Port Scanning Port Scanning

Total Page:16

File Type:pdf, Size:1020Kb

Port Scanning Port Scanning Internet Security ECOM 5347 lab 2 Port Scanning Port Scanning Objectives 1. Introduce the techniques of port scanning. 2. Use port scanning audit tools such as nmap. Introduction: All machines connected to a LAN or connected to Internet via a modem run many services that listen at certain ports. A service is a program that waits inside a loop for a request message from a client, and acts on the request. By port scanning, one discovers which ports are available (i.e., being listened to by a service). Essentially, a port scan consists of sending a message to each port, one at a time and examining the response received. If the port is in use, it can then be probed further for weakness. Port Scanning is one of the most popular among the reconnaissance techniques attackers use. Port Scanning Terms: Port Numbers: Both UDP and TCP use source and destination port numbers in their packets; the source and destination IP addresses are provided by the underlying IP. Port numbers are an abstraction manufactured by the network layer of the operating system in accordance with the TCP/IP standards These are 16-bit unsigned numbers. The port numbers are divided into three ranges: 1- Well Known Ports (from 0 through 1023) 2- Registered Ports (from 1024 through 49151) 3- Dynamic and/or Private Ports (from 49152 through 65535). 13 Internet Security ECOM 5347 lab 2 Port Scanning Sockets: A socket is an abstraction, similar to a file descriptor, constructed by socket(). A socket so constructed is bound to an IP address and port number via the bind() call. A server program then waits for a connection via the listen(), and accept()s a connection. A socket is said to be active after the server has accepted a connection. It is connected to a remote active socket via an open data connection. Closing the connection destroys the active sockets at both endpoints. A passive socket is not connected, but rather awaits an incoming connection in the listen(), which will spawn a new active socket. A socket is not a port, though there is a close relationship between them. Each port can have a single passive socket, awaiting incoming connections, and multiple active sockets, each corresponding to an open connection on the port. Servers use bind(), listen(), and accept(). A client uses connect(). The read(), write() are used by both clients and servers. The process of connection is show in figures 1 ,2 and 3. Figure 1 14 Internet Security ECOM 5347 lab 2 Port Scanning Figure 2 Socket calls for connection-oriented communication Figure 3 Socket calls for connectionless communication 15 Internet Security ECOM 5347 lab 2 Port Scanning Open Port: A service process is listening at the port. A port is opened by the OS at the request of a specific process. The OS receives packets arriving at this port and gives the messages to the service process. If the OS receives a SYN at an open port, this is the first packet of the three way handshake. Closed Port: No process is listening at the port. If the OS receives a SYN at a closed port, an RST is sent. Filtered Port: A packet filter is listening at the port. UDP scan: Finds open UDP ports. Note that TCP and UDP both have the same port numbers, even though the OS distinguishes them as completely separate; see the file named /etc/services. The source port of UDP is an optional field. When meaningful, it indicates the port of the sending process. If it is not meaningful, a value of zero is used. UDP responds in a different manner from a TCP scan. In order to find UDP ports, the attacker generally sends empty UDP datagrams at the port. If the port is listening, the service process will send back an error message or ignore the incoming datagram. If the port is closed, then the operating system sends back an "ICMP Port Unreachable" message. Fingerprinting an OS Fingerprinting is the technique of interpreting the responses of a system in order to figure out what it is. To make this more effective, unexpected but well-chosen combinations of data are sent to the system in order to trigger unique-enough responses. This is because while most systems respond alike with correct data, they rarely respond the same way when sent unusual data. Port Scanning Tools 1. SAINT 2. nmap (zenmap) , which we discuss below. 3. nessus. 16 Internet Security ECOM 5347 lab 2 Port Scanning Nmap: The nmap port scanner (www.nmap.org) is widely known. According to its author Foydor, nmap is a utility for port scanning large networks, although it works fine for single hosts. Sometimes you need speed, other times you may need stealth. In some cases, bypassing firewalls may be required. Not to mention the fact that you may want to scan different protocols (UDP, TCP, ICMP, etc.). You just can't do all this with one scanning mode. And you don't want to have 10 different scanners around, all with different interfaces and capabilities. All these scanning technique you will found in nmap. Nmap (“Network Mapper”) is an open source tool for network exploration and security auditing. It was designed to rapidly scan large networks, although it works fine against single hosts. Nmap uses raw IP packets in novel ways to determine what hosts are available on the network, what services (application name and version) those hosts are offering, what operating systems (and OS versions) they are running, what type of packet filters/firewalls are in use, and dozens of other characteristics. Uses of Nmap : While Nmap is commonly used for security audits, many systems and network administrators find it useful for routine tasks such as network inventory, managing service upgrade schedules, and monitoring host or service uptime Nmap output : The output from Nmap is a list of scanned targets, with supplemental information on each depending on the options used. Key among that information is the “interesting ports table”. That table lists the port number and protocol, service name, and state. The state is either open, filtered, closed, or unfiltered. Open means that an application on the target machine is listening for connections/packets on that port. Filtered means that a firewall, filter, or other network obstacle is blocking the port so that Nmap 17 Internet Security ECOM 5347 lab 2 Port Scanning cannot tell whether it is open or closed. Closed ports have no application listening on them, though they could open up at any time. Ports are classified as unfiltered when they are responsive to Nmap's probes, but Nmap cannot determine whether they are open or closed. Nmap reports the state combinations open|filtered and closed|filtered when it cannot determine which of the two states describe a port. The port table may also include software version details when version detection has been requested. In addition to the interesting ports table, Nmap can provide further information on targets, including reverse DNS names, operating system guesses, device types, and MAC addresses. 18 Internet Security ECOM 5347 lab 2 Port Scanning Lab Experiment Requirements: Setup a network contains at least two machines (in the lab) or you can use software like VMware or Virtual PC to built you virtual lab (in your home). In this experiment you can use BackTrack 3 live cd to run Nmap or you can install windows version for your machine. Procedures : 1. From windows : Graphical interface: 1. From PC1 (windows xp or backtrack 3) setup nmap , in the target field type the ip address or name of the target 2. Determine the scan type according your need ; you can change scan type from profile field (each scan has different parameters and will return different results) as an example 3. Click Scan to start scanning , be patient until the result appears , the time it takes depend on the scan type. 4. Nmap output give you a summary for scanning process and other tabs give you the output in different shape. The output will be as previously discussion. 5. An example for these is shown in figure 1 Command line: Note that the previous process can be done using command line interface ; Click start, run and type the following command : Nmap [nmap switches] (ip address of the target) Example : Nmap –a –t4 192.168.1.1 The summary will appear in command line with no GUI as in figure 2 and 3. To use nmap from command line from windows need from you Compiling and Installing it to do this try http://nmap.org/book/inst-windows.html; a similar procedures found if you want to install it in linux. May someone say that nmap work with me in command line without do the compiling and installation procedure , this because of ypu are already install a self- installer version of nmap, so I recommend you to try. 2. From backtrack : Graphical interface: 1. Click start – All Applications – Backtrack – Network Mapping – choose Zenmap ; then a GUI similar to that will appear in windows appears and we use it like windows. 19 Internet Security ECOM 5347 lab 2 Port Scanning Command line: 2. Click start – All Applications – Backtrack –Network Mapping – choose Nmap ; then the shell will opened with help contains switches of nmap, usage of each one and examples. 3. you can run nmap using nmap command as examples shown in help, figure 4 shows example of port scanning on IUG website from Backtrack. Figure 1 port scanning using nmap 20 Internet Security ECOM 5347 lab 2 Port Scanning Figure 2 port scanning using command line 21 Internet Security ECOM 5347 lab 2 Port Scanning Figure 3 port scanning using command line.
Recommended publications
  • Red Hat Enterprise Linux 3 Security Guide
    Red Hat Enterprise Linux 3 Security Guide Red Hat Enterprise Linux 3: Security Guide Copyright © 2003 by Red Hat, Inc. Red Hat, Inc. 1801 Varsity Drive Raleigh NC 27606-2072 USA Phone: +1 919 754 3700 Phone: 888 733 4281 Fax: +1 919 754 3701 PO Box 13588 Research Triangle Park NC 27709 USA rhel-sg(EN)-3-Print-RHI (2003-07-25T17:12) Copyright © 2003 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, V1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/). Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright holder. Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is prohibited unless prior permission is obtained from the copyright holder. Red Hat, Red Hat Network, the Red Hat "Shadow Man" logo, RPM, Maximum RPM, the RPM logo, Linux Library, PowerTools, Linux Undercover, RHmember, RHmember More, Rough Cuts, Rawhide and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the United States and other countries. Linux is a registered trademark of Linus Torvalds. Motif and UNIX are registered trademarks of The Open Group. XFree86 is a trademark of The XFree86 Project, Inc, and is pending registration. Intel and Pentium are registered trademarks of Intel Corporation. Itanium and Celeron are trademarks of Intel Corporation. AMD, Opteron, Athlon, Duron, and K6 are registered trademarks of Advanced Micro Devices, Inc.
    [Show full text]
  • Design and Implementation of Port Scanner and Sniffer
    DESIGN AND IMPLEMENTATION OF PORT SCANNER AND SNIFFER 1Snehal Dhabarde, 2Reshma Zade,3Nayan Paraswar, 4Samruddhi Sonak, Department of Information Technology, Rajiv Gandhi College of Engineering and Research Nagpur Email:[email protected],[email protected],3nayanparaswar [email protected],[email protected] Abstract: A port scanner is a piece of software Port scanning has different legitimate uses that it designed to search a network host for open performs in a system. It can be used to send a ports. The only way to track open ports is by request to connect to the aimed computer and using a port scanner, and the most accurate note the ports that responds or appears to open. port scanner will be an online port scan. This Port scanning is also used to configure project aims at the creation of a applications for network security to inform the comprehensive application, which can be used administrators in case they detect some at corporate environments. The port scanner connections across a wide range of ports from a and sniffer software is as simple as possible so single host. Port scanning may involve all of the that it can be configured even by a 65,535 ports or only the ports that are well- nontechnical person. This is often used by known to provide services vulnerable to different administrators to check the security of their security related exploits. If a port on a remote networks and by hackers to compromise it. host is open for incoming connection requests The main objective of this project is to scan and you send it a SYN packet, the remote host the various ports within a specified range.
    [Show full text]
  • 8 How Do I Open a Range of Ports on My DI-624M Using Firewall Rules?
    DI-624M User’s Manual Frequently Asked Questions 8 How do I open a range of ports on my DI-624M using Firewall rules? Step 1: Access the router’s Web configuration by entering the router’s IP Address in your Web browser. The default IP Address is 192.168.0.1. Login using your password. The default username is “admin” and the password is blank. If you are having difficulty accessing Web management, please see the first question in this section. Step 2: From the Web management Home page, click the Advanced tab then click the Firewall button. Step 3: Click on Enabled and type in a name for the new rule. Step 4: Choose WAN as the Source and enter a range of IP Addresses out on the internet that you would like this rule applied to. If you would like this rule to allow all internet users to be able to access these ports, then put an Asterisk in the first box and leave the second box empty. Step 5: Select LAN as the Destination and enter the IP Address of the computer on your local network that you want to allow the incoming service to. This will not work with a range of IP Addresses. D-Link Systems, Inc. 91 DI-624M User’s Manual Frequently Asked Questions Step 6: Enter the port or range of ports that are required to be open for the incoming service. Step 7: Click Apply and then click Continue. Note: Make sure DMZ host is disabled. Because our routers use NAT (Network Address Translation), you can only open a specific port to one computer at a time.
    [Show full text]
  • GL550 Enterprise Linux Security Administration
    EVALUATION COPY Unauthorized Reproduction or Distribution Enterprise LinuxProhibited Security Administration Student Workbook EVALUATION COPY Unauthorized Reproduction GL550 ENTERPRISE LINUX SECURITY ADMINISTRATION RHEL7 SLES12 or Distribution The contents of this course and all its modules and related materials, including handouts to audience members, are copyright ©2017 Guru Labs L.C. No part of this publication may be stored in a retrieval system, transmitted or reproduced in any way, including, but not limited to, photocopy, photograph, magnetic, electronic or other record, without the prior written permission of Guru Labs. This curriculum contains proprietary information which is for the exclusive use of customers of Guru Labs L.C., and is not to be shared with personnel other than those in attendance at this course. This instructional program, including all material provided herein, is supplied without any guarantees from Guru Labs L.C. Guru Labs L.C. assumes no liability for damages or legal action arising from Prohibited the use or misuse of contents or details contained herein. Photocopying any part of this manual without prior written consent of Guru Labs L.C. is a violation of federal law. This manual should not appear to be a photocopy. If you believe that Guru Labs training materials are being photocopied without permission, please email [email protected] or call 1-801-298-5227. Guru Labs L.C. accepts no liability for any claims, demands, losses, damages, costs or expenses suffered or incurred howsoever arising from or in
    [Show full text]
  • Nmap Tutorial 1/10 2004-10-10 Lätt Redigerad Av Jan-Erik Jonsson
    NMap tutorial 1/10 2004-10-10 Lätt redigerad av Jan-Erik Jonsson Basic Scan Types [-sT, -sS] TCP connect() Scans [-sT] SYN Stealth Scanning [-sS] FIN, Null and Xmas Tree Scans [- sF, -sN, -sX] Ping Scanning [-sP] UDP Scans [-sU] IP Protocol Scans [-sO] Idle Scanning [-sI] ACK Scan [-sA] Window Scan, RPC Scan, List Scan [-sW, -sR, -sL] Timing And Hiding Scans Timing Decoys FTP Bounce Turning Pings Off Fragmenting Idle Scanning http://www.security-forums.com/forum/viewtopic.php?t=7872 NMAP - A Stealth Port Scanner by Andrew J. Bennieston 1 INTRODUCTION ................................................................................................................................................. 2 2 DISCLAIMER...................................................................................................................................................... 2 3 BASIC SCAN TYPES [-ST, -SS] ........................................................................................................................... 2 3.1 TCP connect() Scans [-sT]........................................................................................................................ 2 3.2 SYN Stealth Scanning [-sS]....................................................................................................................... 2 4 FIN, NULL AND XMAS TREE SCANS [-SF, -SN, -SX] ......................................................................................... 3 5 PING SCANNING [-SP] ......................................................................................................................................
    [Show full text]
  • Surveying Port Scans and Their Detection Methodologies
    Surveying Port Scans and Their Detection Methodologies Monowar H Bhuyan1, D K Bhattacharyya1 and J K Kalita2 1Department of Computer Science & Engineering Tezpur University Napaam, Tezpur, Assam, India 2Department of Computer Science University of Colorado at Colorado Springs CO 80933-7150, USA Email: mhb,dkb @tezu.ernet.in, [email protected] { } Scanning of ports on a computer occurs frequently on the Internet. An attacker performs port scans of IP addresses to find vulnerable hosts to compromise. However, it is also useful for system administrators and other network defenders to detect port scans as possible preliminaries to more serious attacks. It is a very difficult task to recognize instances of malicious port scanning. In general, a port scan may be an instance of a scan by attackers or an instance of a scan by network defenders. In this survey, we present research and development trends in this area. Our presentation includes a discussion of common port scan attacks. We provide a comparison of port scan methods based on type, mode of detection, mechanism used for detection, and other characteristics. This survey also reports on the available datasets and evaluation criteria for port scan detection approaches. Keywords: TCP/IP, UDP, OS fingerprinting, coordinated scanning Received 21 May 2010; revised 23 August 2010 1. INTRODUCTION similar, except that a positive response from the target results in further communication to determine whether The Internet is a complex entity comprised of diverse the target is vulnerable to a particular exploit. As can networks, users, and resources. Most users are oblivious be found in [3], most attacks are preceded by some form to the design of the Internet and its components and of scanning activity, particularly vulnerability scanning.
    [Show full text]
  • Downloads.Php
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Error Detection and Error Classification: Failure Awareness in Data Transfer Scheduling Permalink https://escholarship.org/uc/item/4sh9h5zn Author Balman, Mehmet Publication Date 2010-11-26 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Error Detection and Error Classification: Failure Awareness in Data Transfer Scheduling ∗ Mehmet Balman1 and Tevfik Kosar2 1 Computational Research Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA 2 Department of Computer Science, Louisiana State University Baton Rouge, LA 70803, USA Email: [email protected] [email protected] 2010 Abstract Data transfer in distributed environment is prone to frequent failures resulting from back-end system level problems, like connectivity failure which is technically untraceable by users. Error messages are not logged efficiently, and sometimes are not relevant/useful from users' point-of-view. Our study explores the possibility of an efficient error detection and reporting system for such environments. Prior knowledge about the environment and awareness of the actual reason behind a failure would enable higher level planners to make better and accurate decisions. It is necessary to have well defined error detection and error reporting methods to increase the usability and serviceability of existing data transfer protocols and data management systems. We investigate the applicability of early error detection and error classification techniques and propose an error reporting framework and a failure-aware data transfer life cycle to improve arrangement of data transfer operations and to enhance decision making of data transfer schedulers. Keywords: error detection, error classification, network exploration, data movement between distributed repositories, scheduling bulk data transfer operations Reference to this paper should be made as follows: Balman, M.
    [Show full text]
  • Evaluation of Network Port Scanning Tools
    Evaluation of Network Port Scanning Tools Nazar El-Nazeer and Kevin Daimi Department of Mathematics, Computer Science and Software Engineering University of Detroit Mercy, 4001 McNichols Road, Detroit, MI 48221 {elnazen, daimikj}@udmercy.edu ABSTRACT implies protecting data and information from attacks during their transmission from the source to destination. Attackers can detect the vulnerabilities in networks and Neglecting network port scans could result in possibly pose enormous threats in these situations. To unavoidable consequences. Network attackers prevent problems, cryptology provides the most continuously monitor and check communication ports promising measures to deter, prevent, detect, and correct looking for any open port. To protect computers and security violations. networks, computers need to be safeguarded against applications that aren't required by any function To protect computer networks, a number of protection currently in use. To accomplish this, the available ports tasks need to be implemented. These tasks are needed and the applications utilizing them should be to enforce the security for wireless network, electronic determined. This paper attempts to evaluate eight port mail, IP, and at the transport level. Furthermore, these scanning tools based on fifteen criterions. The criteria tasks should efficiently deal with intruders and were reached after fully testing each tool. The malicious software [23]. outcomes of the evaluation process are discussed. Internet and web are tremendously vulnerable to various Keywords attacks. Therefore securing web services is a critical requirement. In particular, security at the transport layer Network Security, Evaluation Criteria, Network must never be overlooked. The subdivision of the Security Tools, Network Port Scanning Internet by the transport layer presents ample outcomes both in the way in which business is performed on the network and with regard to the vulnerability caused by I.
    [Show full text]
  • Internet-Facing Plcs - a New Back Orifice
    Internet-facing PLCs - A New Back Orifice Johannes Klick, Stephan Lau, Daniel Marzin, Jan-Ole Malchow, Volker Roth Freie Universität Berlin - Secure Identity Research Group <firstname>.<lastname>@fu-berlin.de Abstract—Industrial control systems (ICS) are integral com- The approach we take is to turn PLCs into gateways (we ponents of production and control processes. Our modern infras- focus on Siemens PLCs). This is enabled by a notorious lack tructure heavily relies on them. Unfortunately, from a security of proper means of authentication in PLCs. A knowledgeable perspective, thousands of PLCs are deployed in an Internet-facing adversary with access to a PLC can download and upload code fashion. Security features are largely absent in PLCs. If they are to it, as long as the code consists of MC7 bytecode, which is the present then they are often ignored or disabled because security native form of PLC code. We explored the runtime environment is often at odds with operations. As a consequence, it is often possible to load arbitrary code onto an Internet-facing PLC. of PLCs and found that it is possible to implement several Besides being a grave problem in its own right, it is possible network services using uploaded MC7 code. In particular, we to leverage PLCs as network gateways into production networks implemented and perhaps even the corporate IT network. In this paper, we analyze and discuss this threat vector and we demonstrate • a SNMP scanner for Siemens PLCs, and that exploiting it is feasible. For demonstration purposes, we • developed a prototypical port scanner and a SOCKS proxy that a fully fledged SOCKS proxy for Siemens PLCs runs in a PLC.
    [Show full text]
  • Ethical Hacking of a Smart Plug
    DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS Stockholm, Sweden 2021 Ethical Hacking of a Smart Plug RAMI ACHKOUDIR ZAINAB ALSAADI 2 Ethical Hacking of a Smart Plug RAMI ACHKOUDIR ZAINAB ALSAADI Bachelor in Computer Science First Cycle, 15 Credits Supervisor: Pontus Johnson Examiner: Robert Lagerström School of Electrical Engineering and Computer Science 3 4 Abstract The number of Internet of Things (IoT) devices is growing rapidly which introduces plenty of new challenges concerning the security of these devices. This thesis aims to contribute to a more sustainable IoT environment by evaluating the security of a smart plug. The DREAD and STRIDE methods were used to assess the potential threats and the threats with the highest potential impact were penetration tested in order to test if there were any security preventions in place. The results from the penetration tests presented no major vulnerabilities which bring us to the conclusion that the Nedis Smart Plug has implemented enough security measures. Keywords - Internet of Things, IoT, penetration test, ethical hacking, IoT ​ ​ security, threat model 5 Sammanfattning Antalet Internet of Things (IoT) -enheter växer snabbt vilket medför många nya utmaningar när det gäller säkerheten för dessa enheter. Denna avhandling syftar till att bidra till en mer hållbar IoT-miljö genom att utvärdera säkerheten för en smart plug. Metoderna DREAD och STRIDE användes för att bedöma de potentiella hoten och hoten med störst potentiell påverkan penetrerades för att testa om det fanns några säkerhetsförebyggande åtgärder. Resultaten från penetrationstesterna presenterade inga större sårbarheter som ledde oss till slutsatsen att Nedis Smart Plug har genomfört tillräckliga säkerhetsåtgärder.
    [Show full text]
  • NMAP - a Stealth Port Scanner
    NMAP - A Stealth Port Scanner Andrew J. Bennieston http://www.nmap-tutorial.com Contents 1 Introduction 4 2 Disclaimer 4 3 Basic Scan Types [-sT, -sS] 4 3.1 TCP connect() Scan [-sT] . 4 3.2 SYN Stealth Scan [-sS] . 5 4 FIN, Null and Xmas Tree Scans [-sF, -sN, -sX] 6 5 Ping Scan [-sP] 7 6 UDP Scan [-sU] 8 7 IP Protocol Scans [-sO] 8 8 Idle Scanning [-sI] 9 9 Version Detection [-sV] 10 10 ACK Scan [-sA] 10 11 Window Scan, RPC Scan, List Scan [-sW, -sR, -sL] 11 12 Timing and Hiding Scans 11 12.1 Timing . 11 12.2 Decoys . 11 12.3 FTP Bounce . 12 12.4 Turning Off Ping . 12 12.5 Fragmenting . 12 12.6 Idle Scanning . 13 13 OS Fingerprinting 13 14 Outputting Logs 13 15 Other Nmap Options 13 15.1 IPv6 . 13 15.2 Verbose Mode . 13 15.3 Resuming . 13 15.4 Reading Targets From A File . 14 15.5 Fast Scan . 14 15.6 Time-To-Live . 14 2 16 Typical Scanning Session 14 17 Frequently Asked Questions 18 17.1 I tried a scan and it appeared in firewall logs or alerts. What else can I do to help hide my scan? . 18 17.2 NMAP seems to have stopped, or my scan is taking a very long while. Why is this? . 19 17.3 Will -sN -sX and -sF work against any host, or just Windows hosts? 20 17.4 How do I find a dummy host for the Idle Scan (-sI)? . 20 17.5 What does ”Host seems down.
    [Show full text]
  • CEH Study Guide
    CEH Study Guide Exam Code 312-50v8 Version 8 Study Guide Provided by TrainACE© The Certified Ethical Hacker Certification covers the fundamentals of hacking, footprinting and scanning. A CEH certification indicates than an individual possess the skills, knowledge and ability to effectively exploit and defend their own systems. This study guide focuses on Trojans, Linux, Servers, Networks and other forms of hacking to equip future Ethical Hackers with the tools to pass the CEHv8 exam and succeed in their field. Study Guide Provided by TrainACE© Q: Robert hopes to start a career in computer security. As a new college-level student, he has just learned the term ethical hacking, which is a key part of secure information systems. Of the below options, choose which will be key areas of expertise for Robert’s future career. Answer is complete. Select more than one answer if applicable. a. Robert needs to gain a large body of knowledge about how computers function, with special regard to networking and programming. b. Operating systems are very important to Robert’s career. Because companies utilize varying operating systems, including Windows (multiple versions), Mac (multiple versions), UNIX, and Linux, he must develop an advanced understanding of each of the major operating systems. c. Robert should gain familiarity with computing and hardware platforms, which are key to software development. d. Robert should be able to write reports related to his field and have great expertise in communication relating to computer security. Solution: All of the above are correct. Breakdown: Each of the above areas is important for Robert’s future career.
    [Show full text]