New Approach to Uranium-Gold Systems

Total Page:16

File Type:pdf, Size:1020Kb

New Approach to Uranium-Gold Systems oreNewsletter of CODES, the ARC Centresolutions of Excellence in Ore Deposits at the University of Tasmania Winter 2009 / No. 25 New approach to uranium-gold systems team led by Dr David The project builds upon expertise in in these deposits, and the conditions under Selley from CODES, and sediment-hosted base-metal ores (Cu- which they attain ore grade concentrations. Co and Pb-Zn) that has been developed Consideration of these polymetallic Prof. Murray Hitzman A through two decades of research on some deposits as a spectrum between end- from the Colorado School of of the world’s most richly endowed basins, continued page 2 » Mines (CSM) node, is proposing including McArthur Basin in northern a research project to develop Australia and the Katangan Basin in central Temple Mountain, Utah – one of the sites Africa. The project also includes intellectual selected for deposit case studies. The mountain and test a holistic exploration is famous for its polymetallic urano-organic ores, capital developed through recent model for the formation and which include fracture-controlled varieties within research of world-class sediment-hosted and at the margins of a transgressive collapse location of polymetallic U-Au- Au provinces - in particular, concepts of breccia, and greater stratabound concentrations PGM-Ni-REE-Mo-Co ores. organically-mediated metal concentration. within sandstones of the Moss Back Member. Bleaching within the collapse (reduction of iron) In developing the models, emphasis will and abundant petroliferous organic matter within be placed on understanding the significance peripheral sandstones record infiltration of mobile of precious metal and base metal enrichment hydrocarbons. In this issue: SEG students in Indonesia 3 Grim trip 10 Portable analyser analysed 6 Tungsten, fire and ice 12 South American short course 8 Another Fox in Tasmania 14 « continued from page 1 ore location, and examine the potential for in terms of timing, structural control, members will provide important insight to systematic basin-scale metal zonation. alteration and geochemistry? metal sourcing, transport, and ultimately • What are the similarities and differences the distribution of ore-grade metal The search for answers in terms of metal sources and the types of accumulations in sedimentary basins. Answers will be sought to several key fluids involved in the transportation and questions regarding the U metallogeny of mineralisation? The project will include sedimentary basins, including: 3 modules: • What are the factors that control the The team • Metal sources and transport – a series location of polymetallic U deposits, their The project is being facilitated and funded of studies examining the relative roles size, grade and potential for significant through AMIRA International. In addition to of organic-bearing strata and Fe-oxide- credits of Au, PGM, Ni, REE, Mo, and Co? the team leaders – Dr Dave Selley and Prof. bearing ‘red bed’ strata as metal reservoirs, • Is there a spectrum of polymetallic U Murray Hitzman – the other team members and the conditions under which various deposits related to different stages of basin are: CODES personnel: Dr Stuart Bull, Dr metals can be released into solution. The evolution – from early diagenesis through Garry Davidson, Assoc. Prof. Jeff Foster, Prof. studies aim to reveal criteria that determine orogenesis? And can different deposits be Ross Large, Dr Karin Orth, Dr Robert Scott, a basin’s fertility from the perspectives of found in the same basin? plus Dr Poul Emsbo from USGS, and Dr metal source and transport. • Do the various components of Robert Duncan, Prof. Thomas Monecke and • Deposit case studies – comparative polymetallic U deposits share a common Prof. Sam Romberger, all from CSM. studies of deposits from central Africa source? (Shinkolobwe), northern Australia • Is it possible to relate variations in Sponsorship (Coronation Hill, Rum Jungle), USA (Temple metal ratios and absolute concentrations It is anticipated that sponsorship will be Mountain), and South America (Serra to variations in metal source type? an attractive proposition for companies Pelada). The deposits and host basins • Is the zonation of U, Au, PGM, Ni, Mo, exploring for, and developing, uranium, gold, will be selected to include a spectrum Co, and Cu apparent in some basins (e.g. PGMs and related base metal deposits. There of stratal types and positions, association Katangan Basin) unique? will be two types of sponsorship, aimed at with (former) organic matter, and diversity • What is the potential for significant base major and junior levels of participation. of metal associations from U-dominated to metal and precious metal mineralisation Au-PGM-dominated end-members. in provinces known mainly for their U For further information and • Basin architecture – structural, endowment (and vice versa in the case of sponsorship opportunities contact: lithostratigraphic, and hydrodynamic Cu-rich basins)? David Selley. Tel: + 61 3 6226 2481 studies examining the positions of various • How do polymetallic U deposits in Email: [email protected] ore types within their respective host basins. different geologic settings compare with Murray Hitzman. Tel: +1 303 384 2127 The studies develop predictive models for classic unconformity-related U deposits Email: [email protected] Teaching in the City of Gold Ross Large lecturing in Johannesburg, South Africa. During March, Ross and Stuart Bull presented a five-day workshop to 20 Vale geologists entitled Ore forming processes in sedimentary basins. Johannesburg is often referred to in South Africa as Egoli, which is a Zulu word meaning ‘city of gold’. The name is derived from the city’s rich gold mining history. 2 ore solutions Winter 2009 / No. 25 Highs, lows and eruptions All part of the day for SEG students in Indonesia Left: A bird’s eye view of the processing plant at Grasberg taken from the cable car transporting the SEG team. Below: Bronto Sutopo and Fiona Best on Krakatau. he SEG student chapter has The field trip, entitled ‘The Mineralisation completed a hectic, but and Volcanism of Indonesia’, enabled the participants to observe economic highly successful, 11-day T epithermal and porphyry deposits, study field excursion to Indonesia the lavas of active volcanoes, and gain an still visible. On day two, the group endured a that included visits to five overall understanding of the geodynamical rather wet and bumpy boat ride to Krakatau Indonesian islands, three mine evolution of the country. Six industry in the Sunda Strait, where they observed sites and two active volcanoes. representatives and eight students from several generations of lava flows at the base CODES attended the trip, with participants of the volcano, before scrambling through Highlights of the trip were a originating from Australia, and as far afield the steam to see the craters at an elevation tour of the legendary Krakatau as the UK, Canada, Columbia, Indonesia, of approximately 300 m. On the final day on volcano (which in 1883 was Italy, Japan, Peru, Russia and Thailand. Java, the group visited Pongkor gold mine the site of one of the world’s The beginning of the tour was timed where they were taken 500 m underground to coincide with a conference in Jakarta, to observe the mineralised quartz-adularia- most cataclysmic eruptions), organised by the Indonesian Society of sericite veins. a journey underground at Economic Geologists (MGEI), entitled The next two days were spent in the Pongkor and an ascent to the ‘Sumatra Metallurgy at a Glance’. With province of Papua where they learned heights of the world-famous presentations with titles such as ‘1883 about the famous Grasberg porphyry Au- open pit mine at Grasberg. Krakatau Eruption’ and ‘The Status of Gold Cu deposit. The group attended lectures Resources and Exploration in Indonesia’ the on the regional geology and characteristics conference provided the perfect starter to of the Grasberg deposit, and then made whet the appetite for what was to follow. observations of the porphyry ore bodies, The official start to the field trip sulphide-rich skarns and country rocks in commenced with a visit to Carita, West Java, core. They then travelled to an elevation of where the participants were captivated by >4000 m for a geological tour of the vast a large collection of Pliocene silicified trees open-pit operations. that were so well preserved that, in places, Next stop on the demanding but the cell structure of the original wood was eventful schedule was the Batu Hijau gold- ore solutions Winter 2009 / No. 25 3 Highs, lows and eruptions « continued from page 3 rich porphyry copper deposit on the remote learned about its history and evolution, Congratulations to the main organisers, island of Sumbawa in the Lesser Sunda studied the active crater and observed the Fiona Best and Bronto Sutopo, on a highly Archipelago. During a two-day stay at Asia’s lava flows and ignimbrites at its base. rewarding and well-planned 11 days. second largest copper mine, the group was given a tour of the operations and briefed on the geology and mineralisation of the ore body. They were also afforded the opportunity to view core from the mineralised bodies and country rock. The final two days of an unforgettable journey were spent in Bali visiting the active Mount Batur volcano where the group Above: The sign says it all. Left: Dr Clara Wilkinson takes a photo of a petrified tree on the way to Pongkor. some of Tasmania’s finest Plans for symposium cool climate varietals. It is down to the gather pace serious business on days two and three with a Planning for the special symposium to mark full program of top local, CODES’ 20th anniversary is progressing national and international well. A number of prominent speakers have speakers, who will already confirmed their participation, and deliver presentations on many others are expected to finalise their a range of ore deposit involvement in the next few weeks.
Recommended publications
  • Volcanology and Mineral Deposits
    THESE TERMS GOVERN YOUR USE OF THIS DOCUMENT Your use of this Ontario Geological Survey document (the “Content”) is governed by the terms set out on this page (“Terms of Use”). By downloading this Content, you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use. Content: This Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever. Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the “Owner”).
    [Show full text]
  • Geochemical Heterogeneity Within Mid-Ocean Ridge Lava £Ows: Insights Into Eruption, Emplacement and Global Variations in Magma Generation
    Earth and Planetary Science Letters 188 (2001) 349^367 www.elsevier.com/locate/epsl Geochemical heterogeneity within mid-ocean ridge lava £ows: insights into eruption, emplacement and global variations in magma generation K.H. Rubin a;*, M.C. Smith a, E.C. Bergmanis a, M.R. Per¢t b, J.M. Sinton a, R. Batiza a;c a b c Received 5 September 2000; accepted 28 March 2001 Abstract Compositional heterogeneity in mid-ocean ridge (MOR) lava flows is a powerful yet presently under-utilized volcanological and petrological tracer. Here, it is demonstrated that variations in pre- and syn-eruptive magmatic conditions throughout the global ridge system can be constrained with intra-flow compositional heterogeneity among 10 discrete MOR flows. Geographical distribution of chemical heterogeneity within flows is also used along with mapped physical features to help decipher the range of conditions that apply to seafloor eruptions (i.e. inferred vent locations and whether there were single or multiple eruptive episodes). Although low-pressure equilibrium fractional crystallization can account for much of the observed intra-flow compositional heterogeneity, some cases require multiple parent magmas and/or more complex crystallization conditions. Globally, the extent of within-flow compositional heterogeneity is well correlated (positively) with estimated erupted volume for flows from the northern East Pacific Rise (EPR), and the Mid Atlantic, Juan de Fuca and Gorda Ridges; however, some lavas from the superfast spreading southern EPR fall below this trend. Compositional heterogeneity is also inversely correlated with spreading rate. The more homogeneous compositions of lavas from faster spreading ridges likely reflect the relative thermal stability and longevity of sub-ridge crustal magma bodies, and possibly higher eruption frequencies.
    [Show full text]
  • Subglacial and Submarine Volcanism in Iceland
    Mars Polar Science 2000 4078.pdf SUBGLACIAL AND SUBMARINE VOLCANISM IN ICELAND. S. P. Jakobsson, Icelandic Inst. of Natural His- tory, P. O. Box 5320, 125 Reykjavik, Iceland Introduction: Iceland is the largest landmass ex- mounds, ridges and tuyas [5]. The thickness of basal posed along the Mid-Ocean Ridge System. It has been basaltic pillow lava piles often exceeds 60-80 meters constructed over the past 16 Ma by basaltic to silicic and a 300 m thick section has been reported. Pillow volcanic activity occurring at the Mid-Atlantic Ridge, lavas may also form lenses or pods at a higher level in and is topographically elevated because of the abundant the volcanoes. igneous material produced in association with the Ice- It has been suggested that at a water depth less than land hot spot, the center of which is thought to be lo- approximately 100-150 m, basaltic phreatic explosions cated beneath Vatnajokull glacier [1]. The axial rift produce hydroclastites. It appears feasible to subdivide zones which run through Iceland from southwest to the hyaloclastites of the Icelandic ridges and tuyas, ge- northeast are in direct continuation of the crestal zones netically into two main types. A substantial part of the of the Mid Atlantic Ridge and are among the most ac- base of the submarine Surtsey tuya is poorly bedded, tive volcanic zones on Earth. unsorted, hydroclastite, which probably was quenched Subglacial Volcanism: Volcanic accumulations of and rapidly accumulated below the seawater level with- hyaloclastites which are deposits formed by the intru- out penetrating the surface [6]. Only 1-2 % of the vol- sion of lava beneath water or ice and the consequent ume of extruded material in the 1996 Gjalp eruption fell shattering into small angular vitric particles, combined as air-fall tephra, the bulk piled up below the ice [4].
    [Show full text]
  • High-Silica Lava Morphology at Ocean Spreading Ridges: Machine-Learning Seafloor Classification at Alarcon Rise
    Article High-Silica Lava Morphology at Ocean Spreading Ridges: Machine-Learning Seafloor Classification at Alarcon Rise Christina H. Maschmeyer 1,†, Scott M. White 1,*, Brian M. Dreyer 2 and David A. Clague 3 1 School of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC 29208, USA; [email protected] 2 Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA; [email protected] 3 Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA; [email protected] † Now at: Fugro USA Marine, Inc. Geoconsulting Exploration, 6100 Hillcroft Ave, Houston, TX 77081, USA * Correspondence: [email protected] Received 31 March 2019; Accepted 28 May 2019; Published: 1 June 2019 Abstract: The oceanic crust consists mostly of basalt, but more evolved compositions may be far more common than previously thought. To aid in distinguishing rhyolite from basaltic lava and help guide sampling and understand spatial distribution, we constructed a classifier using neural networks and fuzzy inference to recognize rhyolite from its lava morphology in sonar data. The Alarcon Rise is ideal to study the relationship between lava flow morphology and composition, because it exhibits a full range of lava compositions in a well‐mapped ocean ridge segment. This study shows that the most dramatic geomorphic threshold in submarine lava separates rhyolitic lava from lower‐silica compositions. Extremely viscous rhyolite erupts as jagged lobes and lava branches in submarine environments. An automated classification of sonar data is a useful first‐order tool to differentiate submarine rhyolite flows from widespread basalts, yielding insights into eruption, emplacement, and architecture of the ocean crust.
    [Show full text]
  • Open Kosei.Pdf
    The Pennsylvania State University The Graduate School Department of Geosciences GEOCHEMISTRY OF ARCHEAN–PALEOPROTEROZOIC BLACK SHALES: THE EARLY EVOLUTION OF THE ATMOSPHERE, OCEANS, AND BIOSPHERE A Thesis in Geosciences by Kosei Yamaguchi Copyright 2002 Kosei Yamaguchi Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2002 We approve the thesis of Kosei Yamaguchi Date of Signature ____________________________________ _______________________ Hiroshi Ohmoto Professor of Geochemistry Thesis Advisor Chair of Committee ____________________________________ _______________________ Michael A. Arthur Professor of Geosciences ____________________________________ _______________________ Lee R. Kump Professor of Geosciences ____________________________________ _______________________ Raymond G. Najjar Associate Professor of Meteorology ____________________________________ _______________________ Peter Deines Professor of Geochemistry Associate Head for Graduate Program and Research in Geosciences iii ABSTRACT When did the Earth's surface environment become oxic? The timing and mechanism of the rise of atmospheric pO2 level in the early Precambrian have been long debated but no consensus has been reached. The oxygenation of the atmosphere and oceans has significant impacts on the evolution of the biosphere and the geochemical cycles of redox-sensitive elements. In order to constrain the evolution of the atmosphere, oceans, biosphere, and geochemical cycles of elements, a systematic and multidisciplinary
    [Show full text]
  • Drilling for the Archean Roots of Life and Tectonic Earth in the Barberton Mountains
    Progress Reports Drilling for the Archean Roots of Life and Tectonic Earth in the Barberton Mountains by Eugene G. Grosch, Nicola McLoughlin, Maarten de Wit, and Harald Furnes doi:10.2204/iodp.sd.8.03.2009 Introduction phase of drilling yielded three boreholes with a total of 800 m of core with 99% core recovery in the early Archean Barberton In the Barberton Scientific Drilling Program (BSDP) we Greenstone Belt (BGB), South Africa. Five decades of scien- successfully completed three drill holes in 2008 across tific research on the 3.5–3.1-Ba-old BGB has established the strategically selected rock formations in the early Archean mountain ranges of Barberton as a world heritage site and a Barberton Greenstone Belt, South Africa. This collaborative focus for international scientists interested in early Earth project’s goal is to advance understanding of geodynamic processes. The rocks around Barberton are unique in that and biogeochemical processes of the young Earth. The they represent relatively intact and undisturbed remnants of program aims to better define and characterize Earth’s preserved ancient seafloor and continental crust that have earliest preserved ocean crust shear zones and microbial largely escaped tectonometamorphic reworking since the borings in Archean basaltic glass, and to identify biogeo- time they formed (Schoene et al., 2008). chemical fingerprints of ancient ecological niches recorded in rocks. The state-of-the-art analytical and imaging work Outstanding questions about early Earth—as well as will address the question of earliest plate tectonics in the Earth systems and linkages between physical, chemical, and Archean, the δ18O composition, the redox state and biological processes operating within and on the early temperature of Archean seawater, and the origin of life Earth—include the following areas of interest: question.
    [Show full text]
  • Glaciovolcanic Megapillows of Undirhlíđar, Reykjanes Peninsula, Southwestern Iceland
    GLACIOVOLCANIC MEGAPILLOWS OF UNDIRHLÍĐAR, REYKJANES PENINSULA, SOUTHWESTERN ICELAND Rachel Heineman Honors Research in Geology Dr. F. Zeb Page, Thesis Advisor Oberlin College 2016-2017 ABSTRACT At Undirhlíðar tindar on the Reykjanes Peninsula, southwestern Iceland, megapillows are among the features formed during a series of ridge-building glaciovolcanic eruptions. Mapping of the northeastern 3 km of the ridge and petrographic and geochemical analysis of the megapillow outcrops occurring throughout this area demonstrate their role in the multi-stage construction of the ridge modeled by Pollock et al. (2014). The outcrops exhibit radial jointing, bands of vesicles and glassy rims; they occur in high relief surrounded by basalt breccia resembling pillow rubble, and are composed of plagioclase-phyric olivine basalt with plagioclase-rich groundmass. They occur in multiple pillow lava units formed from two distinct magma batches. Two groups of outcrops are represented that are petrographically, geochemically and geographically distinct; the first group is near to and consistent with the pillow units of Undirhlíðar quarry described by Pollock et al. (2014), and the second group, located near the tephra cone, is derived from a more evolved unit of the same magma. Megapillows show significant plagioclase accumulation with variable phenocryst zoning, indicating the movement of multiple pulses of magma through the megapillows. Megapillows at Undirhlíðar may represent a significant mechanism, demonstrated elsewhere at a marine ​ megapillow by Goto and McPhie (2004), for magmatic distribution: feeding and then overrunning pillows which propagate and are fed from their basal margins at the eruptive front. INTRODUCTION Pillow lavas are among the most common lava morphologies on Earth, yet the construction of pillow-dominated volcanoes is not widely understood due to the relative inaccessibility of the submarine environments in which they form.
    [Show full text]
  • Explanatory Notes for the Time–Space Diagram and Stratotectonic Elements Map of Tasmania
    Tasmanian Geological Survey TASMANIA DEVELOPMENT Record 1995/01 AND RESOURCES Tasgo NGMA Project Sub-Project 1: Geological Synthesis Explanatory notes for the Time–Space Diagram and Stratotectonic Elements Map of Tasmania by D. B. Seymour and C. R. Calver Tasmanian Geological Survey Record 1995/01 1 CONTENTS INTRODUCTION ..................................................................................................................... 4 KING ISLAND.......................................................................................................................... 5 ?Mesoproterozoic ............................................................................................................... 5 Neoproterozoic orogenesis and granitoid intrusive rocks ................................................ 5 ?Neoproterozoic sequences ................................................................................................ 5 Early Carboniferous granitoid intrusive rocks ................................................................ 6 ROCKY CAPE ELEMENT....................................................................................................... 7 ?Mesoproterozoic: Rocky Cape Group ............................................................................... 7 Burnie and Oonah Formations ........................................................................................ 7 Smithton Synclinorium .................................................................................................... 7 Ahrberg Group .................................................................................................................
    [Show full text]
  • Solidification and Morphology of Submarine Lavas: a Dependence on Extrusion Rate
    Portland State University PDXScholar Geology Faculty Publications and Presentations Geology 12-10-1992 Solidification and Morphology of Submarine Lavas: A Dependence on Extrusion Rate Ross W. Griffiths Australia National University Jonathan H. Fink Portland State University, [email protected] Follow this and additional works at: https://pdxscholar.library.pdx.edu/geology_fac Part of the Geology Commons, and the Volcanology Commons Let us know how access to this document benefits ou.y Citation Details Griffiths, R.., W & Fink, J. H. (1992). Solidification and morphology of submarine lavas: A dependence on extrusion rate. Journal of Geophysical Research: Solid Earth (1978–2012), 97(B13), 19729-19737. This Article is brought to you for free and open access. It has been accepted for inclusion in Geology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. BI3, PAGES 19,729-19,737, DECEMBER 10 , 1992 Solidification and Morphology of Submarine Lavas: A Dependence on Extrusion Rate Ross W. GRIFFITIIS Research Sclwol of Earth Sciences, Australian National University, Canberra JONATIIAN H. FINK Geology Department, Arizona State University, Tempe The results of recent laboratory experiments with wax extruded beneath relatively cold water may be . extr~polated to predict the surface morphology of submarine lavas as a function of the extrusion rate and melt vIscosity. ~e experiments with solidifying wax indicated that the surface morphology was controlled bya slDgle paramete~ , the raUo of the time taken for the surface to solidify, and a time scale for lateral flow.
    [Show full text]
  • Reassessing the Biogenicity of Earthts Oldest Trace Fossil With
    Reassessing the biogenicity of Earth’s oldest trace fossil with implications for biosignatures in the search for early life Eugene G. Grosch1 and Nicola McLoughlin Department of Earth Science and Centre for Geobiology, University of Bergen, N-5007 Bergen, Norway Edited* by Norman H. Sleep, Stanford University, Stanford, CA, and approved April 28, 2014 (received for review February 10, 2014) Microtextures in metavolcanic pillow lavas from the Barberton argued biogenic origin from pillow lavas of the in situ oceanic greenstone belt of South Africa have been argued to represent crust and ophiolites (1, 2, 9). In young, in situ pillow lavas, Earth’s oldest trace fossil, preserving evidence for microbial life abundant microbial DNA and geochemical signatures support in the Paleoarchean subseafloor. In this study we present new in the presence of a deep subseafloor biosphere (10, 11). Given situ U–Pb age, metamorphic, and morphological data on these therefore the major implications that the Archean titanite titanite microtextures from fresh drill cores intercepting the type microtextures may hold for the earliest evidence of life on Earth, locality. A filamentous microtexture representing a candidate bio- we have conducted syngenicity and biogenicity tests to evaluate signature yields a U–Pb titanite age of 2.819 ± 0.2 Ga. In the same a proposed subseafloor bioalteration model for their origin. We drill core hornfelsic-textured titanite discovered adjacent to a local report in situ U–Pb dating of the titanite, quantitative microscale mafic sill records an indistinguishable U–Pb age of 2.913 ± 0.31 Ga, mapping of metamorphic conditions, and morphological evi- overlapping with the estimated age of intrusion.
    [Show full text]
  • The Rouyn-Pelletier Caldera Complex of the Blake River Group, Abitibi Greenstone Belt, Canada
    Canadian Journal of Earth Sciences Reconstruction and evolution of Archean intracaldera facies: the Rouyn-Pelletier Caldera Complex of the Blake River Group, Abitibi greenstone belt, Canada Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2015-0029.R2 Manuscript Type: Article Date Submitted by the Author: 03-Jan-2016 Complete List of Authors: Moore, Lyndsay N.; Université du Québec à Chicoutimi, Dépt. Sciences de la Terre Draft Daigneault, Réal; Université du Québec à Chicoutimi, Dépt. Sciences de la Terre Aird, Hannah M.; California State University Chico, Geological and Environmental Sciences Department Banerjee, Neil R.; Western University, Department of Earth Sciences Mueller, Wulf U.; Module des Sciences de la Terre Keyword: Archean, subaqueous, caldera, volcanic architecture, facies https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 70 Canadian Journal of Earth Sciences Reconstruction and evolution of Archean intracaldera facies: the Rouyn-Pelletier Caldera Complex of the Blake River Group, Abitibi greenstone belt, Canada Moore, L.N. a, Daigneault, R. a, Aird, H.M. b, Banerjee, N.R. c and Mueller, W.U. a,1 a Centre d’études sur les ressources minérales (CERM), Université du Québec à Chicoutimi (UQAC) 555 boul. de l’Université, Chicoutimi, Québec, Canada, G7H 2B1 b Geological and Environmental Sciences Department (GEOS), California State University - Chico, Chico, California, 95929 c Department of Earth Sciences, Western University, London, Ontario, N6A 5B7 1 Deceased on May 16 th , 2010 Draft Corresponding Author: [email protected] Telephone: 1-418-545-5011 Fax: 1-418-545-5012 Present Address: Université du Québec à Chicoutimi, 555 boul. de l’Université, Chicoutimi, Québec, Canada, G7H 2B1 https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 70 1 Abstract 2 Sub-vertically- to vertically-dipping Archean strata provide an excellent opportunity to study 3 synvolcanic structures and internal organization of subaqueous volcanic complexes.
    [Show full text]
  • NE Temagami Area, Table
    THESE TERMS GOVERN YOUR USE OF THIS DOCUMENT Your use of this Ontario Geological Survey document (the “Content”) is governed by the terms set out on this page (“Terms of Use”). By downloading this Content, you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use. Content: This Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever. Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the “Owner”).
    [Show full text]