CONVEX ANALYSIS AND NONLINEAR OPTIMIZATION Theory and Examples JONATHAN M. BORWEIN Centre for Experimental and Constructive Mathematics Department of Mathematics and Statistics Simon Fraser University, Burnaby, B.C., Canada V5A 1S6
[email protected] http://www.cecm.sfu.ca/ jborwein ∼ and ADRIAN S. LEWIS Department of Combinatorics and Optimization University of Waterloo, Waterloo, Ont., Canada N2L 3G1
[email protected] http://orion.uwaterloo.ca/ aslewis ∼ To our families 2 Contents 0.1 Preface . 5 1 Background 7 1.1 Euclidean spaces . 7 1.2 Symmetric matrices . 16 2 Inequality constraints 22 2.1 Optimality conditions . 22 2.2 Theorems of the alternative . 30 2.3 Max-functions and first order conditions . 36 3 Fenchel duality 42 3.1 Subgradients and convex functions . 42 3.2 The value function . 54 3.3 The Fenchel conjugate . 61 4 Convex analysis 78 4.1 Continuity of convex functions . 78 4.2 Fenchel biconjugation . 90 4.3 Lagrangian duality . 103 5 Special cases 113 5.1 Polyhedral convex sets and functions . 113 5.2 Functions of eigenvalues . 120 5.3 Duality for linear and semidefinite programming . 126 5.4 Convex process duality . 132 6 Nonsmooth optimization 143 6.1 Generalized derivatives . 143 3 6.2 Nonsmooth regularity and strict differentiability . 151 6.3 Tangent cones . 158 6.4 The limiting subdifferential . 167 7 The Karush-Kuhn-Tucker theorem 176 7.1 An introduction to metric regularity . 176 7.2 The Karush-Kuhn-Tucker theorem . 184 7.3 Metric regularity and the limiting subdifferential . 191 7.4 Second order conditions . 197 8 Fixed points 204 8.1 Brouwer's fixed point theorem .