Plasma Concentrations of the Flavonoids Hesperetin, Naringenin

Total Page:16

File Type:pdf, Size:1020Kb

Plasma Concentrations of the Flavonoids Hesperetin, Naringenin European Journal of Clinical Nutrition (2002) 56, 891–898 ß 2002 Nature Publishing Group All rights reserved 0954–3007/02 $25.00 www.nature.com/ejcn ORIGINAL COMMUNICATION Plasma concentrations of the flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual diets, and diets high or low in fruit and vegetables I Erlund1*, ML Silaste2, G Alfthan1, M Rantala2, YA Kesa¨niemi2 and A Aro1 1Biomarker Laboratory, National Public Health Institute (KTL), Helsinki, Finland; and 2Department of Internal Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland Objectives: To determine the fasting plasma concentrations of quercetin, hesperetin and naringenin in human subjects consuming their habitual diets, and diets either high or low in fruit and vegetables. To investigate whether plasma concentrations of flavanones can serve as biomarkers of their intake. Design: This was a cross-over, strictly controlled dietary intervention consisting of a 2 week baseline period, and two 5 week dietary periods with a 3 week wash-out period in between. The low-vegetable diet contained few fruit and vegetables and no citrus fruit. The high-vegetable diet provided various fruits and vegetables daily including on average one glass of orange juice, one-half orange and one-half mandarin. Subjects: Thirty-seven healthy females. Results: The high-vegetable diet provided 132 mg of hesperetin and 29 mg of naringenin. The low-vegetable diet contained no flavanones. The mean plasma hesperetin concentration increased from 12.2 nmol=l after the low-vegetable diet to 325 nmol=l after the high-vegetable diet. The respective increase for naringenin was from < 73.5 nmol=l for all subjects to a mean value of 112.9 nmol=l. The mean plasma quercetin concentration was 52 nmol=l after the baseline period, during which habitual diets were consumed, and it did not change significantly during the intervention. Interindividual variation in the plasma levels of hesperetin and naringenin was marked and, after the baseline and wash-out periods, and the low-vegetable diet, a majority of the samples had plasma flavanone levels below the limit of detection. After the high-vegetable diet, hesperetin and naringenin were detectable in 54 and 22% of all samples. Quercetin was detectable in nearly all samples after all study periods. Conclusion: Hesperetin, naringenin and quercetin are bioavailable from the diet, but the plasma concentrations of hesperetin and naringenin are poor biomarkers of intake. European Journal of Clinical Nutrition (2002) 56, 891 – 898. doi:10.1038/sj.ejcn.1601409 Keywords: flavonoids; hesperetin; naringenin; quercetin; human; bioavailability Introduction cular diseases and cancer. What role individual compounds Epidemiological studies suggest that a diet high in vegetables play in this protection and to what extent they account for and fruit protects against chronic diseases such as cardiovas- the decreased risk of diseases is not known. Fruit and vege- tables contain a variety of potentially beneficial nutrients such as vitamins C and E, but also many so called non- *Correspondence: I Erlund, Biomarker laboratory, National Public Health nutrients such as flavonoids. Institute (KTL), Mannerheimint. 166 F, 00300 Helsinki, Finland. Several epidemiological studies indicate an inverse asso- E-mail: iris.erlund@ktl.fi ciation between the intake of flavonols (a subgroup of Guarantors: A Aro and YA Kesa¨niemi. Contributors: MLS, MR, YAK and AA designed the dietary flavonoids) and the risk of cardiovascular disease (Hertog intervention. IE performed chromatographic and statistical analyses, et al, 1993, 1995; Knekt et al, 1996; Yochum et al, 1999). The and wrote the manuscript. MLS performed intake calculations. GA most abundant flavonol in the diet is quercetin, which and AA supervised chemical analyses and the writing of the possesses biological activities such as antioxidative (Chopra manuscript. All contributors read and commented on the manuscript. Received 19 June 2001; revised 13 December 2001; et al, 2000; Fuhrman & Aviram, 2001), anticarcinogenic accepted 14 December 2001 (Pereira et al, 1996; Caltagirone et al, 1997) and enzyme- Plasma concentrations of flavonoids I Erlund et al 892 inhibiting activities (Siess et al, 1995; Agullo et al, 1997; either low or high in fruit and vegetables. We also wanted to Conseil et al, 1998). Other flavonoid subgroups of interest study the possibility of using plasma concentrations of are for instance the flavanones. Flavanones also possess flavanones as biomarkers of their intake. The diets were promising biological properties and their dietary intake is originally designed to be high or low in folate, vitamin C, quite high in individuals consuming citrus products regu- vitamin E and carotenoids, and the biochemical effects of larly. The main dietary flavanones are hesperetin and nar- the diets are reported elsewhere (Silaste et al, 2001). ingenin, which occur almost exclusively in citrus fruits. Glycoside forms of these compounds are present in high concentrations (several hundred mg=kg) in many commonly Methods consumed citrus fruits and juices (Rouseff et al, 1987; Mouly Subjects et al, 1998). In Finland, the average intake of hesperetin has Thirty-seven healthy women working at the University Hos- been estimated to be 28.3 mg=day, and for naringenin the pital of Oulu participated in the study. They were between 22 estimate is 8.3 mg=day (Kumpulainen et al, 1999). and 57 y of age (mean 43 y) and their height and weight Some epidemiological studies have suggested a protective ranged from 155 to 172 cm (mean 163 cm) and from 51.8 to association between a high consumption of citrus and dif- 78.0 kg (mean 63.6 kg), respectively. Screening clinical chem- ferent types of cancer (De Stefani et al, 2000; Voorrips et al, istry tests, a physician’s examination and a dietician’s inter- 2000) and ischemic stroke (Joshipura et al, 1999). Experi- view were performed during the baseline period. Inclusion mental studies indicate that hesperetin and naringenin may criteria were as follows; the subject had no gastrointestinal, play a role in this protection. Feeding of orange juice, grape- renal or hepatic disease, had normal blood glucose and lipid fruit juice or pure flavanones has been shown to inhibit concentrations, had a body mass index between 20 and several types of chemically induced carcinogenesis in labora- 29 kg=m2, had no food allergies, consumed alcohol with tory animals (So et al, 1996,Tanaka et al, 1997; Yang et al, moderation, was not a current smoker, pregnant or lactating 1997). The mechanisms of action are unclear, but hesperetin and did not use dietary supplements during the 6 months and=or naringenin have been reported to inhibit estrone preceding the study. Six subjects used oral contraceptives sulfatase (Huang et al, 1997) and cytochrome P-450 isoen- and three subjects were on hormone replacement therapy. zymes (Ghosal et al, 1996), to bind to estrogen receptors Two subjects took antibiotics during the study; one subject (Kuiper et al, 1998; Hunter et al, 1999) and to sex hormone- used flucaconazol during the low-vegetable diet and one binding globulin (Dechaud et al, 1999), and to act as anti- subject took amoxicillin for 10 days during the high-vege- oxidants (van Acker et al, 2000; Fuhrman & Aviram, 2001). table diet (the last dose was taken 17 days before the end of Furthermore, flavanones have been shown to affect choles- diet 2). terol metabolism in rats (Bok et al, 1999) and in HepG2 cells The study was conducted in accordance with the Declara- (Borradaile et al, 1999), and in a recent study, ingestion of tion of Helsinki. Written informed consent was obtained orange juice increased HDL cholesterol levels in hypercho- from all participants, and the study was approved by the lesterolemic human subjects (Kurowska et al, 2000). Ethical Committee of the Faculty of Medicine, University of Flavonoids usually occur in plants as glycosides. Querce- Oulu. tin occurs in several different glycosidic forms in plants, but the flavanone glycosides are less numerous. It has been shown that quercetin is bioavailable from foods such as Study design onions, tea and apples (Hollman et al, 1997), which are its This cross-over study consisted of a 2 week baseline period main dietary sources (Hertog et al, 1995). It has also been and two 5 week intervention periods with a 3 week wash-out shown that hesperetin and naringenin are bioavailable from period in between. During the baseline and wash-out peri- citrus (Ameer et al, 1996; Erlund et al, 2001). It is evident that ods, the subjects followed their habitual diets. At the end of the bioavailability of quercetin, and most likely of other the baseline, the subjects were randomized into two groups. flavonoids as well, is greatly affected by the type and binding One group was first on the low-vegetable diet and then on site of the sugar moieties (Hollman et al, 1999). On the the high-vegetable diet, and the other group had the order of whole, few data are available concerning plasma flavonoid the two diets reversed. All food and beverages were provided concentrations in subjects following their habitual diets. by the hospital kitchen. Lunches and dinners were served at To our knowledge, no information is available about the hospital cafeteria, or the participants could take the plasma flavanone concentrations after long-term consump- packaged meals home. tion of citrus or in subjects consuming their habitual diets, and data on plasma quercetin concentrations are mainly derived from studies in which rather high amounts of Diets quercetin-rich foods were consumed. Both diets were designed on the basis of regular hospital The aim of this study was to determine the plasma con- meals. The low-vegetable diet was designed to provide 60 mg centrations of hesperetin, naringenin and quercetin in of vitamin C, 8 mg of vitamin E and 200 mg of folate per day.
Recommended publications
  • Flavonoid-Modifying Capabilities of the Human Gut Microbiome—An in Silico Study
    nutrients Article Flavonoid-Modifying Capabilities of the Human Gut Microbiome—An In Silico Study Tobias Goris 1,* , Rafael R. C. Cuadrat 2 and Annett Braune 1 1 Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; [email protected] 2 Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; [email protected] * Correspondence: [email protected] Abstract: Flavonoids are a major group of dietary plant polyphenols and have a positive health impact, but their modification and degradation in the human gut is still widely unknown. Due to the rise of metagenome data of the human gut microbiome and the assembly of hundreds of thousands of bacterial metagenome-assembled genomes (MAGs), large-scale screening for potential flavonoid-modifying enzymes of human gut bacteria is now feasible. With sequences of characterized flavonoid-transforming enzymes as queries, the Unified Human Gastrointestinal Protein catalog was analyzed and genes encoding putative flavonoid-modifying enzymes were quantified. The results revealed that flavonoid-modifying enzymes are often encoded in gut bacteria hitherto not considered to modify flavonoids. The enzymes for the physiologically important daidzein-to-equol conversion, well studied in Slackia isoflavoniconvertens, were encoded only to a minor extent in Slackia MAGs, but were more abundant in Adlercreutzia equolifaciens and an uncharacterized Eggerthellaceae species. In addition, enzymes with a sequence identity of about 35% were encoded in highly abundant MAGs of uncultivated Collinsella species, which suggests a hitherto uncharacterized daidzein-to-equol potential in these bacteria.
    [Show full text]
  • Thesis of Potentially Sweet Dihydrochalcone Glycosides
    University of Bath PHD The synthesis of potentially sweet dihydrochalcone glycosides. Noble, Christopher Michael Award date: 1974 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 THE SYNTHESIS OF POTBTTIALLY SWEET DIHYDROCHALCOITB GLYCOSIDES submitted by CHRISTOPHER MICHAEL NOBLE for the degree of Doctor of Philosophy of the University of Bath. 1974 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author.This copy of the the­ sis has been supplied on condition that anyone who con­ sults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be pub­ lished without the prior written consent of the author.
    [Show full text]
  • RNA-Sequencing Analysis Reveals Betalains Metabolism in the Leaf of Amaranthus Tricolor L
    RESEARCH ARTICLE RNA-sequencing analysis reveals betalains metabolism in the leaf of Amaranthus tricolor L. Shengcai Liu1☯, Xueli Zheng1☯, Junfei Pan1, Liyun Peng1, Chunzhen Cheng1, Xiao Wang1, 1 1 1 1,2 1 Chunli Zhao , Zihao Zhang , Yuling Lin , Xu XuHan *, Zhongxiong LaiID * 1 Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China, 2 Institut de la Recherche Interdisciplinaire de Toulouse, Toulouse, France ☯ These authors contributed equally to this work. * [email protected](ZL); [email protected] (XXH) a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Amaranth plants contain large amounts of betalains, including betaxanthins and betacya- nins. Amaranthin is a betacyanin, and its molecular structure and associated metabolic pathway differ from those of betanin in beet plants. The chlorophyll, carotenoid, betalain, and flavonoid contents in amaranth leaves were analyzed. The abundance of betalain, beta- OPEN ACCESS cyanin, and betaxanthin was 2±5-fold higher in the red leaf sectors than in the green leaf Citation: Liu S, Zheng X, Pan J, Peng L, Cheng C, sectors. Moreover, a transcriptome database was constructed for the red and green sectors Wang X, et al. (2019) RNA-sequencing analysis of amaranth leaves harvested from 30-day-old seedlings. 22 unigenes were selected to ana- reveals betalains metabolism in the leaf of Amaranthus tricolor L.. PLoS ONE 14(4): lyze the expression profiles in the two leaf sectors. The RNA-sequencing data indicated that e0216001. https://doi.org/10.1371/journal. many unigenes are involved in betalain metabolic pathways. The potential relationships pone.0216001 between diverse metabolic pathways and betalain metabolism were analyzed.
    [Show full text]
  • Combinatorial Biosynthesis of Non-Bacterial and Unnatural Flavonoids, Stilbenoids and Curcuminoids by Microorganisms Sueharu Horinouchi
    J. Antibiot. 61(12): 709–728, 2008 THE JOURNAL OF REVIEW ARTICLE ANTIBIOTICS Combinatorial Biosynthesis of Non-bacterial and Unnatural Flavonoids, Stilbenoids and Curcuminoids by Microorganisms Sueharu Horinouchi Received: August 1, 2008 / Accepted: October 14, 2008 © Japan Antibiotics Research Association Abstract One of the approaches of combinatorial biosynthesis is combining genes from different organisms and designing a new set of gene clusters to produce bioactive compounds, leading to diversification of both chemical and natural product libraries. This makes efficient use of the potential of the host organisms, especially when microorganisms are used. An Escherichia coli system, in which artificial biosynthetic pathways for production of plant-specific medicinal polyketides, such as flavonoids, stilbenoids, isoflavonoids, and curcuminoids, are assembled, has been designed and expressed. Starting with amino acids tyrosine and phenylalanine as substrates, this system yields naringenin, resveratrol, genistein, and curcumin, for example, all of which are beneficial to human health because of their wide variety of biological activities. Supplementation of unnatural carboxylic acids to the recombinant E. coli cells carrying the artificial pathways by precursor-directed biosynthesis results in production of unnatural compounds. Addition of decorating or modification enzymes to the artificial pathway leads to production of natural and unnatural flavonols, flavones, and methylated resveratrols. This microbial system is promising for construction of larger libraries by employing other polyketide synthases and decorating enzymes of various origins. In addition, the concept of building and expressing artificial biosynthetic pathways for production of non-bacterial and unnatural compounds in microorganisms should be successfully applied to production of not only plant-specific polyketides but also many other useful compound classes.
    [Show full text]
  • Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
    antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1].
    [Show full text]
  • The Effect of the Flavonoids Quercetin and Genistein on The
    THE EFFECT OF THE FLAVONOIDS QUERCETIN AND GENISTEIN ON THE ANTIOXIDANT ENZYMES Cu, Zn SUPEROXIDE DISMUTASE, GLUTATHIONE PEROXIDASE, AND GLUTATHIONE REDUCTASE IN MALE SPRAGUE-DAWLEY RATS by ANNETTE CAIRNS GOVERNO (Under the Direction of Joan G. Fischer) ABSTRACT Quercetin (QC) and genistein (GS) are phytochemicals found in fruits and vegetables. These compounds may exert protective effects by altering antioxidant enzyme activities. The objective of the study was to examine the effects of QC and GS supplementation on the activities of the antioxidant enzymes glutathione reductase (GR), glutathione peroxidase (GSHPx), and Cu, Zn superoxide dismutase (SOD) in liver, and SOD activity in red blood cells (RBC), as well as the Ferric Reducing Antioxidant Potential (FRAP). Male, weanling Sprague-Dawley rats (n=7-8 group) were fed quercetin at 0.3, 0.6 or 0.9g/100g of diet or genistein at 0.008, 0.012, or 0.02g/100g diet for 14d. GS supplementation significantly increased liver GSHPx activity compared to control (p<0.01). GS did not significantly alter activities of liver SOD and GR, or RBC SOD. QC did not significantly alter antioxidant enzyme activities in liver or RBC. Neither QC nor GS increased the antioxidant capacity of serum. In conclusion, low levels of GS significantly increased liver GSHPx activity, which may contribute to this isoflavone’s protective effects. INDEX WORDS: Flavonoids, Quercetin, Genistein, Copper Zinc Superoxide Dismutase, Glutathione Peroxidase, Glutathione Reductase THE EFFECT OF THE FLAVONOIDS QUERCETIN AND GENISTEIN ON THE ANTIOXIDANT ENZYMES Cu, Zn SUPEROXIDE DISMUTASE, GLUTATHIONE PEROXIDASE, AND GLUTATHIONE REDUCTASE IN MALE SPRAGUE-DAWLEY RATS by ANNETTE CAIRNS GOVERNO B., S.
    [Show full text]
  • In Vivo Analysis of Bisphenol
    Asian Journal of Pharmacy and Pharmacology 2019; 5(S1): 28-36 28 Research Article In vivo analysis of bisphenol A-induced sub-chronic toxicity on reproductive accessory glands of male mice and its amelioration by quercetin Sanman Samova, Hetal Doctor, Dimple Damore, Ramtej Verma Department of Zoology, BMTC and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India Received: 20 December 2018 Revised: 1 February 2019 Accepted: 25 February 2019 Abstract Objective: Bisphenol A is an endocrine disrupting chemical, widely used as a material for the production of epoxy resins and polycarbonate plastics. Food is considered as the main source of exposure to BPA as it leaches out from the food containers as well as surface coatings into it. BPA is toxic to vital organs such as liver kidney and brain. Quercetin, the most abundant flavonoid in nature, is present in large amounts in vegetables, fruits and tea. The aim of the present study was to evaluate the toxic effects of BPA in prostate gland and seminal vesicle of mice and its possible amelioration by quercetin. Material and methods: Inbred Swiss strain male albino mice were orally administered with BPA (80, 120 and 240 mg/kg body weight/day) for 45 Days. Oral administration of BPA caused significant, dose-dependent reduction in absolute and relative weights of prostate gland and seminal vesicle. Results and conclusion: Biochemical analysis revealed that protein content reduced significantly, whereas acid phosphatase activity increased significantly in prostate gland and reduction in fructose content was observed in seminal vesicle. Oral administration of quercetin (30, 60 and 90 mg/kg body weight/day) alone with high dose of BPA (240 mg/kg body weight/day) for 45 days caused significant and dose-dependent amelioration in all parameters as compared to BPA along treated group.
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • Fighting Bisphenol A-Induced Male Infertility: the Power of Antioxidants
    antioxidants Review Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants Joana Santiago 1 , Joana V. Silva 1,2,3 , Manuel A. S. Santos 1 and Margarida Fardilha 1,* 1 Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (J.S.); [email protected] (J.V.S.); [email protected] (M.A.S.S.) 2 Institute for Innovation and Health Research (I3S), University of Porto, 4200-135 Porto, Portugal 3 Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal * Correspondence: [email protected]; Tel.: +351-234-247-240 Abstract: Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and poly- carbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestra- diol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies based on urinary BPA concentration, showing a negative association between BPA levels and sperm concentration, motility, and sperm DNA damage. Recent studies explored potential approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on testicular cells and spermatozoa is associated with an increased production of reactive oxygen species, most of the pharmacological approaches are based on the use of natural or synthetic antioxidants.
    [Show full text]
  • Fractionation of Orange Peel Phenols in Ultrafiltered Molasses and Mass Balance Studies of Their Antioxidant Levels
    7586 J. Agric. Food Chem. 2004, 52, 7586−7592 Fractionation of Orange Peel Phenols in Ultrafiltered Molasses and Mass Balance Studies of Their Antioxidant Levels JOHN A. MANTHEY† Citrus and Subtropical Products Laboratory, Southern Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, 600 Avenue S N.W., Winter Haven, Florida 33881 Orange peel molasses, a byproduct of juice production, contains high concentrations of phenols, including numerous flavanone and flavone glycosides, polymethoxylated flavones, hydroxycinnamates, and other miscellaneous phenolic glycosides and amines. Extensive fractionation of these phenols was achieved by adsorption, ion exchange, and size exclusion chromatography. Size exclusion chromatography effectively separated the different classes of flavonoids in ultrafiltered molasses, including the polymethoxylated flavones, flavanone-O-trisaccharides, flavanone- and flavone-O- disaccharides, and, finally, flavone-C-glycosides. Mass spectral analysis of the early-eluting flavonoid fractions off the size exclusion column revealed a broad collection of minor-occurring flavone glycosides, which included, in part, glycosides of limocitrin, limocitrol, and chrysoeriol. Most hydroxycinnamates in the molasses were recovered by ion exchange chromatography, which also facilitated the recovery of fractions containing many other miscellaneous phenols. Total antioxidant levels and total phenolic contents were measured for the separate categories of phenols in the molasses. Inhibition of the superoxide anion reduction of nitroblue tetrazolium showed that a significant amount of the total antioxidant activity in orange peel molasses was attributable to minor-occurring flavones. The miscellaneous phenolic-containing fractions, in which a large portion of the total phenolic content in molasses occurred, also constituted a major portion of the total antioxidants in ultrafiltered molasses.
    [Show full text]
  • The Human Microbial Metabolism of Quercetin in Different Formulations
    foods Article The human Microbial Metabolism of Quercetin in Different Formulations: An In Vitro Evaluation Giuseppe Di Pede 1 , Letizia Bresciani 2 , Luca Calani 1, Giovanna Petrangolini 3 , Antonella Riva 3 , Pietro Allegrini 3, Daniele Del Rio 2,* and Pedro Mena 1 1 Department of Food and Drugs, University of Parma, 43124 Parma, Italy; [email protected] (G.D.P.); [email protected] (L.C.); [email protected] (P.M.) 2 Department of Veterinary Science, University of Parma, 43126 Parma, Italy; [email protected] 3 Research and Development Department, Indena S.p.A., Viale Ortles, 12-20139 Milano, Italy; [email protected] (G.P.); [email protected] (A.R.); [email protected] (P.A.) * Correspondence: [email protected]; Tel.: +39-0521-033830 Received: 29 July 2020; Accepted: 10 August 2020; Published: 14 August 2020 Abstract: Quercetin is one of the main dietary flavonols, but its beneficial properties in disease prevention may be limited due to its scarce bioavailability. For this purpose, delivery systems have been designed to enhance both stability and bioavailability of bioactive compounds. This study aimed at investigating the human microbial metabolism of quercetin derived from unformulated and phytosome-formulated quercetin through an in vitro model. Both ingredients were firstly characterized for their profile in native (poly)phenols, and then fermented with human fecal microbiota for 24 h. Quantification of microbial metabolites was performed by ultra-high performance liquid chromatography coupled to mass spectrometry (uHPLC-MSn) analyses. Native quercetin, the main compound in both products, appeared less prone to microbial degradation in the phytosome-formulated version compared to the unformulated one during fecal incubation.
    [Show full text]
  • Flavonoids and Isoflavonoids Biosynthesis in the Model
    plants Review Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration Margarita García-Calderón 1, Carmen M. Pérez-Delgado 1, Peter Palove-Balang 2, Marco Betti 1 and Antonio J. Márquez 1,* 1 Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; [email protected] (M.G.-C.); [email protected] (C.M.P.-D.); [email protected] (M.B.) 2 Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, Mánesova 23, SK-04001 Košice, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +34-954557145 Received: 28 April 2020; Accepted: 18 June 2020; Published: 20 June 2020 Abstract: Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore, various types of interconnection exist between different aspects of nitrogen metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids are postulated to play pivotal roles in adaptation to their biological environments, both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia. In this paper, we summarize the recent progress made in the characterization of flavonoid and isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in glutamine synthetase.
    [Show full text]