Simulation of the Diurnal Cycle in Tropical Rainfall and Circulation During Boreal Summer with a High-Resolution GCM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indian Ocean Dipole and El Niño/Southern Oscillation Impacts on Regional Chlorophyll Anomalies in the Indian Ocean Jock C
Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean Jock C. Currie, Matthieu Lengaigne, Jérôme Vialard, David M. Kaplan, Olivier Aumont, S. W. A. Naqvi, Olivier Maury To cite this version: Jock C. Currie, Matthieu Lengaigne, Jérôme Vialard, David M. Kaplan, Olivier Aumont, et al.. Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences, European Geosciences Union, 2013, 10 (10), pp.6677 - 6698. 10.5194/bg-10-6677-2013. hal-01495273 HAL Id: hal-01495273 https://hal.archives-ouvertes.fr/hal-01495273 Submitted on 3 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Biogeosciences, 10, 6677–6698, 2013 Open Access www.biogeosciences.net/10/6677/2013/ doi:10.5194/bg-10-6677-2013 Biogeosciences © Author(s) 2013. CC Attribution 3.0 License. Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean J. C. Currie1,2, M. Lengaigne3, J. Vialard3, D. M. Kaplan4, O. Aumont5, S. W. A. -
MUST KNOW Geography
AP World History Ms. Avar File: Geography MUST KNOW Geography Description You must understand Geography to effectively study world history. Practice and learn the skills in your Geography 101 packet (given to you the first week of school), know the location of world regions and sub regions and be able to identify and locate key nations, landforms and bodies of water listed on this sheet. POLTICAL MAPS Instructions: Neatly locate, outline in color and label ALL of the following countries on your Continent Political maps. Use the world map at end of your textbook, Google Maps and/or worldatlas.com (search by continent) AFRICA North Africa Algeria Egypt East Ethiopia Kenya Libya Morocco Africa Madagascar Somalia Tunisia Sudan Tanzania West Africa Chad Benin Ghana Equatorial Cameroon Rwanda Mali Mauritania Senegal Africa Uganda Sudan Niger Nigeria Central African Republic Togo Cote D’Ivoire Democratic Republic of the Congo Southern Africa Angola Botswana Zimbabwe Zambia Republic of South Africa Mozambique ASIA East Asia Japan China SE Asia Cambodia Indonesia Vietnam North Korea South Korea Myanmar (Burma) Malaysia Thailand Taiwan Mongolia Philippines Singapore Laos South Asia Afghanistan Bangladesh SW Asia / Iran Iraq Turkey India Pakistan Middle East Jordan Israel Nepal Syria Saudi Arabia Central Asia Kazakhstan EUROPE Western France Germany Ireland Eastern Hungary Poland Europe Portugal Spain Switzerland Europe Romania Russia England/Great Britain/United Kingdom “U.K.” Ukraine Serbia Austria Czech Republic Northern Finland Norway Southern -
Diurnal Cycle of Precipitation Amount and Frequency in Sweden: Observation Versus Model Simulation
SERIES A DYNAMIC METEOROLOGY AND OCEANOGRAPHY PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM Tellus (2011), 63A, 664–674 C 2011 The Authors Tellus A C 2011 John Wiley & Sons A/S Printed in Singapore. All rights reserved TELLUS Diurnal cycle of precipitation amount and frequency in Sweden: observation versus model simulation ∗ By JEE-HOON JEONG1 ,ALEXANDER WALTHER1,GRIGORY NIKULIN2, DELIANG CHEN1,† and C O LIN JO N ES 2, 1Department of Earth Sciences, University of Gothenburg, Box 460, SE-405 30 Gothenburg, Sweden; 2Rossby Centre, SMHI, SE-601 76 Norrkoping,¨ Sweden (Manuscript received 31 July 2010; in final form 26 January 2011) ABSTRACT This study investigated the diurnal cycle of precipitation in Sweden using hourly ground observations for 1996–2008. General characteristics of phase and amplitude for the diurnal cycle of precipitation, both in amount and frequency, were identified. In the warm season (April–September), the ‘typical’ afternoon (14–16 LST) peaks are dominant over inland Sweden, whereas late night to early morning (04–06 LST) peaks with relatively weak amplitude are discernable in the east coast along the Baltic Sea. The diurnal variation is almost negligible in the cold season (October–March), due to the weak solar radiation at high latitudes. The variations of convective activity forced by solar heating and modulated by geographical characteristics were suggested as primarily factors to invoke the cycles and spatial variation identified. The observed cycle was compared with the cycle simulated by a regional climate model. The model fairly well captures the spatial pattern of the phase of the diurnal cycle. However, the warm season afternoon peak is simulated too early and too uniformly across the stations, associated with too frequent occurrences of convective rainfall events with relatively light intensity. -
Understanding Diurnal Cycle Mode Intensification and Its Effect on Interannual and Interdecadal Warm Season Precipitation Trends Over the U.S
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Understanding diurnal cycle mode intensification and its effect on interannual and interdecadal warm season precipitation trends over the U.S. Corn Belt Amanda Black Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Meteorology Commons Recommended Citation Black, Amanda, "Understanding diurnal cycle mode intensification and its effect on interannual and interdecadal warm season precipitation trends over the U.S. Corn Belt" (2018). Graduate Theses and Dissertations. 16791. https://lib.dr.iastate.edu/etd/16791 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Understanding diurnal cycle mode intensification and its effect on interannual and interdecadal warm season precipitation trends over the U.S. Corn Belt by Amanda Suzanne Black A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Meteorology Program of Study Committee: Xiaoqing Wu, Major Professor Tsing-Chang Chen Gene S. Takle Raymond W. Arritt William J. Gutowski The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. -
Moisture Origin As a Driver of Temporal Variabilities of The
https://doi.org/10.5194/acp-2019-942 Preprint. Discussion started: 6 January 2020 c Author(s) 2020. CC BY 4.0 License. Moisture origin as a driver of temporal variabilities of the water vapour isotopic composition in the Lena River Delta, Siberia Jean-Louis Bonne1, Hanno Meyer2, Melanie Behrens1, Julia Boike2,3, Sepp Kipfstuhl1, Benjamin Rabe1, Toni Schmidt2, Lutz Schönicke2, Hans Christian Steen-Larsen4, Martin Werner1 5 1Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, 27515 Germany 2Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Potsdam, 14401, Germany 3Geography Department, Humboldt-Universität zu Berlin, Berlin, 10099, Germany 4Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, 5020, Norway Correspondence to: Jean-Louis Bonne ([email protected]), Martin Werner ([email protected]) 10 Abstract. In the context of the Arctic amplification of climate change affecting the regional atmospheric hydrological cycle, it is crucial to characterize the present-day’s moisture sources of the Arctic. The isotopic composition is an important tool to enhance our understanding of the drivers of the hydrological cycle, due to the different molecular characteristics of water stable isotopes during phase change. This study introduces two years of continuous in situ water vapour and precipitation isotopic observations conducted since July 2015 in the east-Siberian Lena delta, at the research station on the Samoylov 15 Island. The vapour isotopic signals are dominated by variations at the seasonal and synoptic time scales. Diurnal variations of the vapour isotopic signals are masked by synoptic variations, indicating low variations of the amplitude of local sources at the diurnal scale in winter, summer and autumn. -
P1.6 Diurnal Cycles of the Surface Radiation Budget Data Set
P1.6 DIURNAL CYCLES OF THE SURFACE RADIATION BUDGET DATA SET Pamela E. Mlynczak Science Applications International Corporation, Hampton, VA G. Louis Smith National Institute of Aerospace, Hampton, VA Paul W. Stackhouse, Jr. NASA Langley Research Center, Hampton, VA Shashi K. Gupta Analytical Services and Materials, Inc., Hampton, VA ABSTRACT weather and climate system. The annual cycle of radiation at the “top of the atmosphere” (TOA) has The Surface Radiation Budget Data Set been studied by Smith et al. (1990) and Bess et al. contains seven components describing radiation (1992), and the diurnal cycle of outgoing longwave flux: shortwave up, down and net, longwave up, radiation at TOA has been reported by Smith and down and net, and total radiation net. A principal Rutan (2003). Understanding the response of a component analysis has been used to study the dynamical system to a cyclical forcing is diurnal cycles of these components for an average fundamental to knowledge of the system’s July. The large thermal inertia of the ocean causes behavior. The nonlinear nature of the climate the diurnal cycle of its temperature to be quite system requires that we use information about the small, so the globe was partitioned into land and diurnal cycle to help to characterize the system. ocean for this study. For each of the seven One application of the results is to compare these components, one principal component describes results with the diurnal cycles that are computed more than 97% of the variance of the diurnal cycle by climate models. Another application is to for land except for downward longwave flux, for provide information for solar power studies. -
Watersheds in New Mexico
3 1 . Watersheds in New Mexico School-based Activities 371 Description: Students will color the different watersheds in the Southwest to learn which rivers drain out of each area of the state/region. Extensions include making a pie chart to show the area of each watershed in the state, researching the watersheds in teams and presenting fi ndings about the state’s watersheds to the class in a poster presentation. Objectives: Students will: • understand the concept of watersheds; and • be able to identify the watersheds in New Mexico and the Southwest and where they fl ow. Materials: colored pencils or highlighters a copy of the Defi ne Watershed Boundaries worksheet for each student a copy of the New Mexico Watersheds map for each student physical map of North America (for fi nding where New Mexico’s rivers fl ow) Background: Precipitation that falls to the ground can have one of several things happen to it—it can evaporate, soak into the soil to become ground water, or fl ow downhill as surface water in rivers and lakes. In this activity, we consider surface water movement as we look at the watersheds of New Mexico. Watersheds are identifi ed by surface water movement. Rivers, streams, creeks, and arroyos are formed where water fl ows when following gravity. A watershed, or drain- age basin, is an area of land drained by a river, river system or other body of water. Except in closed basins, which have no outfl ow, all watersheds eventually drain into an ocean or sea. Thus you can follow a river from its mouth up to its headwaters, including all of the tributaries that fl ow into it, to get an idea of the size of the watershed. -
C Copyright 2016 Stephen D. Po-Chedley on the Structure of Atmospheric Warming in Models and Observations: Implications for the Lapse Rate Feedback
c Copyright 2016 Stephen D. Po-Chedley On the structure of atmospheric warming in models and observations: Implications for the lapse rate feedback Stephen D. Po-Chedley A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2016 Reading Committee: Qiang Fu, Chair Kyle Armour Cecilia Bitz Program Authorized to Offer Degree: Department of Atmospheric Sciences University of Washington Abstract On the structure of atmospheric warming in models and observations: Implications for the lapse rate feedback Stephen D. Po-Chedley Chair of the Supervisory Committee: Professor Qiang Fu Department of Atmospheric Sciences This dissertation investigates the structure of atmospheric warming in observations and general circulation models (GCMs). Theory and GCMs suggest that warming is amplified in the tropical upper troposphere relative to the lower troposphere and the surface { a phenomenon known as vertical amplification. We assess model and observational agreement using several amplification metrics derived from the satellite-borne microwave sounding unit (MSU) atmospheric temperature trends. An important correction to the satellite microwave record is the removal of temperature drifts caused by changes in diurnal sampling. This correction the principal source of uncer- tainty in microwave temperature datasets. Furthermore, in three existing datasets, the ratio of tropical warming between the upper troposphere (T24 channel) and the surface (dT24/dTs ∼0.6 { 1.3) is lower than that of GCMs (∼1.4 { 1.6). To better understand these issues, we produced an alternate MSU dataset with an improved diurnal correction. We show that existing MSU datasets likely underestimate tropical mid-tropospheric temperature trends. -
Regional Crustal Thickness and Precipitation in Young Mountain Chains
Regional crustal thickness and precipitation in young mountain chains W. G. Ernst* Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305-2115 Contributed by W. G. Ernst, September 7, 2004 Crustal thickness is related to climate through precipitation-induced erosion. Along the Andes, the highest mountains and thickest crust (Ϸ70 km) occur at 25° south, a region of low precipitation. Westerly winds warm passing over the Atacama Desert; precipita- tion is modest in the High Andes and eastward over the Altiplano. Severe aridity, hence low erosion rates, helps to account for the elevated volcanogenic contractional arc and high, internally draining plateau in its rain shadow. Weak erosion along the north- central arc provides scant amounts of sediment to the Chile–Peru Trench, starving the subduction channel. Subcrustal removal might be expected to reduce the crustal thickness, but is not a factor at 25° south. The thickness of the gravitationally compensated conti- nental crust cannot reflect underplating and͞or partial fusion of sediments, but must be caused chiefly by volcanism-plutonism and contraction. Contrasting climate typifies the terrane at 45° south where moisture-laden westerly winds encounter a cool margin, bringing abundant precipitation. The alpine landscape is of lower average elevation compared with the north-central Andes and is supported by thinner continental crust (Ϸ35 km). Intense erosion supplies voluminous clastic debris to the offshore trench, and vast quantities are subducted. However, the southern Andean crust is only about half as thick as that at 25° south, suggesting that ero- sion, not subcrustal sediment accretion or anatexis, is partly responsible for the thickness of the mountain belt. -
Downloaded 09/25/21 08:02 AM UTC
3866 JOURNAL OF CLIMATE VOLUME 20 Investigation of the Summer Climate of the Contiguous United States and Mexico Using the Regional Atmospheric Modeling System (RAMS). Part II: Model Climate Variability CHRISTOPHER L. CASTRO* Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado ROGER A. PIELKE SR. Cooperative Institute for Research in Environmental Sciences, Program in Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado JIMMY O. ADEGOKE Laboratory for Climate Analysis and Modeling, Department of Geosciences, University of Missouri—Kansas City, Kansas City, Missouri SIEGFRIED D. SCHUBERT AND PHILLIP J. PEGION NASA Goddard Laboratory for Atmospheres, Greenbelt, Maryland (Manuscript received 22 November 2005, in final form 27 November 2006) ABSTRACT Summer simulations over the contiguous United States and Mexico with the Regional Atmospheric Modeling System (RAMS) dynamically downscaling the NCEP–NCAR Reanalysis I for the period 1950– 2002 (described in Part I of the study) are evaluated with respect to the three dominant modes of global SST. Two of these modes are associated with the statistically significant, naturally occurring interannual and interdecadal variability in the Pacific. The remaining mode corresponds to the recent warming of tropical sea surface temperatures. Time-evolving teleconnections associated with Pacific SSTs delay or accelerate the evolution of the North American monsoon. At the period of maximum teleconnectivity in late June and early July, there is an opposite relationship between precipitation in the core monsoon region and the central United States. Use of a regional climate model (RCM) is essential to capture this variability because of its representation of the diurnal cycle of convective rainfall. -
Cloud Radar Observations of Diurnal and Seasonal Cloudiness Over Reunion Island
atmosphere Article Cloud Radar Observations of Diurnal and Seasonal Cloudiness over Reunion Island Jonathan Durand 1, Edouard Lees 1, Olivier Bousquet 1,2,*, Julien Delanoë 3 and François Bonnardot 4 1 Laboratoire de l’Atmosphère et des Cyclones (UMR8105 LACy), Université de La Réunion, CNRS, Météo-France, 97400 Saint-Denis, France; [email protected] (J.D.); [email protected] (E.L.) 2 Institute for Coastal Marine Research (CMR), Nelson Mandela University, Port-Elizabeth 6001, South Africa 3 Laboratoire Atmosphère, Milieux et Observations Spatiales (UMR 8190 LATMOS), CNRS/Sorbonne Université/USVQ, 78280 Guyancourt, France; [email protected] 4 Direction Interrégionale de Météo-France pour l’Océan Indien, Saint-Denis, 97490 Sainte-Clotilde, France; [email protected] * Correspondence: [email protected] Abstract: In November 2016, a 95 GHz cloud radar was permanently deployed in Reunion Island to investigate the vertical distribution of tropical clouds and monitor the temporal variability of cloudiness in the frame of the pan-European research infrastructure Aerosol, Clouds and Trace gases Research InfraStructure (ACTRIS). In the present study, reflectivity observations collected during the two first years of operation (2016–2018) of this vertically pointing cloud radar are relied upon to investigate the diurnal and seasonal cycle of cloudiness in the northern part of this island. During the wet season (December–March), cloudiness is particularly pronounced between 1–3 km above sea level (with a frequency of cloud occurrence of 45% between 12:00–19:00 LST) and 8–12 km (with Citation: Durand, J.; Lees, E.; a frequency of cloud occurrence of 15% between 14:00–19:00 LST). -
The Diurnal Cycle of Outgoing Longwave Radiation from Earth Radiation Budget Experiment Measurements
VOL. 60, NO.13 JOURNAL OF THE ATMOSPHERIC SCIENCES 1JULY 2003 The Diurnal Cycle of Outgoing Longwave Radiation from Earth Radiation Budget Experiment Measurements G. LOUIS SMITH Virginia Polytechnic Institute and State University, Blacksburg, Virginia DAVID A. RUTAN Analytical Services and Materials, Inc., Hampton, Virginia (Manuscript received 8 April 2002, in ®nal form 23 January 2003) ABSTRACT The diurnal cycle of outgoing longwave radiation (OLR) from the earth is analyzed by decomposing satellite observations into a set of empirical orthogonal functions (EOFs). The observations are from the Earth Radiation Budget Experiment (ERBE) scanning radiometer aboard the Earth Radiation Budget Satellite, which had a precessing orbit with 578 inclination. The diurnal cycles of land and ocean differ considerably. The ®rst EOF for land accounts for 73% to 85% of the variance, whereas the ®rst EOF for ocean accounts for only 16% to 20% of the variance, depending on season. The diurnal cycle for land is surprisingly symmetric about local noon for the ®rst EOF, which is approximately a half-sine during day and ¯at at night. The second EOF describes lead±lag effects due to surface heating and cloud formation. For the ocean, the ®rst EOF and second EOF are similar to that of land, except for spring, when the ®rst ocean EOF is a semidiurnal cycle and the second ocean EOF is the half-sine. The ®rst EOF for land has a daytime peak of about 50 W m22, whereas the ®rst ocean EOF peaks at about 25 W m22. The geographical and seasonal patterns of OLR diurnal cycle provide insights into the interaction of radiation with the atmosphere and surface and are useful for validating and upgrading circulation models.