Ontraindicat Entistry: to Vasoconstrictor

Total Page:16

File Type:pdf, Size:1020Kb

Ontraindicat Entistry: to Vasoconstrictor ontraindicat to vasoconstrictor entistry: Pharmacologic interactions Jean-Paul Goulet, DDS, MD,’ Rbnald Phusse, DMD, MD,’ and Jean-Yves Turcotte, DDS, CD, MRCD, FICD, FADI,bSte.-Foy, Quebec, Canada SCHOOL OF DENTAL MEDICINE, UNIVERSITti LAVAL This article discusses the relative contraindications to the use of vasoconstrictor in patients currently medicated with tricyciic antidepressants, monoamine oxidase inhibitors, phenothiazines and P-blockers. It reviews drug interactions and emphasizes potential detrimental systemic effects that epinephrine contained in !ocal anesthetics can have when administered concomitantly with these drugs. Finally, special considerations are expressed concerning patients who abuse illicit drugs such as cocaine. (ORAL SURG ORAL MED ORAL PATHOL 1992;74:692-7) he first two articles of this series reviewed and sion. Their efficacy in alleviating depression is well discussedthe “absolute” contraindications to the use established, but TCAs are also extremely effective in of vasoconstrictors in dentistry. This third and last the treatment of certain chronic pain states including part deals with their “relative” contraindications, orofacial pain disorders.‘7 2 The TCAs act on the cen- which by definition do not preclude their use but dic- tral nervous system by blocking the reuptake and thus tate the exercise of great caution. The focus here is on the physiologic inactivation of certain neurotransmit- the potential drug interactions that may take place ters at the neuroeffector junction3 (Fig. 1). between vasoconstrictors injected with local anes- Among the drug interactions involving the TCAs, thetic and exogenously administered adrenergic dentists should be mostly concerned with the poten- drugs. It emphazises once more the importance of tial enhancement of the cardiovascular effects associ- careful assessmentof the general health and drug in- ated with exogenously administered catecholamines. take including illicit drugs. When treating any patient In normotensive subjects pretreated for 4 days with taking medication, dentists should be aware of the protriptyline, 20 mg three times daily, Svedmyr4 ob- potential medical complications and always use the served an important increase in the systolic and dias- least concentrated solution of vasoconstrictor that al- tolic blood pressure after the intravenous infusion of lows for deep anesthesiaduring a sufficient period of very small doses of norepinephrine (0.022 pg/kg/ time. As a routine procedure, the local anesthetic so- min). As for epinephrine infusion, similar hemody- lution should always be injected slowly with frequent namic changes were observed but at a dosage three aspiration to minimize the potential hazard of an ac- times greater (0.067 pg/kg/min). Other investiga- cidental intravascular injection. tors5, 6 have also substantiated these findings. It is clear from the results of these studies that the vaso- RELATIVE CONTRAINDICATIONS pressor effects of norepinephrine, epinephrine, and Tricyclic antidepressants presumably levonordefrin are seriously potentiated by The tricyclic antidepressants (TCAs) are drugs TCAs. Although this enhancement is fivefold to ten- widely used today in the treatment of major depres- fold for norepinephrine and levonordefrin, it is not as dramatic for epinephrine and phenylephrine (twofold to threefold) enhancement at concentration currently aAssociate Professor, Section of Oral Medicine. bDean, Professor, and Active Director, Section of Oral and Max- used in local anesthetic solutions.7 The powerful illofacial Surgery. interactions between adrenergic drugs and the bio- 7/17/38157 genie amines accumulated at the neuroeffector syn- 692 Volume 74 Contraindications to vasoconstrictors: Part III 693 Number 5 4 0°0 o”o 5 1 i OOo"o 2-o 0 0 d" 3 T;r Fig. 1. Action of TCAs and MAOIs. 1, Presynaptic neuron; 2, synaptic cleft; 3, postsynapticneuron; 4, monoamineoxidase; 5, terminal vesiculesand neurotransmitters;6, neurotransmitters.A, Normal synaptic junction. B, junction in patient receiving tricyclic drugs. C, Junction in patient receiving MAOI. apsehave led to serious medical complications. Series potentiation of the pressoreffect of epinephrine is two of severe hypertensive crises, one of which resulted in to three times lessthan that reported for norepineph- the death of a patient, were reported by Boakes et a1.8 rine or levonordefrin, the possibility of potential un- after the injection of small quantity of local anesthetic toward reactions should be taken into consideration. containing norepinephrine 1:25,000 in patients treated In that respect, Yagiela et al6 recommend reducing with TCAs. Although such complications are not fre- to 0.05 mg (5.4 ml local anesthetic with epinephrine quent, it should emphasize once more the importance 1: 100,000) the maximum amount of epinephrine that of assessingthe current drug intake and being aware patients receiving TCAs should receive in any given of the potential drug interactions. session.Until more data are available, this recom- As several investigators pointed out,9-‘3 patients mendation seems reasonable and appropriate. We currently taking TCAs may have numerous electro- must reemphasize, however, the pitfall of false secu- cardiographic changes. TCAs have the property of rity when one relies on a maximum recommended lenghthening the conduction time (PR, QRS, or QT dose of vasoconstrictor. We believe dentists should intervals) and inducing various anomalies of repolar- always administer the lowest dose of vasoconstrictor ization characterized by flattening of the P wave and compatible with effective pain control of sufficient the appearance of the U wave. Although infrequent at duration. In addition, local anesthetic should be low dosages, such changes have been observed at injected slowly with careful aspiration to avoid inad- therapeutic dosesin otherwise healthy personsbeside vertent intravascular injection. their depressive state. lo These phenomena can be Monoamine oxidase inhibitors more consistent and significant as the plasma concen- tration of TCAs increases or in patients with preex- The monoamine oxidase inhibitors (MAOIs) are isting cardiac disease.l3 Interestingly, TCAs possess another group of psychotropic drugs primarily used in antiarrhythmic properties but in overdose they be- the treatment of major depression, certain phobic- come arrhythmogeni.c, exposing the patient to reentry anxiety states and obsessive-compulsive disorders. arrhythmias and circus rhythms.1°-13 On the basis of Their action is targeted at organ systemsregulated by these reports, concomitant administration of adren- the sympathomimetic amines and 5-hydrox- ergic drugs and TCAs has the potential to provoke ytryptamine. They can potentiate the effects of bio- serious arrhythmias. The cardiotoxicity of TCAs is genie amines in the central nervous system by inhib- furthermore reflected by the report of sudden death of iting their breakdown by the monoamine oxidase en- cardiac patients treated with amitryptiline and imi- zyme at the presynaptic neuron level3 (Fig. 1). Thus pramine.14 traditionally, local anesthetics with vasoconstrictor Sufficient evidence exists to consider the use of lo- have been contraindicated for patients receiving cal anesthetic with norepinephrine or levonordefrin MAOIs becausethe possibility of seriouspotentiation dangerous in patients taking.TCAs. Even though the of exogenously administered catecholamines could 694 Goulet, Ptrusse, and Turcotte ORAL SURGQRAL MEDQRALPATKOL November 1992 eventually lead to hypertensive crisis. This recom- bling those produced by quinidine. These drugs have mendation no longer seemsto be substantiated in light been shown to decreaseconduction velocity and facil- of more recent work. itate reentry phenomena.3,lo, I5 We cannot predict In an animal study Yagiela et al.6 did not observe the clinical significance of these changes nor the pos- any significant interaction between epinephrine, nore- sible effect adrenergic drugs may have in such in- pinephrine, levonordefrin, and MAO. Only phenyle- stances.The chances of a worsening of the conduction phrine, which is metabolized by monoamine oxidase, anomalies after an accidental intravascular injection is likely to be potentiated severalfold by MAOIS.~ We of local anesthetic with vasoconstrictor must be con- now recognize that the risk of hypertensive crisis at- sidered. In fact, cases of major and even fatal tributed to vasoconstrictors in local anesthetic has arrhythmias have been reported in patients without been overestimated for patients taking MAOIs. In previous heart diseasewho were receiving usual ther- fact, the metabolic degradation of exogenous cate- apeutic dosesof thioridazine or chlorpromazine.‘5S’8 cholamines is largely regulated by the enzyme cate- Until more data are available to strengthen or re- chol-O-methyltransferase and by neuronal reuptake. fute our concern about potential untoward effects re- Undoubtedly the cardiovascular effect of a variety of garding the use of vasoconstrictors in patients treated sympathomimetic amines can be enhanced by with phenothiazine drugs, dentists should be prudent MAOIs; however, these drugs are much less effective and administer the smallest amount of anesthetic so- in potentiating or prolonging the action of exogenous lution with vasoconstrictor required to obtain deep catecholamines. Despite the fact that previous find- anesthesia of adequate duration. ings have not been confirmed in any human study, &Blockers there seemsto be no restriction
Recommended publications
  • Methylphenidate Amplifies the Potency and Reinforcing Effects Of
    ARTICLE Received 1 Aug 2013 | Accepted 7 Oct 2013 | Published 5 Nov 2013 DOI: 10.1038/ncomms3720 Methylphenidate amplifies the potency and reinforcing effects of amphetamines by increasing dopamine transporter expression Erin S. Calipari1, Mark J. Ferris1, Ali Salahpour2, Marc G. Caron3 & Sara R. Jones1 Methylphenidate (MPH) is commonly diverted for recreational use, but the neurobiological consequences of exposure to MPH at high, abused doses are not well defined. Here we show that MPH self-administration in rats increases dopamine transporter (DAT) levels and enhances the potency of MPH and amphetamine on dopamine responses and drug-seeking behaviours, without altering cocaine effects. Genetic overexpression of the DAT in mice mimics these effects, confirming that MPH self-administration-induced increases in DAT levels are sufficient to induce the changes. Further, this work outlines a basic mechanism by which increases in DAT levels, regardless of how they occur, are capable of increasing the rewarding and reinforcing effects of select psychostimulant drugs, and suggests that indivi- duals with elevated DAT levels, such as ADHD sufferers, may be more susceptible to the addictive effects of amphetamine-like drugs. 1 Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA. 2 Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada M5S1A8. 3 Department of Cell Biology, Medicine and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA. Correspondence and requests for materials should be addressed to S.R.J. (email: [email protected]). NATURE COMMUNICATIONS | 4:2720 | DOI: 10.1038/ncomms3720 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited.
    [Show full text]
  • Drug Class Review Antianginal Agents
    Drug Class Review Antianginal Agents 24:12.08 Nitrates and Nitrites 24:04.92 Cardiac Drugs, Miscellaneous Amyl Nitrite Isosorbide Dinitrate (IsoDitrate ER®, others) Isosorbide Mononitrate (Imdur®) Nitroglycerin (Minitran®, Nitrostat®, others) Ranolazine (Ranexa®) Final Report May 2015 Review prepared by: Melissa Archer, PharmD, Clinical Pharmacist Carin Steinvoort, PharmD, Clinical Pharmacist Gary Oderda, PharmD, MPH, Professor University of Utah College of Pharmacy Copyright © 2015 by University of Utah College of Pharmacy Salt Lake City, Utah. All rights reserved. Table of Contents Executive Summary ......................................................................................................................... 3 Introduction .................................................................................................................................... 4 Table 1. Antianginal Therapies .............................................................................................. 4 Table 2. Summary of Agents .................................................................................................. 5 Disease Overview ........................................................................................................................ 8 Table 3. Summary of Current Clinical Practice Guidelines .................................................... 9 Pharmacology ............................................................................................................................... 10 Table 4. Pharmacokinetic Properties
    [Show full text]
  • The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines
    The ICD-10 Classification of Mental and Behavioural Disorders: Clinical descriptions and diagnostic guidelines World Health Organization F10 - F19 Mental and behavioural disorders due to psychoactive substance use Overview of this block F10. – Mental and behavioural disorders due to use of alcohol F11. – Mental and behavioural disorders due to use of opioids F12. – Mental and behavioural disorders due to use of cannabinoids F13. – Mental and behavioural disorders due to use of sedative hypnotics F14. – Mental and behavioural disorders due to use of cocaine F15. – Mental and behavioural disorders due to use of other stimulants, including caffeine F16. – Mental and behavioural disorders due to use of hallucinogens F17. – Mental and behavioural disorders due to use of tobacco F18. – Mental and behavioural disorders due to use of volatile solvents F19. – Mental and behavioural disorders due to multiple drug use and use of other psychoactive substances Four- and five-character codes may be used to specify the clinical conditions, as follows: F1x.0 Acute intoxication .00 Uncomplicated .01 With trauma or other bodily injury .02 With other medical complications .03 With delirium .04 With perceptual distortions .05 With coma .06 With convulsions .07 Pathological intoxication F1x.1 Harmful use F1x.2 Dependence syndrome .20 Currently abstinent .21 Currently abstinent, but in a protected environment .22 Currently on a clinically supervised maintenance or replacement regime [controlled dependence] .23 Currently abstinent, but receiving treatment with
    [Show full text]
  • Lidocaine Infusion for Analgesia MOA Pharmacology 1
    Lidocaine Infusion for Analgesia MOA Pharmacology 1. Attenuation of proinflammatory effects: Ø Hepatic metabolism with high extraction ratio; Ø Blocks polymorphonuclear granulocyte priming, plasma clearance is 10 ml/kg/min13 reducing release of cytokines & reactive oxygen species1 Ø Adjust dose based on hepatic function and 2. Diminish nociceptive signaling to central nervous system: blood flow Ø Inhibition of G-protein-mediated effects2 Ø Renal clearance of metabolites Ø Reduces sensitivity & activity of spinal cord neurons Ø Context-sensitive half-time after a 3-day infusion is (glycine and NMDA receptor mediated)3,4 ∼20–40 min Ø Clinical effect of lidocaine tends to exceed the 5 3. Reduces ectopic activity of injured afferent nerves duration of the infusion by 5.5 times the half-life, supporting the putative preventive analgesia effect14 Perioperative Use Dosing Ø IV local anesthetic infusions have been used safely for pain control in the perioperative setting since the early 1950’s6,7 Infusion: 2mg/kg/hr (range 1.5-3 mg/kg/hr) Ø Reduce pain, nausea, ileus duration, opioid requirement, Loading dose: 1.5mg/kg (range 1-2 mg/kg) and length of hospital stay Ø Strongly consider bolus to rapidly achieve therapeutic concentration, otherwise steady state 9-12 Evidence for Specific Surgeries: reached in 4-8 hr Ø Strong: Open & laparoscopic abdominal; Reduces Max dose: 4.5 mg/kg postoperative pain, speeds return of bowel function, Ø Consider total dose from other local anesthetics reduces PONV, reduces length of hospital stay (e.g. regional anesthesia, periarticular injections, & Ø Moderate: Open prostatectomy, thoracic procedures, local infiltration) ambulatory surgery, and major spine; Reduces Continuous infusions up to 3 mg/kg/hr have been postoperative pain and opioid consumption shown to be safe Ø Moderate: Breast; Prevention of chronic postsurgical pain Ø Reduce infusion rate in patients with impaired Ø No benefit: Total abdominal hysterectomy, total hip drug metabolism & clearance (i.e.
    [Show full text]
  • Local Anesthetic Toxicity: Prevention and Treatment
    Local Anesthetic Toxicity: Prevention and Treatment John W. Wolfe, M.D. Staff Anesthesiologist Indiana University School of Medicine Indianapolis, Indiana John F. Butterworth, M.D. Chairman, Department of Anesthesia Indiana University School of Medicine Indianapolis, Indiana LESSON OBJECTIVES dine, and the site of injection on peak Upon completion of this lesson, the reader local anesthetic concentrations in blood. should be able to: 6. Describe the mechanism of local anes- 1. List the signs and symptoms of local thetic central nervous system toxicity. anesthetic toxicity. 7. Identify the risk factors for local anes- 2. Discuss the concept of "maximum safe thetic toxicity. doses of a local anesthetic." 8. Plan the treatment of local anesthetic- 3. Describe methods for reducing the risk of induced cardiac arrhythmias and cardiac local anesthetic toxicity. arrest. 4. Explain the treatment of local anes- 9. Describe the mechanism of local anes- thetic-related neurologic symptoms and thetic cardiovascular toxicity. toxic side effects. 10. Explain the dosage and proposed mech- 5. Discuss the effects of epinephrine, cloni- anism of lipid emulsion therapy. Current Reviews for Nurse Anesthetists designates this lesson for 1 CE contact hour in Clinical pharmacology/therapeutics. Introduction Mechanism of Cardiac and central nervous system (CNS) toxic Local Anesthetic Toxicity side effects of local anesthetics are relatively rare but potentially catastrophic complications of local and Local anesthetics normally produce their desired regional anesthesia. Fortunately, the likelihood of a effects on peripheral nerves by binding and inhibit- local anesthetic toxic event can be reduced by ad- ing voltage-gated sodium channels in neural cell herence to good technique.
    [Show full text]
  • Do You Know... Cocaine
    Do You Know... Street names: blow, C, coke, crack, flake, freebase, rock, snow Cocaine What is cocaine? Cocaine is a stimulant drug. Stimulants make people feel more alert and energetic. Cocaine can also make people feel euphoric, or “high.” Pure cocaine was first isolated from the leaves of the coca bush in 1860. Researchers soon discovered that cocaine numbs whatever tissues it touches, leading to its use as a local anesthetic. Today, we mostly use synthetic anesthetics, rather than cocaine. In the 1880s, psychiatrist Sigmund Freud wrote scientific papers that praised cocaine as a treatment for many ailments, including depression and alcohol and opioid addiction. After this, cocaine became widely and legally available in patent medicines and soft drinks. As cocaine use increased, people began to discover its dangers. In 1911, Canada passed laws restricting the importation, manufacture, sale and possession of cocaine. The use of 1/4 © 2003, 2010 CAMH | www.camh.ca cocaine declined until the 1970s, when it became known How does cocaine make you feel? for its high cost, and for the rich and glamorous people How cocaine makes you feel depends on: who used it. Cheaper “crack” cocaine became available · how much you use in the 1980s. · how often and how long you use it · how you use it (by injection, orally, etc.) Where does cocaine come from? · your mood, expectation and environment Cocaine is extracted from the leaves of the Erythroxylum · your age (coca) bush, which grows on the slopes of the Andes · whether you have certain medical or psychiatric Mountains in South America.
    [Show full text]
  • Free PDF Download
    European Review for Medical and Pharmacological Sciences 2012; 16: 1611-1636 The patient with chronic ischemic heart disease. Role of ranolazine in the management of stable angina A. DI MONACO, A. SESTITO Department of Cardiology, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy Abstract. – Ischemic heart disease (IHD) is a serve is exhausted2. Symptom severity can be major cause of death in Western Countries and modulated by dynamic vasomotion at the site of accounts for very high costs worldwide. In this re- stenoses and/or by coronary microvascular dys- view we discussed the pathogenesis, symptoms, 1,2 diagnosis, prognosis and management of chronic function . IHD. In particular, we discussed about the percu- In microvascular angina transient myocardial taneous coronary interventions and coronary ischemia is caused by coronary microvascular artery bypass grafting, as well as to clinical trials dysfunction in patients with angiographically that evaluated the advantages of one approach normal epicardial coronary arteries, in the ab- versus another. Pharmacological treatment is 3,4 among major objectives of the review and for sence of any other specific cardiac disease . In each class of therapeutic agents an evaluation of vasospastic angina transient myocardial is- well-conducted clinical trials is provided. The chemia is caused by coronary spasm5. most important drug classes in IHD treatment are Furthermore, angina and transient myocardial betablockers, calcium channel blockers, nitrates, ischemia may also occur in patients with non ath- antiplatelet agents, and ACE-inhibitors. In addition to these agents, also new treatment options are erosclerotic obstructive coronary artery disease, evaluated in patients with stable IHD.
    [Show full text]
  • Urine Drug Toxicology and Pain Management Testing
    Urine Drug Toxicology and Pain Management Testing Kara Lynch, PhD, DABCC University of California San Francisco San Francisco, CA Learning Objectives • Describe what chronic pain is, who is affected and how they are commonly treated • Explain the common methodologies used in pain management testing • Interpret urine drug testing results • Create protocols to minimize the occurrence of false positive or false negative results Pain – definition and types • Pain - an unpleasant sensory and emotional experience associated with actual or potential tissue damage • Chronic pain - pain that extends beyond the expected period of healing • Nociceptive Pain – Pain caused by tissue injury – Stimulus-evoked, high intensity – Opioid sensitive • Neuropathic Pain – Caused by nerve injury – Spontaneous activity – Develops in days or month – Opioid insensitive Chronic Pain Patients • Arthritis • Fibromyalgia – Osteoarthritis • Headaches – Rheumatoid arthritis – Migraine – Gout – Tension • Cancer – Cluster • Chronic non-cancer pain • Myofascial pain • Central pain syndrome • Neuropathic pain – CNS damage – Diabetic Peripheral – Multiple Sclerosis Neuropathy – Parkinson’s disease – Postherpetic neuralgia • Chronic abnominal pain • Neck and Back Pain – Intestinal obstructions Chronic Pain Medications • Opiates • Synthetic opioids – Codeine – Fentanyl – Morphine – Methadone • Semi-synthetic opioids – Meperidine – Oxymorphone – Tramadol – Oxycodone – Propoxyphene – Hydromorphone – Levorphanol – Hydrocodone – Tapentadol – Buprenorphine • Anticonvulsant • Muscle
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,080,578 B2 Liggett Et Al
    USO08080578B2 (12) United States Patent (10) Patent No.: US 8,080,578 B2 Liggett et al. (45) Date of Patent: *Dec. 20, 2011 (54) METHODS FOR TREATMENT WITH 5,998.458. A 12/1999 Bristow ........................ 514,392 BUCNDOLOL BASED ON GENETIC 6,004,744. A 12/1999 Goelet et al. ...... 435/5 6,013,431 A 1/2000 Söderlund et al. 435/5 TARGETING 6,156,503 A 12/2000 Drazen et al. ..... ... 435/6 6,221,851 B1 4/2001 Feldman ... 51446 (75) Inventors: Stephen B. Liggett, Clarksville, MD 6,316,188 B1 1 1/2001 Yan et al. .......................... 435/6 6,365,618 B1 4/2002 Swartz ... 514,411 (US); Michael Bristow, Englewood, CO 6,498,009 B1 12/2002 Liggett ............................. 435/6 (US) 6,566,101 B1 5/2003 Shuber et al. 435,912 6,586,183 B2 7/2003 Drysdale et al. .................. 435/6 (73) Assignee: The Regents of the University of 6,784, 177 B2 8/2004 Cohn et al. 514,248 Colorado, a body corporate, Denver, 6,797.472 B1 9/2004 Liggett ......... ... 435/6 6,821,724 B1 1 1/2004 Mittman et al. ... 435/6 CO (US) 6,861.217 B1 3/2005 Liggett ......... ... 435/6 7,041,810 B2 5/2006 Small et al. ... ... 435/6 (*) Notice: Subject to any disclaimer, the term of this 7, 195,873 B2 3/2007 Fligheddu et al. ... 435/6 patent is extended or adjusted under 35 7,211,386 B2 5/2007 Small et al. ....... ... 435/6 7,229,756 B1 6/2007 Small et al.
    [Show full text]
  • Calcium Channel Blockers in Cardiovascular Pharmacotherapy
    Cardiovascular Pharmacology Core Review Journal of Cardiovascular Pharmacology and Therapeutics 2014, Vol. 19(6) 501-515 Calcium Channel Blockers in ª The Author(s) 2014 Reprints and permission: Cardiovascular Pharmacotherapy sagepub.com/journalsPermissions.nav DOI: 10.1177/1074248414530508 cpt.sagepub.com Theophile Godfraind1 Abstract This paper summarizes the pharmacological properties of calcium channel blockers (CCBs), their established therapeutic uses for cardiovascular disorders and the current improvement of their clinical effects through drug combinations. Their identification resulted from study of small molecules including coronary dilators, which were named calcium antagonists. Further experiments showed that they reduced contraction of arteries by inhibiting calcium entry and by interacting with binding sites identified on voltage-dependent calcium channels. This led to the denomination calcium channel blockers. In short-term studies, by decreasing total peripheral resistance, CCBs lower arterial pressure. By unloading the heart and increasing coronary blood flow, CCBs improve myocardial oxygenation. In long-term treatment, the decrease in blood pressure is more pronounced in hypertensive than in normotensive patients. A controversy on the safety of CCBs ended after a large antihypertensive trial (ALLHAT) sponsored by the National Heart, Lung, and Blood Institute. There are two main types of CCBs: dihydopyridine and non-dihydropyridine; the first type is vascular selective. Dihydropyrines are indicated for hypertension, chronic, stable and vasospastic angina. Non-dihydropyridines have the same indications plus antiarrythmic effects in atrial fibrillation or flutter and paroxysmal supraventricular tachycardia. In addition, CCBs reduced newly formed coronary lesions in atherosclerosis. In order to reach recommended blood pressure goals, there is a recent therapeutic move by combination of CCBs with other antihypertensive agents particularly with inhibitors acting at the level of the renin-angiotensin system.
    [Show full text]
  • Local Anesthetic Agents Infiltration: Role of the Nurse
    Doug Ducey Joey Ridenour Governor Executive Director Arizona State Board of Nursing 1740 W Adams Street, Suite 2000 Phoenix. AZ 85007 Phone (602) 771-7800 Home Page: http://www.azbn.gov OPINION: INFILTRATION OF LOCAL An advisory opinion adopted by AZBN is an interpretation of what the law requires. While an ANESTHETIC AGENTS: THE ROLE OF THE advisory opinion is not law, it is more than a recommendation. In other words, an advisory opinion NURSE is an official opinion of AZBN regarding the practice of nursing as it relates to the functions of APPROVED DATE: 3/2015 nursing. Facility policies may restrict practice further in their setting and/or require additional REVISED DATE: 7/2018 expectations related to competency, validation, training, and supervision to assure the safety of their patient population and or decrease risk. ORIGINATING COMMITTEE: SCOPE OF PRACTICE COMMITTEE Within the Scope of Practice of X RN x LPN ADVISORY OPINION LOCAL ANESTHETIC AGENTS INFILTRATION: ROLE OF THE NURSE It is within the scope of practice of a registered nurse (RN) and a licensed practical nurse (LPN) to administer certain local anesthetic agents intradermal, subcutaneous, and submucosal for the purposes of analgesia and/or anesthesia prior to potentially painful procedures. Tumescent lidocaine infiltration for ambulatory procedures, such as but not limited to, the treatment of hyperhidrosis, ambulatory phlebectomy and laser facial resurfacings would be within the RN scope under the direction of an licensed independent practitioner (LIP) and when certain criteria is met within this advisory opinion. The licensed nurse must meet the general requirements and course of instruction listed in parts I and II.
    [Show full text]
  • Medcompgx Med List
    For more info, go to: MedCompGx.com Medications Conditions / Uses Other Uses CYP2C19 Anticonvulsants Lacosamide (Vimpat) Epilepsy, Seizures Phenobarbital (Luminal) Epilepsy, Seizures Barbituates, Anxiety, Sedation, Withdrawl Primidone (Mysoline) Epilepsy, Seizures Zonisamide (Zonegran) Epilepsy, Seizures Antifungals Voriconazole (Vfend) Yeast Infections, Candidiasis, Aspergillosis, Candida, Aspergillus Antidepressants Escitalopram (Lexapro) SSRI, Depression, Anxiety Citalopram (Celexa) SSRI, Depression, Anxiety OCD Sertraline (Zoloft) SSRI, Depression, Anxiety OCD, PTSD Doxepin (Silenor) Tricyclic Antidepressant, Depression Bipolar, Insomnia Imipramine (Tofranil) Tricyclic Antidepressant, Depression Trimipramine (Surmontil) Tricyclic Antidepressant, Depression Amitriptyline (Elavil) Tricyclic Antidepressant, Depression Clomipramine (Anafranil) Tricyclic Antidepressant, Depression OCD Benzodiazepines Clobazam (Onfi) Seizures Diazepam (Valium) Seizures, Muscle Spasms, Anxiety, Alcohol Withdrawl Beta Blockers Labetalol (Normodyne, Trandate) High Blood Pressure, Hypertension Immunomodulators Leflunomide (Arava) Rheumatoid Arthritis Tofacitinib (Xeljanz) Rheumatoid Arthritis Muscle Relaxants Carisoprodol (Soma) Muscle Pain, Muscle Spasms Opioids Meperidine (Demerol) Pain, Severe Pain, Narcotic, Opiate Proton Pump Inhibitors Dexlansoprazole (Dexilant) GERD, Acid Reflux, Gastric Esophageal Reflux, Ulcers, Heartburn, Zollinger-Ellison Syndrome Esomeprazole (Nexium) GERD, Acid Reflux, Gastric Esophageal Reflux, Ulcers, Heartburn, Zollinger-Ellison
    [Show full text]