Binary Relations and Equivalence Relations

Total Page:16

File Type:pdf, Size:1020Kb

Binary Relations and Equivalence Relations Binary Relations and Equivalence Relations Intuitively, a binary relation R on a set A is a proposition such that, for every ordered pair (a; b) 2 A × A, one can decide if a is related to b or not. Therefore, such a relationship can be viewed as a restricted set of ordered pairs. Formally, Definition 1.1 A binary relation in a set A is a subset R ⊂ A × A. The statement \(a; b) 2 R" is written as a R b. Example 1.2 (a) For any set A the diagonal ∆ = f(a; a) j a 2 Ag is the relation of equality. The relation (A × A) n ∆ is the relation of inequality. (b) The relation ≤ between two real numbers is the set f(x; y) j x ≤ yg ⊂ R × R : (c) In P(A) the relation of inclusion is given by f(A; B) 2 P(A) × P(A) jB ⊂ Ag : If A is a set with a binary relation R and B ⊂ A then the relation R\ (B × B) is a binary relation on the set B. This is the relation on B induced by R. Of all the relations, one of the most important is the equivalence relation. Definition 1.3 An equivalence relation on a set X is a binary relation on X which is reflexive, symmetric and transitive, i.e. (a) 8a 2 A : a R a (reflexive). (b) a R b ) b R a (symmetric). (c) a Rb and b R c ) a R c (transitive). If a R b we say that a is equivalent to b. Example 1.4 (a) The relation ∆ is an equivalence relation. 1 (b) In Z the relation f(x; y) 2 Z × Z j x − y is divisible by 2g is an equivalence relation. (c) Let f : X ! Y be a function. Then f(x1; x2) j f(x1) = f(x2)g is an equivalence relation in X. Let us check the assertion (b). First, reflexibity. 8x we have x−x = 0 and 0 is divisible by 2. Hence the relation is reflexive. Moreover, since y − x = (−1) (x − y) it is clear that if 2j(x − y then 2j(y − x). Hence the relation is symmetric. Finally, if 2j(x − y) and 2j(y − z), then since x − z = (x − y) + (y − z), it is clear that 2j(x − z). So the relation is also transitive and hence is an equivalence relation. Suppose that R is an equivalence relation on the set X. If x 2 X let E(x; R) denote the set of all elements y 2 X such that xRy. The set E(x; R) is called the equivalence class of x for the equivalence relation R. Since R is an equivalence relation, the equivalence classes have the following properties: 1. Each E(x; R) is non-empty for, since xRx, x 2 E(x; R). 2. Let x and y be elements of X. Since R is symmetric, y 2 E(x; R) if and only if x 2 E(y; R). 3. If x; y 2 X the equivalence classes E(x; R) and E(y; R) are either identical or they have no members in common. Indeed, suppose, first, that xRy. Let z 2 E(x; R). Then, by symmetry, since zRx we have also xRz. Hence, by transitivity, zRy and so, by symmetry, yRz. This shows that E(x; R) ⊂ E(y; R). By the symmetry of R we see that E(y; R) ⊂ E(x; R). Hence E(x; R) = E(y; R). Finally, notice that if the points x; y 2 X are not related then E(x; R)\E(y; R) = ;. Indeed, if z 2 E(x; R) \ E(y; R) then xRz and yRz and so xRz and zRy. Therefore xRy which is a contradiction. These facts lead to the following assertions concerning the family, F, of equivalence classes for the equivalence relation R: 1. Every element of the family F is non-empty. 2. Each element x 2 X belongs to one and only one of the sets in the family F. 3. xRy if and only if x and y belong to the same set in the family F. 2 Otherwise said, and equivalence relation subdivides a set (or partitions the set) into the union of a family of non-overlapping, non-smpty subsets. Here is an example which is perhaps the first most students see when they discuss number systems. Example 1.5 :In the construction of the rational numbers, which we will denote by Q, we first introduce ratios of integers p=q where p 2 N and q 2 Z. If p=q represents a point on the number line, then the ratios kp=kq must represent the same point and hence the same rational number. Thus, two ratios p=q and r=s represent the same rational number and can be treated as equal and can be substituted for one another in proofs involving rational numbers whenever the equality ps = rq is true. Now, let us define a relation on N × Zby (p; q) R (r; s) if and only if ps = rq. We check that this is an equivalence relation as follows: (a) (Reflexivity): pq = pq hence (p; q) R (p; q). (b) (Symmetry): If ps = rq then rq = ps and so (pq) R (r; s) ) (r; s) R (p; q) : (c) (Transitivity): If ps = rq and rt = vs, then (pt) · s = (ps) · t = (rq) · t = (rt) · q = (vs) · q = (vq) · s and thur pt = vq since s 6= 0. Hence (p; q) R (r; s) and (r; s) R (v; t) implies (p; q) R (v; t). From this we see that the rational numbers can be viewed as equivalence classes of ratios of integers modulo the relation R given in the example. As a final example consider the following: 3 Example 1.6 : Consider the set Z and let n be a fixed positive integer. Define a relation Rn by xRny provided (x − y) is divisible by n : This relation is called the relation of congruence modulo n. It is easy to check that this is an equivalence relation on Z. (See the special case for n = 2 treated above.) Moreover, there are n equivalence classes. Each integer x is uniquely expressible in the form x = q n + r, where q and r are integers and 0 ≤ R ≤ n − 1. (The integers q and r are called the quotient and the remainder respectively. Hence each x is congruent modulo n to one of the n integers 0; 1; : : : ; n − 1. The equivalence classes are E0 = f:::; −2n; −n; 0; n; 2n; : : :g E1 = f:::; 1 − 2n; 1 − n; 1 + n; 1 + 2n; : : :g . En−1 = f: : : ; n − 1 − 2n; n − 1 − n; n − 1; n − 1 + n; n − 1 + 2n; : : :g Formallly, the domain of a relation, R, is the set of all first coordinates of the members of R while, in this context, the range is the set of all second coordinates. Formally dom (R) = fx 2 X j for some y 2 Y; (x; y) 2 Rg ; while rng (R) = fy 2 Y j for some x 2 X; (x; y) 2 Rg : The inverse of a relation R, denoted R−1, is obtained by reversing each of the pairs belonging to R. Thus R−1 = f(y; x) 2 Y × X j (x; y) 2 Rg : Hence the domain of the inverse is the range of R and the range of R−1 is always the domain of R. If R and S are relations, then the composition R ◦ S is defined as f(x; z) 2 X × Z j for some y; (x; y) 2 S and (y; z) 2 Rg : 4 Example 1.7 If R = f(1; 2)g and S = f(0; 1)g then R ◦ S = f(0; 1)g while S ◦ R = ;. Concerning compositions and inverses we have the following result Proposition 1.8 Let R; S, and T be relations. Then (a) (R−1)−1 = R. (b) (R ◦ S)−1 = S−1 ◦ R−1 . (c) R ◦ (S ◦ T ) = (R ◦ S) ◦ T Proof: (of (b)) We have (x; a) 2 (R ◦ S)−1 , (x; z) 2 R ◦ S , for some y ; (x; y) 2 S and (y; z) 2 R: Consequently, (z; x) 2 (R ◦ S)−1 if and only if (y; z) 2 R−1 and (y; a) 2 S−1 for some y. But this is the condition that (z; x) 2 S−1 ◦ R−1. 2 5.
Recommended publications
  • Filtering Germs: Groupoids Associated to Inverse Semigroups
    FILTERING GERMS: GROUPOIDS ASSOCIATED TO INVERSE SEMIGROUPS BECKY ARMSTRONG, LISA ORLOFF CLARK, ASTRID AN HUEF, MALCOLM JONES, AND YING-FEN LIN Abstract. We investigate various groupoids associated to an arbitrary inverse semigroup with zero. We show that the groupoid of filters with respect to the natural partial order is isomorphic to the groupoid of germs arising from the standard action of the inverse semigroup on the space of idempotent filters. We also investigate the restriction of this isomorphism to the groupoid of tight filters and to the groupoid of ultrafilters. 1. Introduction An inverse semigroup is a set S endowed with an associative binary operation such that for each a 2 S, there is a unique a∗ 2 S, called the inverse of a, satisfying aa∗a = a and a∗aa∗ = a∗: The study of ´etalegroupoids associated to inverse semigroups was initiated by Renault [Ren80, Remark III.2.4]. We consider two well known groupoid constructions: the filter approach and the germ approach, and we show that the two approaches yield isomorphic groupoids. Every inverse semigroup has a natural partial order, and a filter is a nonempty down-directed up-set with respect to this order. The filter approach to groupoid construction first appeared in [Len08], and was later simplified in [LMS13]. Work in this area is ongoing; see for instance, [Bic21, BC20, Cas20]. Every inverse semigroup acts on the filters of its subsemigroup of idempotents. The groupoid of germs associated to an inverse semigroup encodes this action. Paterson pioneered the germ approach in [Pat99] with the introduction of the universal groupoid of an inverse semigroup.
    [Show full text]
  • Relations on Semigroups
    International Journal for Research in Engineering Application & Management (IJREAM) ISSN : 2454-9150 Vol-04, Issue-09, Dec 2018 Relations on Semigroups 1D.D.Padma Priya, 2G.Shobhalatha, 3U.Nagireddy, 4R.Bhuvana Vijaya 1 Sr.Assistant Professor, Department of Mathematics, New Horizon College Of Engineering, Bangalore, India, Research scholar, Department of Mathematics, JNTUA- Anantapuram [email protected] 2Professor, Department of Mathematics, SKU-Anantapuram, India, [email protected] 3Assistant Professor, Rayalaseema University, Kurnool, India, [email protected] 4Associate Professor, Department of Mathematics, JNTUA- Anantapuram, India, [email protected] Abstract: Equivalence relations play a vital role in the study of quotient structures of different algebraic structures. Semigroups being one of the algebraic structures are sets with associative binary operation defined on them. Semigroup theory is one of such subject to determine and analyze equivalence relations in the sense that it could be easily understood. This paper contains the quotient structures of semigroups by extending equivalence relations as congruences. We define different types of relations on the semigroups and prove they are equivalence, partial order, congruence or weakly separative congruence relations. Keywords: Semigroup, binary relation, Equivalence and congruence relations. I. INTRODUCTION [1,2,3 and 4] Algebraic structures play a prominent role in mathematics with wide range of applications in science and engineering. A semigroup
    [Show full text]
  • Math 296. Homework 3 (Due Jan 28) 1
    Math 296. Homework 3 (due Jan 28) 1. Equivalence Classes. Let R be an equivalence relation on a set X. For each x ∈ X, consider the subset xR ⊂ X consisting of all the elements y in X such that xRy. A set of the form xR is called an equivalence class. (1) Show that xR = yR (as subsets of X) if and only if xRy. (2) Show that xR ∩ yR = ∅ or xR = yR. (3) Show that there is a subset Y (called equivalence classes representatives) of X such that X is the disjoint union of subsets of the form yR for y ∈ Y . Is the set Y uniquely determined? (4) For each of the equivalence relations from Problem Set 2, Exercise 5, Parts 3, 5, 6, 7, 8: describe the equivalence classes, find a way to enumerate them by picking a nice representative for each, and find the cardinality of the set of equivalence classes. [I will ask Ruthi to discuss this a bit in the discussion session.] 2. Pliability of Smooth Functions. This problem undertakes a very fundamental construction: to prove that ∞ −1/x2 C -functions are very soft and pliable. Let F : R → R be defined by F (x) = e for x 6= 0 and F (0) = 0. (1) Verify that F is infinitely differentiable at every point (don’t forget that you computed on a 295 problem set that the k-th derivative exists and is zero, for all k ≥ 1). −1/x2 ∞ (2) Let ϕ : R → R be defined by ϕ(x) = 0 for x ≤ 0 and ϕ(x) = e for x > 0.
    [Show full text]
  • Binary Relations and Functions
    Harvard University, Math 101, Spring 2015 Binary relations and Functions 1 Binary Relations Intuitively, a binary relation is a rule to pair elements of a sets A to element of a set B. When two elements a 2 A is in a relation to an element b 2 B we write a R b . Since the order is relevant, we can completely characterize a relation R by the set of ordered pairs (a; b) such that a R b. This motivates the following formal definition: Definition A binary relation between two sets A and B is a subset of the Cartesian product A×B. In other words, a binary relation is an element of P(A × B). A binary relation on A is a subset of P(A2). It is useful to introduce the notions of domain and range of a binary relation R from a set A to a set B: • Dom(R) = fx 2 A : 9 y 2 B xRyg Ran(R) = fy 2 B : 9 x 2 A : xRyg. 2 Properties of a relation on a set Given a binary relation R on a set A, we have the following definitions: • R is transitive iff 8x; y; z 2 A :(xRy and yRz) =) xRz: • R is reflexive iff 8x 2 A : x Rx • R is irreflexive iff 8x 2 A : :(xRx) • R is symmetric iff 8x; y 2 A : xRy =) yRx • R is asymmetric iff 8x; y 2 A : xRy =):(yRx): 1 • R is antisymmetric iff 8x; y 2 A :(xRy and yRx) =) x = y: In a given set A, we can always define one special relation called the identity relation.
    [Show full text]
  • Chapter 1 Logic and Set Theory
    Chapter 1 Logic and Set Theory To criticize mathematics for its abstraction is to miss the point entirely. Abstraction is what makes mathematics work. If you concentrate too closely on too limited an application of a mathematical idea, you rob the mathematician of his most important tools: analogy, generality, and simplicity. – Ian Stewart Does God play dice? The mathematics of chaos In mathematics, a proof is a demonstration that, assuming certain axioms, some statement is necessarily true. That is, a proof is a logical argument, not an empir- ical one. One must demonstrate that a proposition is true in all cases before it is considered a theorem of mathematics. An unproven proposition for which there is some sort of empirical evidence is known as a conjecture. Mathematical logic is the framework upon which rigorous proofs are built. It is the study of the principles and criteria of valid inference and demonstrations. Logicians have analyzed set theory in great details, formulating a collection of axioms that affords a broad enough and strong enough foundation to mathematical reasoning. The standard form of axiomatic set theory is denoted ZFC and it consists of the Zermelo-Fraenkel (ZF) axioms combined with the axiom of choice (C). Each of the axioms included in this theory expresses a property of sets that is widely accepted by mathematicians. It is unfortunately true that careless use of set theory can lead to contradictions. Avoiding such contradictions was one of the original motivations for the axiomatization of set theory. 1 2 CHAPTER 1. LOGIC AND SET THEORY A rigorous analysis of set theory belongs to the foundations of mathematics and mathematical logic.
    [Show full text]
  • Data Monoids∗
    Data Monoids∗ Mikolaj Bojańczyk1 1 University of Warsaw Abstract We develop an algebraic theory for languages of data words. We prove that, under certain conditions, a language of data words is definable in first-order logic if and only if its syntactic monoid is aperiodic. 1998 ACM Subject Classification F.4.3 Formal Languages Keywords and phrases Monoid, Data Words, Nominal Set, First-Order Logic Digital Object Identifier 10.4230/LIPIcs.STACS.2011.105 1 Introduction This paper is an attempt to combine two fields. The first field is the algebraic theory of regular languages. In this theory, a regular lan- guage is represented by its syntactic monoid, which is a finite monoid. It turns out that many important properties of the language are reflected in the structure of its syntactic monoid. One particularly beautiful result is the Schützenberger-McNaughton-Papert theorem, which describes the expressive power of first-order logic. Let L ⊆ A∗ be a regular language. Then L is definable in first-order logic if and only if its syntactic monoid ML is aperiodic. For instance, the language “words where there exists a position with label a” is defined by the first-order logic formula (this example does not even use the order on positions <, which is also allowed in general) ∃x. a(x). The syntactic monoid of this language is isomorphic to {0, 1} with multiplication, where 0 corresponds to the words that satisfy the formula, and 1 to the words that do not. Clearly, this monoid does not contain any non-trivial group. There are many results similar to theorem above, each one providing a connection between seemingly unrelated concepts of logic and algebra, see e.g.
    [Show full text]
  • Monoids (I = 1, 2) We Can Define 1  C 2000 M
    Geometria Superiore Reference Cards Push out (Sommes amalgam´ees). Given a diagram i : P ! Qi Monoids (i = 1; 2) we can define 1 c 2000 M. Cailotto, Permissions on last. v0.0 u −!2 Send comments and corrections to [email protected] Q1 ⊕P Q2 := coker P −! Q1 ⊕ Q2 u1 The category of Monoids. 1 and it is a standard fact that the natural arrows ji : Qi ! A monoid (M; ·; 1) (commutative with unit) is a set M with a Q1 ⊕P Q2 define a cocartesian square: u1 composition law · : M × M ! M and an element 1 2 M such P −−−! Q1 that: the composition is associative: (a · b) · c = a · (b · c) (for ? ? all a; b; c 2 M), commutative: a · b = b · a (for all a; b 2 M), u2 y y j1 and 1 is a neutral element for the composition: 1 · a = a (for Q2 −! Q1 ⊕P Q2 : all a 2 M). j2 ' ' More explicitly we have Q1 ⊕P Q2 = (Q1 ⊕ Q2)=R with R the A morphism (M; ·; 1M ) −!(N; ·; 1N ) of monoids is a map M ! N smallest equivalence relation stable under product (in Q1 ⊕P of sets commuting with · and 1: '(ab) = '(a)'(b) for all Q2) and making (u1(p); 1) ∼R (1; u2(p)) for all p 2 P . a; b 2 M and '(1 ) = 1 . Thus we have defined the cat- M N In general it is not easy to understand the relation involved in egory Mon of monoids. the description of Q1 ⊕P Q2, but in the case in which one of f1g is a monoid, initial and final object of the category Mon.
    [Show full text]
  • Semiring Orders in a Semiring -.:: Natural Sciences Publishing
    Appl. Math. Inf. Sci. 6, No. 1, 99-102 (2012) 99 Applied Mathematics & Information Sciences An International Journal °c 2012 NSP Natural Sciences Publishing Cor. Semiring Orders in a Semiring Jeong Soon Han1, Hee Sik Kim2 and J. Neggers3 1 Department of Applied Mathematics, Hanyang University, Ahnsan, 426-791, Korea 2 Department of Mathematics, Research Institute for Natural Research, Hanyang University, Seoal, Korea 3 Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, U.S.A Received: Received May 03, 2011; Accepted August 23, 2011 Published online: 1 January 2012 Abstract: Given a semiring it is possible to associate a variety of partial orders with it in quite natural ways, connected with both its additive and its multiplicative structures. These partial orders are related among themselves in an interesting manner is no surprise therefore. Given particular types of semirings, e.g., commutative semirings, these relationships become even more strict. Finally, in terms of the arithmetic of semirings in general or of some special type the fact that certain pairs of elements are comparable in one of these orders may have computable and interesting consequences also. It is the purpose of this paper to consider all these aspects in some detail and to obtain several results as a consequence. Keywords: semiring, semiring order, partial order, commutative. The notion of a semiring was first introduced by H. S. they are equivalent (see [7]). J. Neggers et al. ([5, 6]) dis- Vandiver in 1934, but implicitly semirings had appeared cussed the notion of semiring order in semirings, and ob- earlier in studies on the theory of ideals of rings ([2]).
    [Show full text]
  • On Tarski's Axiomatization of Mereology
    On Tarski’s Axiomatization of Mereology Neil Tennant Studia Logica An International Journal for Symbolic Logic ISSN 0039-3215 Volume 107 Number 6 Stud Logica (2019) 107:1089-1102 DOI 10.1007/s11225-018-9819-3 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Nature B.V.. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Neil Tennant On Tarski’s Axiomatization of Mereology Abstract. It is shown how Tarski’s 1929 axiomatization of mereology secures the re- flexivity of the ‘part of’ relation. This is done with a fusion-abstraction principle that is constructively weaker than that of Tarski; and by means of constructive and relevant rea- soning throughout. We place a premium on complete formal rigor of proof. Every step of reasoning is an application of a primitive rule; and the natural deductions themselves can be checked effectively for formal correctness. Keywords: Mereology, Part of, Reflexivity, Tarski, Axiomatization, Constructivity.
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • Functions, Sets, and Relations
    Sets A set is a collection of objects. These objects can be anything, even sets themselves. An object x that is in a set S is called an element of that set. We write x ∈ S. Some special sets: ∅: The empty set; the set containing no objects at all N: The set of all natural numbers 1, 2, 3, … (sometimes, we include 0 as a natural number) Z: the set of all integers …, -3, -2, -1, 0, 1, 2, 3, … Q: the set of all rational numbers (numbers that can be written as a ratio p/q with p and q integers) R: the set of real numbers (points on the continuous number line; comprises the rational as well as irrational numbers) When all elements of a set A are elements of set B as well, we say that A is a subset of B. We write this as A ⊆ B. When A is a subset of B, and there are elements in B that are not in A, we say that A is a strict subset of B. We write this as A ⊂ B. When two sets A and B have exactly the same elements, then the two sets are the same. We write A = B. Some Theorems: For any sets A, B, and C: A ⊆ A A = B if and only if A ⊆ B and B ⊆ A If A ⊆ B and B ⊆ C then A ⊆ C Formalizations in first-order logic: ∀x ∀y (x = y ↔ ∀z (z ∈ x ↔ z ∈ y)) Axiom of Extensionality ∀x ∀y (x ⊆ y ↔ ∀z (z ∈ x → z ∈ y)) Definition subset Operations on Sets With A and B sets, the following are sets as well: The union A ∪ B, which is the set of all objects that are in A or in B (or both) The intersection A ∩ B, which is the set of all objects that are in A as well as B The difference A \ B, which is the set of all objects that are in A, but not in B The powerset P(A) which is the set of all subsets of A.
    [Show full text]
  • 6. Localization
    52 Andreas Gathmann 6. Localization Localization is a very powerful technique in commutative algebra that often allows to reduce ques- tions on rings and modules to a union of smaller “local” problems. It can easily be motivated both from an algebraic and a geometric point of view, so let us start by explaining the idea behind it in these two settings. Remark 6.1 (Motivation for localization). (a) Algebraic motivation: Let R be a ring which is not a field, i. e. in which not all non-zero elements are units. The algebraic idea of localization is then to make more (or even all) non-zero elements invertible by introducing fractions, in the same way as one passes from the integers Z to the rational numbers Q. Let us have a more precise look at this particular example: in order to construct the rational numbers from the integers we start with R = Z, and let S = Znf0g be the subset of the elements of R that we would like to become invertible. On the set R×S we then consider the equivalence relation (a;s) ∼ (a0;s0) , as0 − a0s = 0 a and denote the equivalence class of a pair (a;s) by s . The set of these “fractions” is then obviously Q, and we can define addition and multiplication on it in the expected way by a a0 as0+a0s a a0 aa0 s + s0 := ss0 and s · s0 := ss0 . (b) Geometric motivation: Now let R = A(X) be the ring of polynomial functions on a variety X. In the same way as in (a) we can ask if it makes sense to consider fractions of such polynomials, i.
    [Show full text]