type A The HA and NA surface proteins are or B. Influenza C is common but seldom What causes flu? involved in viral attachment and entry causes disease The influenza virus particle – virion to host cells as well as the release of Influenza A is commonly associated – is usually spherical, but sometimes new virions. They are also the main part with human disease. Each year, many filamentous, in shape and carries its of the virus recognised by our immune countries, including the UK, experience genetic material on eight pieces of single system as foreign, and most of the seasonal influenza epidemics that affect stranded RNA known as segments.
    [Show full text]