Microeliece: Mceliece for Embedded Devices

Total Page:16

File Type:pdf, Size:1020Kb

Microeliece: Mceliece for Embedded Devices MicroEliece: McEliece for Embedded Devices Thomas Eisenbarth, Tim G¨uneysu, Stefan Heyse, Christof Paar Horst G¨ortz Institute for IT Security Ruhr University Bochum 44780 Bochum, Germany eisenbarth,gueneysu,heyse,cpaar @crypto.rub.de { } Abstract. Most advanced security systems rely on public-key schemes based either on the factorization or the discrete logarithm problem. Since both problems are known to be closely related, a major breakthrough in cryptanalysis tackling one of those problems could render a large set of cryptosystems completely useless. The McEliece public-key scheme is based on the alternative security assumption that decoding unknown lin- ear binary codes is NP-complete. In this work, we investigate the efficient implementation of the McEliece scheme on embedded systems what was – up to date – considered a challenge due to the required storage of its large keys. To the best of our knowledge, this is the first time that the McEliece encryption scheme is implemented on a low-cost 8-bit AVR microprocessor and a Xilinx Spartan-3AN FPGA. 1 Introduction The advanced properties of public-key cryptosystems are required for many cryp- tographic issues, such as key establishment between parties and digital signa- tures. In this context, RSA, ElGamal, and later ECC have evolved as most pop- ular choices and build the foundation for virtually all practical security protocols and implementations with requirements for public-key cryptography. However, these cryptosystems rely on two primitive security assumptions, namely the fac- toring problem (FP) and the discrete logarithm problem (DLP), which are also known to be closely related. With a significant breakthrough in cryptanalysis or a major improvement of the best known attacks on these problems (i.e., the Number Field Sieve or Index Calculus), a large number of recently employed cryptosystems may turn out to be insecure overnight. Already the existence of a quantum computer that can provide computations on a few thousand qubits would render FP and DLP-based cryptography useless. Though quantum com- puters of that dimension have not been reported to be built yet, we already want to encourage a larger diversification of cryptographic primitives in future public-key systems. However, to be accepted as real alternatives to conventional systems like RSA and ECC, such security primitives need to support efficient implementations with a comparable level of security on recent computing plat- forms. For example, one promising alternative are public-key schemes based on Multivariate Quadratic (MQ) polynomials for which hardware implementations were proposed on CHES 2008 [11]. In this work, we demonstrate the efficient implementation of another public- key cryptosystem proposed by Robert J. McEliece in 1978 that is based on coding theory [22]. The McEliece cryptosystem incorporates a linear error-correcting code (namely a Goppa code) which is hidden as a general linear code. For Goppa codes, fast decoding algorithms exist when the code is known, but decoding codewords without knowledge of the coding scheme is proven NP-complete [5]. Contrary to DLP and FP-based systems, this makes this scheme also suitable for post-quantum era since it will remain unbroken when appropriately chosen security parameters are used [8]. The vast majority1 of today’s computing platforms are embedded systems. Only a few years ago, most of these devices could only provide a few hundred bytes of RAM and ROM which was a tight restriction for application (and secu- rity) designers. Thus, the McEliece scheme was regarded impracticable on such small and embedded systems due to the large size of the private and public keys. But nowadays, recent families of microcontrollers provide several hundreds of bytes of Flash-ROM. Moreover, recent off-the-shelf hardware such as FPGAs also contain dedicated memory blocks and Flash memories that support on-chip storage of up to a few megabits of data. In particular, these memories can be used to store the keys of the McEliece cryptosystem. In this work, we present first implementations of the McEliece cryptosystem on a popular 8-bit AVR microcontroller, namely the ATxMega192, and a Xilinx Spartan-3AN 1400 FPGA which are both suitable for many embedded system applications. To the best of our knowledge, no implementations for the McEliece scheme have been proposed targeting embedded platforms. Fundamental oper- ations for McEliece are based on encoding and decoding binary linear codes in binary extension fields that, in particular, can be implemented very efficiently in dedicated hardware. Unlike FP and DLP-based cryptosystems, operations on binary codes do not require computationally expensive multi-precision integer arithmetic what is beneficial for small computing platforms. This paper is structured as follows: we start with a brief introduction to McEliece encryption and shortly explain necessary operations on Goppa codes. In Section 4, we discuss requirements and strategies to implement McEliece on memory-constrained embedded devices. Section 5 and Section 6 describe our actual implementations for an AVR 8-bit microprocessor and a Xilinx Spartan- 3AN FPGA. Finally, we present our results for these platforms in Section 7. 2 Previous Work Although invented already more than 30 years ago, the McEliece encryption scheme has never gained much attention due to its large keys and thus has not been implemented in many products. The most recent implementation of the McEliece scheme is due to Biswas and Sendrier [10] and presented a slightly modified version for PCs that achieves about 83 bit security (taken the attack in [8] into account). Comparing their implementation to other public key schemes, it turns out that McEliece encryption can even be faster than that of RSA and NTRU [7]. In addition to that, only few further McEliece software implemen- tations have been published up to now and they were all designed for 32 bit architectures [25, 26]. The more recent implementation [26] is available only as uncommented C-source code and was nevertheless used for the open-source P2P software Freenet and Entropy [15]. 1 Already in 2002, 98% of 32-bit microprocessors in world-wide production were inte- grated in embedded platforms. 2 Algorithm 1 McEliece Message Encryption Input: m, Kpub = (G,tˆ ) Output: Ciphertext c 1: Encode the message m as a binary string of length k 2: c‘ m Gˆ ← · 3: Generate a random n-bit error vector z containing at most t ones 4: c = c‘ + z 5: return c Algorithm 2 McEliece Message Decryption −1 −1 Input: c, Ksec = (P ,G,S ) Output: Plaintext m − 1:c ˆ c P 1 ← · 2: Use a decoding algorithm for the code C to decodec ˆ tom ˆ = m S −1 · 3: m mˆ S ← · 4: return m Hardware implementations of the original McEliece cryptosystem do not ex- ist, except for a proof-of-concept McEliece-based signature scheme that was de- signed for a Xilinx Virtex-E FPGA [9]. Hence, we here present the first FPGA- based hardware and 8-bit software implementation of the McEliece public-key encryption scheme up to date. 3 Background on the McEliece Cryptosystem The McEliece scheme is a public key cryptosystem based on linear error-correcting codes. The secret key is the generator matrix G of an error-correcting code with dimension k, length n and error correcting capability t. To create a public key, McEliece defined a random k × k-dimensional scrambling matrix S and n × n- dimensional permutation matrix P disguising the structure of the code by com- puting the product Gˆ = S × G × P . Using the public key Kpub = (G,tˆ ) and −1 −1 private key Ksec = (P ,G,S ), encryption and decryption algorithms can be given by Algorithm 1 and Algorithm 2, respectively. Note that Algorithm 1 only consists of a simple matrix multiplication with the input message and then distributes t random errors on the resulting code word. Thus, the generation of random error vectors requires an appropriate random number generator to be available on the target platform. Decoding the ciphertext c for decryption as shown in Algorithm 2 is the most time-consuming process and requires several more complex operations in binary extension fields. In Section 3.1 we briefly introduce the required steps for decoding codewords that we need to implement on embedded systems. As mentioned in the introduction, the main caveat against the McEliece cryptosystem is the significant size of the public and private key. The choice of even a minimal set of security parameters (m = 10, n = 1024,t = 38, k ≥ 644) according to [23] already translates to a size of 80.5 kByte for the public key and at least 53 kByte for the private key (without any optimizations). However, this setup only provides the comparable security of a 60 bit symmetric cipher. For appropriate 80 bit security, even larger keys, for example the parameters m = 11, n = 2048,t = 27, k ≥ 1751, are required (more details in Section 3.2). 3 Many optimizations (cf. Section 4.2) of the original McEliece scheme focus on size reduction of the public key, since the public-key has to be distributed. Hence, a size reduction of Kpub is directly beneficial for all parties. However, the situation is different when implementing McEliece on embedded platforms: note that the private key must be kept secret at all times and thus should be stored in a protected location on the device (that may be used in a potentially untrustworthy environment). An effective approach for secret key protection is the use of secure on-chip key memories that would require (with appropriate security features such as prohibited memory readback) invasive attacks on the chip to reveal the key. However, secure storage of key bits usually prove costly in hardware so that effective strategies are required to reduce the size of the private key to keep costs low.
Recommended publications
  • Overview of the Mceliece Cryptosystem and Its Security
    Ø Ñ ÅØÑØÐ ÈÙ ÐØÓÒ× DOI: 10.2478/tmmp-2014-0025 Tatra Mt. Math. Publ. 60 (2014), 57–83 OVERVIEW OF THE MCELIECE CRYPTOSYSTEM AND ITS SECURITY Marek Repka — Pavol Zajac ABSTRACT. McEliece cryptosystem (MECS) is one of the oldest public key cryptosystems, and the oldest PKC that is conjectured to be post-quantum se- cure. In this paper we survey the current state of the implementation issues and security of MECS, and its variants. In the first part we focus on general decoding problem, structural attacks, and the selection of parameters in general. We sum- marize the details of MECS based on irreducible binary Goppa codes, and review some of the implementation challenges for this system. Furthermore, we survey various proposals that use alternative codes for MECS, and point out some at- tacks on modified systems. Finally, we review notable existing implementations on low-resource platforms, and conclude with the topic of side channels in the implementations of MECS. 1. Introduction R. J. M c E l i e c e proposed in 1978 [37] a new public key cryptosystem based on the theory of algebraic codes, now called the McEliece Cryptosystem (MECS). Unlike RSA, it was not adopted by the implementers, mainly due to large public key sizes. The interest of researchers in MECS increased with the advent of quantum computing. Unlike systems based on integer factorisation problem and discrete logarithm problem, MECS security is based on the general decoding problem which is NP hard and should resist also attackers with access to the quantum computer. In this article we provide an overview of the MECS, in its original form, and its alternatives.
    [Show full text]
  • Overview of Post-Quantum Public-Key Cryptosystems for Key Exchange
    Overview of post-quantum public-key cryptosystems for key exchange Annabell Kuldmaa Supervised by Ahto Truu December 15, 2015 Abstract In this report we review four post-quantum cryptosystems: the ring learning with errors key exchange, the supersingular isogeny key exchange, the NTRU and the McEliece cryptosystem. For each protocol, we introduce the underlying math- ematical assumption, give overview of the protocol and present some implementa- tion results. We compare the implementation results on 128-bit security level with elliptic curve Diffie-Hellman and RSA. 1 Introduction The aim of post-quantum cryptography is to introduce cryptosystems which are not known to be broken using quantum computers. Most of today’s public-key cryptosys- tems, including the Diffie-Hellman key exchange protocol, rely on mathematical prob- lems that are hard for classical computers, but can be solved on quantum computers us- ing Shor’s algorithm. In this report we consider replacements for the Diffie-Hellmann key exchange and introduce several quantum-resistant public-key cryptosystems. In Section 2 the ring learning with errors key exchange is presented which was introduced by Peikert in 2014 [1]. We continue in Section 3 with the supersingular isogeny Diffie–Hellman key exchange presented by De Feo, Jao, and Plut in 2011 [2]. In Section 5 we consider the NTRU encryption scheme first described by Hoffstein, Piphe and Silvermain in 1996 [3]. We conclude in Section 6 with the McEliece cryp- tosystem introduced by McEliece in 1978 [4]. As NTRU and the McEliece cryptosys- tem are not originally designed for key exchange, we also briefly explain in Section 4 how we can construct key exchange from any asymmetric encryption scheme.
    [Show full text]
  • Comprehensive Efficient Implementations of ECC on C54xx Family of Low-Cost Digital Signal Processors
    Comprehensive Efficient Implementations of ECC on C54xx Family of Low-cost Digital Signal Processors Muhammad Yasir Malik [email protected] Abstract. Resource constraints in smart devices demand an efficient cryptosystem that allows for low power and memory consumption. This has led to popularity of comparatively efficient Elliptic curve cryptog- raphy (ECC). Prior to this paper, much of ECC is implemented on re- configurable hardware i.e. FPGAs, which are costly and unfavorable as low-cost solutions. We present comprehensive yet efficient implementations of ECC on fixed-point TMS54xx series of digital signal processors (DSP). 160-bit prime field ECC is implemented over a wide range of coordinate choices. This paper also implements windowed recoding technique to provide better execution times. Stalls in the programming are mini- mized by utilization of loop unrolling and by avoiding data dependence. Complete scalar multiplication is achieved within 50 msec in coordinate implementations, which is further reduced till 25 msec for windowed- recoding method. These are the best known results for fixed-point low power digital signal processor to date. Keywords: Elliptic curve cryptosystem, efficient implementation, digi- tal signal processor (DSP), low power 1 Introduction No other information security entity has been more extensively studied, re- searched and applied as asymmetric cryptography, thanks to its ability to be cryptographically strong over long spans of time. Asymmetric or public key cryptosystems (PKC) have their foundations in hard mathematical problems, which ensure their provable security at the expanse of implementation costs. So-called “large numbers” provide the basis of asymmetric cryptography, which makes their implementation expensive in terms of computation and memory requirements.
    [Show full text]
  • Public-Key Encryption Schemes with Bounded CCA Security and Optimal Ciphertext Length Based on the CDH and HDH Assumptions
    Public-Key Encryption Schemes with Bounded CCA Security and Optimal Ciphertext Length Based on the CDH and HDH Assumptions Mayana Pereira1, Rafael Dowsley1, Goichiro Hanaoka2, and Anderson C. A. Nascimento1 1 Department of Electrical Engeneering, University of Bras´ılia Campus Darcy Ribeiro, 70910-900, Bras´ılia,DF, Brazil email: [email protected],[email protected], [email protected] 2 National Institute of Advanced Industrial Science and Technology (AIST) 1-18-13, Sotokanda, Chyioda-ku, 101-0021, Tokyo, Japan e-mail: [email protected] Abstract. In [5] Cramer et al. proposed a public-key encryption scheme secure against adversaries with a bounded number of decryption queries based on the decisional Diffie-Hellman problem. In this paper, we show that the same result can be obtained based on weaker computational assumptions, namely: the computational Diffie-Hellman and the hashed Diffie-Hellman assumptions. Keywords: Public-key encryption, bounded chosen ciphertext secu- rity, computational Diffie-Hellman assumption, hashed Diffie-Hellman assumption. 1 Introduction The highest level of security for public-key cryptosystems is indistinguishability against adaptive chosen ciphertext attack (IND-CCA2), proposed by Rackoff and Simon [28] in 1991. The development of cryptosystems with such feature can be viewed as a complex task. Several public-key encryption (PKE) schemes have been proposed with either practical or theoretical purposes. It is possible to obtain IND-CCA2 secure cryptosystems based on many assumptions such as: decisional Diffie-Hellman [7, 8, 26], computational Diffie-Hellman [6, 20], factor- ing [22], McEliece [13, 12], quadratic residuosity [8] and learning with errors [26, 25].
    [Show full text]
  • On the Equivalence of Mceliece's and Niederreiter's Public-Key Cryptosystems Y
    Singapore Management University Institutional Knowledge at Singapore Management University Research Collection School Of Information Systems School of Information Systems 1-1994 On the equivalence of McEliece's and Niederreiter's public-key cryptosystems Y. X. LI Robert H. DENG Singapore Management University, [email protected] X. M. WANG DOI: https://doi.org/10.1109/18.272496 Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research Part of the Information Security Commons Citation LI, Y. X.; DENG, Robert H.; and WANG, X. M.. On the equivalence of McEliece's and Niederreiter's public-key cryptosystems. (1994). IEEE Transactions on Information Theory. 40, (1), 271-273. Research Collection School Of Information Systems. Available at: https://ink.library.smu.edu.sg/sis_research/94 This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at Singapore Management University. For more information, please email [email protected]. IKANJALIIUNJ UN INrUKb’lAIlUN IHCUKX, VUL. W,IYU. 1, JAIYUAKX IYY4 LI1 REERENCES of Niederreiter’s cryptosystem, by Niederreiter [3] and by Brickell and Odlyzko [4]. Furthermore, we employ the best known attack, the J. Ziv and A. Lempel, “Compression of individual sequences via Lee-Brickell attack [5], to cryptanalyze the two systems. Some new variable-rate coding,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 530-536, Sept. 1978. optimal parameter values and work factors are obtained.
    [Show full text]
  • A Promenade Through the New Cryptography of Bilinear Pairings
    Invited paper appearing in the Proceedings of the IEEE Information Theory Workshop 2006—ITW 2006, Punta del Este, Uruguay, March 2006. c IEEE. Available online at http://www.cs.stanford.edu/˜xb/itw06/. A Promenade through the New Cryptography of Bilinear Pairings Xavier Boyen Voltage Inc. Arastradero Road Palo Alto, California Email: [email protected] Abstract— This paper gives an introductory account of Assumptions rooted in Factoring and the Discrete the origin, nature, and uses of bilinear pairings, arguably Logarithm problem are interesting in that they tend to the newest and hottest toy in a cryptographer’s toolbox. have complementary properties. Factoring, via the RSA A handful of cryptosystems built on pairings are briefly surveyed, including a couple of realizations of the famously and Strong-RSA assumptions, offers a realization of the elusive identity-based encryption primitive. tremendously useful primitive of trapdoor permutation. Discrete Logarithm, in the guises of the Computational I. INTRODUCTION and Decision Diffie-Hellman (CDH and DDH), offers It can be said that much of contemporaneous cryp- us the option to work with either a computational or a tography can be traced to Shannon’s legacy of “secrecy decisional complexity assumption, the latter being use- systems”, an information theoretic foundation. To escape ful to build public-key encryption systems with formal from the one-time pad, however, it has become neces- proofs of security; by contrast, Factoring and RSA-like sary to appeal to a variety of computational complexity problems are essentially computational, and are thus notions, e.g., to leverage short secrets in order to protect inherently more suited for signature and authentication long messages.
    [Show full text]
  • A CCA2 Secure Public Key Encryption Scheme Based on the Mceliece Assumptions in the Standard Model
    A CCA2 Secure Public Key Encryption Scheme Based on the McEliece Assumptions in the Standard Model Rafael Dowsley1, J¨ornM¨uller-Quade2, Anderson C. A. Nascimento1 1 Department of Electrical Engineering, University of Brasilia. Campus Universit´arioDarcy Ribeiro,Brasilia, CEP: 70910-900, Brazil, Email:[email protected], [email protected] 2 Universit¨atKarlsruhe, Institut f¨urAlgorithmen und Kognitive Systeme. Am Fasanengarten 5, 76128 Karlsruhe, Germany. E-mail: [email protected] We show that a recently proposed construction by Rosen and Segev can be used for obtaining the first public key encryption scheme based on the McEliece assumptions which is secure against adaptive chosen ciphertext attacks in the standard model. 1 Introduction Indistinguishability of messages under adaptive chosen ciphertext attacks is the strongest known notion of security for public key encryption schemes (PKE). Many computational assumptions have been used in the literature for obtain- ing cryptosystems meeting such a strong security requirements. Given one-way trapdoor permutations, we know how to obtain CCA2 security from any seman- tically secure public key cryptosystem [14, 20, 12]. Efficient constructions are also known based on number-theoretic assumptions [6] or on identity based encryp- tion schemes [3]. Obtaining a CCA2 secure cryptosystem (even an inefficient one) based on the McEliece assumptions in the standard model has been an open problem in this area for quite a while. Recently, Rosen and Segev proposed an elegant and simple new computa- tional assumption for obtaining CCA2 secure PKEs: correlated products [19]. They provided constructions of correlated products based on the existence of certain lossy trapdoor functions [16] which in turn can be based on the deci- sional Diffie-Hellman problem and on Paillier's decisional residuosity problem [16].
    [Show full text]
  • Coding Theory-Based Cryptopraphy: Mceliece Cryptosystems in Sage
    College of Saint Benedict and Saint John's University DigitalCommons@CSB/SJU Honors Theses, 1963-2015 Honors Program 2013 Coding Theory-Based Cryptopraphy: McEliece Cryptosystems in Sage Christopher Roering College of Saint Benedict/Saint John's University Follow this and additional works at: https://digitalcommons.csbsju.edu/honors_theses Part of the Computer Sciences Commons, and the Mathematics Commons Recommended Citation Roering, Christopher, "Coding Theory-Based Cryptopraphy: McEliece Cryptosystems in Sage" (2013). Honors Theses, 1963-2015. 17. https://digitalcommons.csbsju.edu/honors_theses/17 This Thesis is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for inclusion in Honors Theses, 1963-2015 by an authorized administrator of DigitalCommons@CSB/SJU. For more information, please contact [email protected]. Coding Theory-Based Cryptography: McEliece Cryptosystems in Sage An Honors Thesis College of St. Benedict/St. John’s University In Partial Fulfillment of the Requirements for Distinction in the Departments of Mathematics and Computer Science by Christopher Roering May 2013 PROJECT TITLE: Coding Theory-Based Cryptography: McEliece Cryptosystems in Sage Approved by: Dr. Sunil Chetty Assistant Professor of Mathematics, Project Advisor Dr. Lynn Ziegler Professor of Computer Science, Project Advisor Dr. Bret Benesh Professor of Mathematics, Department Reader Dr. Robert Campbell Assistant Professor of Mathematics, Department Reader Dr. Robert Hesse Chair, Department of Mathematics Associate Professor Dr. Jim Schnepf Chair, Department of Computer Science Associate Professor Dr. Tony Cunningham Director, Honors Thesis Program 2 Abstract Unlike RSA encryption, McEliece cryptosystems are considered secure in the presence of quantum computers. McEliece cryptosystems leverage error-correcting codes as a mechanism for encryption.
    [Show full text]
  • Codes, Cryptography, and the Mceliece Cryptosystem
    CODES, CRYPTOGRAPHY, AND MCELIECE 1 Codes, Cryptography, and the McEliece Cryptosystem Bethany L. Matsick A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2020 CODES, CRYPTOGRAPHY, AND MCELIECE 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. Ethan Smith, Ph.D. Thesis Chair Scott Long, Ph.D. Committee Member David E. Schweitzer, Ph.D. Assistant Honors Director Date CODES, CRYPTOGRAPHY, AND MCELIECE 3 Abstract Over the past several decades, technology has continued to develop at an incredible rate, and the importance of properly securing information has increased significantly. While a variety of encryption schemes currently exist for this purpose, a number of them rely on problems, such as integer factorization, that are not resistant to quantum algorithms. With the reality of quantum computers approaching, it is critical that a quantum-resistant method of protecting information is found. After developing the proper background, we evaluate the potential of the McEliece cryptosystem for use in the post-quantum era by examining families of algebraic geometry codes that allow for increased security. Finally, we develop a family of twisted Hermitian codes that meets the criteria set forth for security. CODES, CRYPTOGRAPHY, AND MCELIECE 4 Codes, Cryptography, and the McEliece Cryptosystem Introduction In 1978, Robert McEliece introduced a public key cryptosystem based on the difficult problem of decoding a random linear code. Due to its large key size, the McEliece cryptosystem has yet to see widespread use.
    [Show full text]
  • Ecrypt Ii Ecrypt Ii
    ECRYPT II ICT-2007-216676 ECRYPT II European Network of Excellence in Cryptology II Network of Excellence Information and Communication Technologies D.MAYA.5 Jointly Executed Research Activities on Design and Analysis of Primitives and Protocols Due date of deliverable: N.A. Actual submission date: N.A. Start date of project: 1 August 2008 Duration: 4 years Lead contractor: Katholieke Universiteit Leuven (KUL) Revision 1.1 Project co-funded by the European Commission within the 7th Framework Programme Dissemination Level PU Public X PP Restricted to other programme participants (including the Commission services) RE Restricted to a group specified by the consortium (including the Commission services) CO Confidential, only for members of the consortium (including the Commission services) Jointly Executed Research Activities on Design and Analysis of Primitives and Protocols Editor Nigel Smart (BRIS) N.A. Revision 1.1 The work described in this report has in part been supported by the Commission of the European Com- munities through the ICT program under contract ICT-2007-216676. The information in this document is provided as is, and no warranty is given or implied that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability. Contents 1 Introduction 1 2 Work on Standardized or Deployed Schemes 3 2.1 TLS/SSL . 3 2.2 SSH . 4 2.3 EMV . 4 2.4 RSA PKCS# v1.5 Encryption . 6 2.5 RSA-FDH Signature Scheme . 7 2.6 Timestamps in ISO-9798 . 7 2.7 Machine Readable Travel Documents (e-Passports) . 7 2.8 Direct Anonymous Attestation .
    [Show full text]
  • The Mceliece Cryptosystem and Its Variants 1. Introduction to Coding
    Quantum resistant code-based cryptosystems: the McEliece cryptosystem and its variants Jon-Lark Kim Sogang University, South Korea March 1, 2019 At Crypto seminar, Univ. of California-Irvine Abstract: The McEliece cryptosystem is the first code-based public key cryptosystem proposed by Robert McEliece in 1978 a few years after the appearance of RSA. The original McEliece cryptosystem uses binary Goppa codes which are a subclass of Algebraic Geometric Codes and it is still unbroken under quantum attack. In this talk, we introduce basic facts about coding theory and discuss various code-based public key cryptosystems including our new cryptosystem McNie, which is a combination of the McEliece cryptosystem and the Niederreiter cryptosystem. 1. Introduction to Coding Theory Shannon(Ph.D. in Math) tried to understand both coding and cryptography from information theory point of view. In particular, the concept of Information Entropy is due to him. Shannon’s communication channel is given below. Main idea is to add redundant bits to message so that whenever there is an error in the coded message(i.e. codeword) we can find an error position in the codeword and correct it. Shannon’s work on information theory is motivated by Richard Hamming(Ph.D. in Math), a colleague at Bell Lab. Hamming found the first nontrivial one error correcting codes. Shannon showed that there exist codes which can correct any number of errors keeping the information rate below the channel capacity. From now on we give some basic concepts from coding theory. A linear [n,k,d] code with d=n-k+1 is called an MDS code.
    [Show full text]
  • The Factoring Dead: Preparing for the Cryptopocalypse
    THE FACTORING DEAD: PREPARING FOR THE CRYPTOPOCALYPSE Javed Samuel — javed[at]isecpartners[dot]com iSEC Partners, Inc 123 Mission Street, Suite 1020 San Francisco, CA 94105 https://www.isecpartners.com March 20, 2014 Abstract This paper will explain the latest breakthroughs in the academic cryptography community and look ahead at what practical issues could arise for popular cryptosystems. Specifically, we will focus on the recent major devel- opments in discrete mathematics and their potential ability to undermine our trust in the most basic asymmetric primitives, including RSA. We will explain the basic theories behind RSA and the state-of-the-art in large number- ing factoring, and how several recent papers may point the way to massive improvements in this area. The paper will then switch to the practical aspects of the doomsday scenario, and will answer the question “What happens the day after RSA is broken?” We will point out the many obvious and hidden uses of RSA and related algorithms and outline how software engineers and security teams can operate in a post-RSA world. We will also discuss the results of our survey of popular products and software, and point out the ways in which individuals can prepare for the “zombie cryptopocalypse”. 1 INTRODUCTION Over the past few years, there have been numerous attacks on the current SSL infrastructure. These have ranged from BEAST [97], CRIME [88], Lucky 13 [2][86], RC4 bias attacks [1][91] and BREACH [42]. These attacks all show the fragility of the current SSL architecture as vulnerabilities have been found in a variety of features ranging from compression, timing and padding [90].
    [Show full text]