Sådhanå (2020) 45:57 Ó Indian Academy of Sciences https://doi.org/10.1007/s12046-020-1294-7Sadhana(0123456789().,-volV)FT3](0123456789().,-volV) Evaluation of the physico-mechanical properties of activated-carbon enhanced recycled polyethylene/polypropylene 3D printing filament SIEWHUI CHONG1, THOMAS CHUNG-KUANG YANG2, KUAN-CHING LEE3, YI-FAN CHEN2, JOON CHING JUAN3, TIMM JOYCE TIONG1, CHAO-MING HUANG4 and GUAN-TING PAN2,* 1 Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Semenyih, Malaysia 2 Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City, Taiwan, ROC 3 Nanotechnology and Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia 4 Green Energy Technology Research Center and Department of Materials Engineering, Kun Shan University, Tainan, Taiwan, ROC e-mail:
[email protected];
[email protected];
[email protected];
[email protected];
[email protected];
[email protected];
[email protected] MS received 10 March 2018; revised 16 July 2019; accepted 9 January 2020 Abstract. In this study, recycled polymer feedstocks (high-density polyethylene, HDPE and polypropylene, PP) were added with different percentages of activated carbon (AC) made from coconut fiber waste – 0, 2, 4, 6, and 8%. The melting temperatures of the recycled HDPE and HDPE/PP filaments were 113 and 170°C, respectively. The addition of AC improved the thermal stability of the recycled filaments up to 28% while decreased the crystallinity of the filament produced, resulting in a more uniform surface with less crazing. Incompatibility of the recycled HDPE and AC was observed. However, the presence of PP greatly enhanced the compatibility of AC with the HDPE polymer.