Sunda Clouded Leopard Neofelis Diardi Densities and Human Activities in the Humid Evergreen Rainforests of Sumatra

Total Page:16

File Type:pdf, Size:1020Kb

Sunda Clouded Leopard Neofelis Diardi Densities and Human Activities in the Humid Evergreen Rainforests of Sumatra Sunda clouded leopard Neofelis diardi densities and human activities in the humid evergreen rainforests of Sumatra I DING H AIDIR,DAVID W. MACDONALD and M ATTHEW L INKIE Abstract Most species of wild felids are threatened, but for Introduction many little is known about their status in the wild. For the cryptic and elusive Vulnerable Sunda clouded leopard cross the tropics of Latin America, Africa and Asia, in- Neofelis diardi, key metrics such as abundance and occu- Aformation on wild felids tends to be based on indirect pancy have been challenging to obtain. We conducted an signs because dense vegetation typically precludes direct intensive survey for this species on the Indonesian island observations and because these species tend to be rare as a of Sumatra. We deployed camera traps across four study result of their trophic status (Carter et al., ; Rayan & ę areas that varied in elevation and threats, for a total of Linkie, ;J drzejewski et al., ). Remote detection de- , trap nights, resulting in independent clouded vices, primarily camera traps, facilitate surveying felids that leopard photographs, in which we identified individuals. are otherwise difficult to detect, enabling researchers to Using a Bayesian spatially explicit capture–recapture anal- investigate felid ecology and population status, and gain a ysis, we estimated clouded leopard density to be .–. better understanding of the threats to these species (Linkie individuals/ km . The highest predicted occurrence of et al., ; Kawanishi et al., ; Henschel et al., ; people was at lower altitudes and closer to the forest edge, Rich et al., ). There are felid species in South-east where we categorized more than two-thirds of people re- Asia, occurring in open savannahs, deciduous forests and corded by camera traps as bird poachers, .% each as un- humid evergreen forests along the equator (Sunquist & gulate/tiger poachers and non-timber collectors, and , % Sunquist, ). Little is known about most of these spe- as fishers. Our findings provide important insights into the cies, particularly the smaller-bodied ones. However, recent status of this little known species in Sumatra. We recom- camera-trap surveys have provided new information on mend that the large volume of camera-trap data from the relative abundance, occupancy and/or habitat prefer- other Sumatran landscapes be used for an island-wide as- ence of the Sunda clouded leopard Neofelis diardi, Asiatic sessment of the clouded leopard population, to provide golden cat Catopuma temminckii, Bornean bay cat Catopu- up-to-date and reliable information for guiding future ma badia, marbled cat Pardofelis marmorata, leopard cat conservation planning. Prionailurus bengalensis and flat-headed cat Prionailurus planiceps (Haidir et al., ; Wearn et al., ; McCarthy Keywords Camera trap, clouded leopard, felid, Kerinci et al., ; Hearn et al., a; Rustam et al., ). Seblat National Park, Neofelis diardi, poaching, spatially To date, wildlife research in Sumatra has mainly focused explicit capture–recapture on the Indonesian Ministry of Environment and Forestry’s Supplementary material for this article is available at priority species, the Sumatran tiger Panthera tigris suma- doi.org/./S trae, Sumatran elephant Elephas maximus sumatranus, Sumatran rhinoceros Dicerorhinus sumatrensis, Sumatran orangutan Pongo abelii and, most recently, the newly dis- covered Tapanuli orangutan Pongo tapanuliensis (Hedges et al., ; Wibisono & Pusparini, ; Pusparini et al., ; Sunarto et al., ; Nowak et al., ). This attention is justified because these flagship species or subspecies are endemic, categorized as Critically Endangered on the IUCN Red List, and able to attract international attention and conservation funds that provide wider benefits to the IDING HAIDIR* (Corresponding author, orcid.org/0000-0003-2994-2942) Kerinci Seblat National Park Authority, Indonesian Ministry of Environment wildlife, rainforest habitats and protected areas within and Forestry, Jambi, Indonesia. E-mail [email protected] their range. However, the Sunda clouded leopard can also DAVID W. MACDONALD Department of Zoology, Wildlife Conservation Research play a role as a wildlife conservation ambassador, as shown Unit, University of Oxford, The Recanati-Kaplan Centre, Tubney, UK elsewhere in Asia, through its ability to generate political MATTHEW LINKIE Wildlife Conservation Society, Bogor, Indonesia support for both the species itself and the protected areas *Also at: Department of Zoology, Wildlife Conservation Research Unit, University of Oxford, The Recanati-Kaplan Centre, Tubney, UK it inhabits (Macdonald et al., ). Received March . Revision requested June . Here we investigate demographic parameters of Sunda Accepted August . First published online June . clouded leopards in four rainforest areas in one of This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, Downloadeddistribution, from https://www.cambridge.org/core and reproduction in any medium,. IP address: provided 170.106.33.22 the original work, onis 26 properly Sep 2021 cited. at 08:28:14, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/termsOryx, 2021, 55(2), 189–196 ©. https://doi.org/10.1017/S0030605319001005The Author(s), 2020. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605319001005 190 I. Haidir et al. South-east Asia’s largest protected areas, Kerinci Seblat National Park in west-central Sumatra. The study areas are characterized by different forest types, elevation gradients and human disturbance levels. Our study builds on earlier work that was based on bycatch data from a tiger survey in four study areas in the Park, with estimated Sunda clouded leopard densities of .–. individuals/ km (Sollmann et al., ). We conducted surveys that specifically focused on small to medium-sized felids and applied analyses that explore additional research questions. For example, we examined how detection probability, move- ment distribution and density of Sunda clouded leopards vary amongst different forest types along an altitudinal gradient. Study area Kerinci Seblat National Park is a UNESCO World Heritage Site on the island of Sumatra. The , km Kerinci Seblat forest landscape stretches along c. km of the Bukit Barisan mountain range and covers the provinces of Jambi, Bengkulu, South Sumatra and West Sumatra. The altitude is –, m, with lowland forest , m – FIG. 1 Study areas in Kerinci Seblat National Park (KSNP), ( . % of the landscape), hill forest at m( . %), west-central Sumatra. submontane forest at –, m(.%), midmontane forest at ,–, m(.%) and upper montane and sub- – alpine forest . , m(.%). Our four study areas were trail, with a spacing of . km between camera stations Ipuh (lowland forest), Bungo and Sipurak (hill forest), and (Supplementary Table ). We used heat-motion sensor Renah Kayu Embun (submontane and midmontane forest; camera traps Cuddeback Ambush IR (Cuddeback, De Pere, Fig. , Table , Supplementary Table ). USA) and Panthera IV (Panthera, New York, USA), without any bait or lure to attract felids. We set camera traps to op- erate continuously for months and visited stations every Methods weeks for maintenance and data retrieval. We compiled all clouded leopard photographs, and at least three experienced Data collection project members then manually identified individual ani- mals based on their unique pelage pattern. We used these – We conducted camera-trap surveys during June data to develop daily detection matrices. December in Kerinci Seblat National Park and adjacent forest areas. We designed the surveys to target the Sunda clouded leopard, golden cat, marbled cat and leopard cat, Clouded leopard density by placing cameras on ridge trails and animal paths, with the majority (%) of camera traps placed where the forest Heterogeneity in the probability of detecting clouded leo- canopy was disrupted and the semi-arboreal felids could be pards can be influenced by a variety of factors, including expected to descend. All camera stations in Bungo, Sipurak sex and camera trap site-specific covariates, although with and Ipuh, and % of stations in Renah Kayu Embun, con- limited data it is not possible to derive sex-based density sisted of camera traps set up in pairs, to capture both flanks estimates (Efford & Fewster, ). We estimated popula- of passing animals. The camera traps within each study area tion abundance using a spatially explicit capture–recapture covered grid cells of km . Prior to setting the cameras, method, which assumes that each individual animal has a we conducted reconnaissance surveys to determine the loca- unique activity centre and that its probability of detection tions in a grid cell that were most likely to record clouded decreases with increasing distance from this centre. We con- leopards and other small and medium-sized felids. We set structed daily detection matrices, which included the spatial up cameras within m of the planned deployment points attributes of each individual, for each camera station. We at a height of – cm off the ground. The paired traps analysed camera-trap data and developed detection matrices were positioned at a distance of – m from the target using the package camtrapR in R .. (Niedballa et al., ). Oryx, 2021, 55(2), 189–196 © The Author(s), 2020. Published by Cambridge University
Recommended publications
  • Download Download
    PLATINUM The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservaton globally by publishing peer-reviewed artcles OPEN ACCESS online every month at a reasonably rapid rate at www.threatenedtaxa.org. All artcles published in JoTT are registered under Creatve Commons Atributon 4.0 Internatonal License unless otherwise mentoned. JoTT allows unrestricted use, reproducton, and distributon of artcles in any medium by providing adequate credit to the author(s) and the source of publicaton. Journal of Threatened Taxa Building evidence for conservaton globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Communication Male residency of Sunda Clouded Leopard Neofelis diardi (Cuvier, 1823) (Mammalia: Carnivora: Felidae) in a peat swamp forest, Indonesian Borneo Lynn Pallemaerts, Adul, Ici P. Kulu, Karen Anne Jefers, David W. Macdonald & Susan Mary Cheyne SMALL WILD CATS 14 December 2020 | Vol. 12 | No. 16 | Pages: 17222–17228 SPECIAL ISSUE DOI: 10.11609/jot.6487.12.16.17222-17228 For Focus, Scope, Aims, Policies, and Guidelines visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Artcle Submission Guidelines, visit htps://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientfc Misconduct, visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints, contact <[email protected]> The opinions expressed by the authors do not refect the views of the Journal of Threatened Taxa, Wildlife Informaton Liaison Development Society, Zoo Outreach Organizaton, or any of the partners. The journal, the publisher, the host, and the part- Publisher & Host ners are not responsible for the accuracy of the politcal boundaries shown in the maps by the authors.
    [Show full text]
  • First Record of Hose's Civet Diplogale Hosei from Indonesia
    First record of Hose’s Civet Diplogale hosei from Indonesia, and records of other carnivores in the Schwaner Mountains, Central Kalimantan, Indonesia Hiromitsu SAMEJIMA1 and Gono SEMIADI2 Abstract One of the least-recorded carnivores in Borneo, Hose’s Civet Diplogale hosei , was filmed twice in a logging concession, the Katingan–Seruyan Block of Sari Bumi Kusuma Corporation, in the Schwaner Mountains, upper Seruyan River catchment, Central Kalimantan. This, the first record of this species in Indonesia, is about 500 km southwest of its previously known distribution (northern Borneo: Sarawak, Sabah and Brunei). Filmed at 325The m a.s.l., IUCN these Red List records of Threatened are below Species the previously known altitudinal range (450–1,800Prionailurus m). This preliminary planiceps survey forPardofelis medium badia and large and Otter mammals, Civet Cynogalerunning 100bennettii camera-traps in 10 plots for one (Bandedyear, identified Civet Hemigalus in this concession derbyanus 17 carnivores, Arctictis including, binturong on Neofelis diardi, three Endangered Pardofe species- lis(Flat-headed marmorata Cat and Sun Bear Helarctos malayanus, Bay Cat . ) and six Vulnerable species , Binturong , Sunda Clouded Leopard , Marbled Cat Keywords Cynogale bennettii, as well, Pardofelis as Hose’s badia Civet), Prionailurus planiceps Catatan: PertamaBorneo, camera-trapping, mengenai Musang Gunung Diplogale hosei di Indonesia, serta, sustainable karnivora forest management lainnya di daerah Pegunungan Schwaner, Kalimantan Tengah Abstrak Diplogale hosei Salah satu jenis karnivora yang jarang dijumpai di Borneo, Musang Gunung, , telah terekam dua kali di daerah- konsesi hutan Blok Katingan–Seruyan- PT. Sari Bumi Kusuma, Pegunungan Schwaner, di sekitar hulu Sungai Seruya, Kalimantan Tengah. Ini merupakan catatan pertama spesies tersebut terdapat di Indonesia, sekitar 500 km dari batas sebaran yang diketa hui saat ini (Sarawak, Sabah, Brunei).
    [Show full text]
  • Neofelis Diardi, Sunda Clouded Leopard
    The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T136603A50664601 Neofelis diardi, Sunda Clouded Leopard Assessment by: Hearn, A., Ross, J., Brodie, J., Cheyne, S., Haidir, I.A., Loken, B., Mathai, J., Wilting, A. & McCarthy, J. View on www.iucnredlist.org Citation: Hearn, A., Ross, J., Brodie, J., Cheyne, S., Haidir, I.A., Loken, B., Mathai, J., Wilting, A. & McCarthy, J. 2015. Neofelis diardi. The IUCN Red List of Threatened Species 2015: e.T136603A50664601. http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T136603A50664601.en Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: BirdLife International; Botanic Gardens Conservation International; Conservation International; Microsoft; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; Wildscreen; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Animalia Chordata Mammalia Carnivora Felidae Taxon Name: Neofelis diardi (G.
    [Show full text]
  • 1 the Origin and Evolution of the Domestic Cat
    1 The Origin and Evolution of the Domestic Cat There are approximately 40 different species of the cat family, classification Felidae (Table 1.1), all of which are descended from a leopard-like predator Pseudaelurus that existed in South-east Asia around 11 million years ago (O’Brien and Johnson, 2007). Other than the domestic cat, the most well known of the Felidae are the big cats such as lions, tigers and panthers, sub-classification Panthera. But the cat family also includes a large number of small cats, including a group commonly known as the wildcats, sub-classification Felis silvestris (Table 1.2). Physical similarity suggests that the domestic cat (Felis silvestris catus) originally derived from one or more than one of these small wildcats. DNA examination shows that it is most closely related to the African wildcat (Felis silvestris lybica), which has almost identical DNA, indicating that the African wildcat is the domestic cat’s primary ancestor (Lipinski et al., 2008). The African Wildcat The African wildcat is still in existence today and is a solitary and highly territorial animal indigenous to areas of North Africa and the Near East, the region where domestication of the cat is believed to have first taken place (Driscoll et al., 2007; Faure and Kitchener, 2009). It is primarily a nocturnal hunter that preys mainly on rodents but it will also eat insects, reptiles and other mammals including the young of small antelopes. Also known as the Arabian or North African wildcat, it is similar in appearance to a domestic tabby, with a striped grey/sandy-coloured coat, but is slightly larger and with longer legs (Fig.
    [Show full text]
  • Craniometric Variation in the Tiger (Panthera Tigris): Implications for Patterns of Diversity, Taxonomy and Conservation Ji H
    ARTICLE IN PRESS www.elsevier.de/mambio ORIGINAL INVESTIGATION Craniometric variation in the tiger (Panthera tigris): Implications for patterns of diversity, taxonomy and conservation Ji H. Maza´ kà Shanghai Science and Technology Museum (formerly Shanghai Museum of Natural History), 260 Yan-an Road (East), Shanghai 200002, PR China Received 4 May 2008; accepted 26 June 2008 Abstract Patterns of geographical variation in tigers are reviewed extensively by a morphometric analysis based on 273 skulls of certain wild origin. The following principal observations emerging from this investigation are found: 1. Modern tigers contain two basic forms: the mainland Asia tiger and the Sunda Island tiger. They are differentiated markedly in skull morphology as well as other morphological characters, the characteristic skull shape and small body size in Java/Bali tigers can be interpreted as adaptational responses to a particular island landscape type and prey species fauna, an evolutionary process known as insular dwarfism. 2. The Sumatran tiger (P.t. sumatrae) probably represents a hybrid of mainland and Island tigers, which originated from mainland Southeast Asia, colonized Indonesia and hybridized with the Sunda island tigers (Java tiger) during the late Pleistocene, and was subsequently completely isolated from both the mainland Southeast Asia and Java/ Bali populations. 3. Among the mainland Asia tigers, the Amur or Siberian tiger is the most distinct; India, Indochinese and South China tigers are craniometrically distinguishable on average, but with clear overlaps; the Caspian tiger, on the other hand, is indistinguishable from other mainland forms and extensively overlaps with both the Northern and Southern Asia subspecies. 4. Most proportional craniometric differences among tigers observed from this study are mainly allometric; the pattern of craniometric variation in mainland tigers is clearly clinal; craniometric variation and sexual dimorphism are closely related.
    [Show full text]
  • The Illegal Exploitation of the Javan Leopard (
    Nature Conservation 43: 25–39 (2021) A peer-reviewed open-access journal doi: 10.3897/natureconservation.43.59399 RESEARCH ARticlE https://natureconservation.pensoft.net Launched to accelerate biodiversity conservation The illegal exploitation of the Javan Leopard (Panthera pardus melas) and Sunda Clouded Leopard (Neofelis diardi) in Indonesia Lalita Gomez1,2, Chris R. Shepherd1 1 Monitor Conservation Research Society, Big Lake, Canada 2 Oxford Wildlife Trade Research Group, Oxford Brookes University, Oxford, UK Corresponding author: Chris R. Shepherd ([email protected]) Academic editor: M. Auliya | Received 6 October 2020 | Accepted 15 January 2021 | Published 22 March 2021 http://zoobank.org/17D9AAB6-8A94-4B5A-932F-6633FAD5D42B Citation: Gomez L, Shepherd CR (2021) The illegal exploitation of the Javan Leopard (Panthera pardus melas) and Sunda Clouded Leopard (Neofelis diardi) in Indonesia. Nature Conservation 43: 25–39. https://doi.org/10.3897/ natureconservation.43.59399 Abstract Indonesia is home to the Javan Leopard (Panthera pardus melas) and the Sunda Clouded Leopard (Neofelis diardi), both of which are threatened by habitat loss, human-wildlife conflict issues and the illegal wildlife trade. Leopards and clouded leopards are threatened by the illegal wildlife trade across their range, how- ever, very little is known of the illegal trade in these two species in Indonesia, or of the efforts made to tackle this crime. Both the Javan Leopard and Sunda Clouded Leopard are protected species in Indonesia and both species are listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), meaning commercial international trade is generally prohibited. To better understand the trade, and efforts to end this trade, we collected records of seizures and prosecutions relating to Javan Leopards and Sunda Clouded Leopards in Indonesia for the period 2011–2019.
    [Show full text]
  • EAZA Tiger Campaign
    B USHMEAT | R AINFOREST | T I GER | S HELLSHOCK | R HINO | M ADAGASCAR | A MPHIBIAN | C ARNIVORE | A PE EAZA Conservation Campaigns Over the last ten years Europe’s leading zoos and EAZA Tiger aquariums have worked together in addressing a variety of issues affecting a range of species and habitats. EAZA’s annual conservation campaigns have Campaign raised funds and promoted awareness amongst 2002-2004 millions of zoo visitors each year, as well as providing the impetus for key regulatory change. | INTRODUCTION | The Tiger campaign was EAZA's third campaign and the first to run for two years, from September 2002 until September 2004. It was launched to raise awareness for the conservation concerns facing tigers in the wild. About a century ago seven to eight subspecies of tiger still roamed the planet, but due to habitat loss, hunting and illegal wildlife trade three subspecies became extinct. For this campaign EAZA collaborated with 21st Century Tiger, a wild tiger conservation partnership between the Zoological Society of London and Global Tiger Patrol, which raises funds for tiger conservation projects in the field. | CAMPAIGN AIMS | Data suggests that in 2008 there were about 3,800 to 5,180 tigers left in the wildi, and their populations are shrinking further due to increased human activity. Their habitats across Asia are confined, small and isolated. The EAZA Tiger Campaign aimed, therefore, to promote awareness of the threats tigers face in their natural habitats, while at the same time raising the profile of zoos as conservation organisations. Additionally it was aimed to raise funds to support wild tiger conservation projects.
    [Show full text]
  • Assessing the Distribution and Habitat Use of Four Felid Species in Bukit Barisan Selatan National Park, Sumatra, Indonesia
    Global Ecology and Conservation 3 (2015) 210–221 Contents lists available at ScienceDirect Global Ecology and Conservation journal homepage: www.elsevier.com/locate/gecco Original research article Assessing the distribution and habitat use of four felid species in Bukit Barisan Selatan National Park, Sumatra, Indonesia Jennifer L. McCarthy a,∗, Hariyo T. Wibisono b,c, Kyle P. McCarthy b, Todd K. Fuller a, Noviar Andayani c a Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003, USA b Department of Entomology and Wildlife Ecology, University of Delaware, 248B Townsend Hall, Newark, DE 19716, USA c Wildlife Conservation Society—Indonesia Program, Jalan Atletik No. 8, Tanah Sareal, Bogor 16161, Indonesia article info a b s t r a c t Article history: There have been few targeted studies of small felids in Sumatra and there is little in- Received 24 October 2014 formation on their ecology. As a result there are no specific management plans for the Received in revised form 17 November species on Sumatra. We examined data from a long-term camera trapping effort, and used 2014 Maximum Entropy Modeling to assess the habitat use and distribution of Sunda clouded Accepted 17 November 2014 leopards (Neofelis diardi), Asiatic golden cats (Pardofelis temminckii), leopard cats (Pri- Available online 21 November 2014 onailurus bengalensis), and marbled cats (Pardofelis marmorata) in Bukit Barisan Sela- tan National Park. Over a period of 34,166 trap nights there were low photo rates (photo Keywords: Species distribution modeling events/100 trap nights) for all species; 0.30 for golden cats, 0.15 for clouded leopards, 0.10 Neofelis diardi for marbled cats, and 0.08 for leopard cats.
    [Show full text]
  • Sunda Clouded Leopard Neofelis Diardi Densities and Human Activities in the Humid Evergreen Rainforests of Sumatra
    Sunda clouded leopard Neofelis diardi densities and human activities in the humid evergreen rainforests of Sumatra I DING H AIDIR,DAVID W. MACDONALD and M ATTHEW L INKIE Abstract Most species of wild felids are threatened, but for Introduction many little is known about their status in the wild. For the cryptic and elusive Vulnerable Sunda clouded leopard cross the tropics of Latin America, Africa and Asia, in- Neofelis diardi, key metrics such as abundance and occu- Aformation on wild felids tends to be based on indirect pancy have been challenging to obtain. We conducted an signs because dense vegetation typically precludes direct intensive survey for this species on the Indonesian island observations and because these species tend to be rare as a of Sumatra. We deployed camera traps across four study result of their trophic status (Carter et al., ; Rayan & ę areas that varied in elevation and threats, for a total of Linkie, ;J drzejewski et al., ). Remote detection de- , trap nights, resulting in independent clouded vices, primarily camera traps, facilitate surveying felids that leopard photographs, in which we identified individuals. are otherwise difficult to detect, enabling researchers to Using a Bayesian spatially explicit capture–recapture anal- investigate felid ecology and population status, and gain a ysis, we estimated clouded leopard density to be .–. better understanding of the threats to these species (Linkie individuals/ km . The highest predicted occurrence of et al., ; Kawanishi et al., ; Henschel et al., ; people was at lower altitudes and closer to the forest edge, Rich et al., ). There are felid species in South-east where we categorized more than two-thirds of people re- Asia, occurring in open savannahs, deciduous forests and corded by camera traps as bird poachers, .% each as un- humid evergreen forests along the equator (Sunquist & gulate/tiger poachers and non-timber collectors, and , % Sunquist, ).
    [Show full text]
  • Bukit Barisan Selatan Tiger Conservation Program: from Understanding to Action
    BUKIT BARISAN SELATAN TIGER CONSERVATION PROGRAM: FROM UNDERSTANDING TO ACTION A FINAL REPORT TO THE NATIONAL FISH AND WILDLIFE FOUNDATION SAVE THE TIGER FUND FROM THE WILDLIFE CONSERVATION SOCIETY AUGUST 2005 Project #: 2004-0103-013 Grant Amount: $50,000 Grant Period: March 15, 2004 through June 30, 2005 Dates Covered by report: March 15, 2004 through June 30, 2005 Contacts: Colin Poole Linde E. T. Ostro, Ph.D. Director Director Asia Program Foundation Relations Wildlife Conservation Society Wildlife Conservation Society 2300 Southern Boulevard 2300 Southern Boulevard Bronx, NY 10460 Bronx, NY 10460 T: 718.741.5885 T: 718.220.6891 F: 718.364.4275 F: 718.364.7963 E: [email protected] E: [email protected] 1 WCS PROJECT PARTICIPANTS Project Supervisor: Dr. Noviar Andayani Project Manager: Untung Wijayanto Report Prepared By: Antonia Gorog & Donny Gunaryadi Administration Frida Mindasari Saanin Wianasari Isye Wardeni Tiger monitoring team Iswandri Tanjung Pandu Baroto Decky Kristiyantono Rusli Usman, Herwansyah Susilo Hagnyo Wandono Mohammed Zubair Erwin Willyanto Adnun Salampessy Ground survey & GIS David L.A. Gaveau Aslan Wildlife Crimes Unit, Sumatra Harry Alexander Dwi Adhiasto Marihot Manurung Edi Sofyan Sunari WCS CANOPI staff Didik Purwanto Edison Fitri Hendriyani Mochamad Saleh Yoki Hadiprakarsa Anton Nurcahyo Aslan Meyner Nusalawo Maya Prasetyaningrum Diah Dwiyahreni Dedi Permadi 2 PROJECT INTRODUCTION Bukit Barisan Selatan National Park (BBSNP), in Lampung and Bengkulu provinces of southern Sumatra, Indonesia, is one of a handful of remaining refuges for the Sumatran subspecies of tiger (Panthera tigris sumatrae). This park – the third largest protected area on Sumatra at 3,568 km2 – is of high conservation value.
    [Show full text]
  • Chapter 1: Introduction
    Husbandry Guidelines For The Tiger Panthera tigris (Mammalia: Felidae ) By Rachael Baker Western Institute of Sydney 2006 Supervisors: Graeme Phipps, Andrew Titmus Jacki Selkeld and Elissa Smith Status: endangered 1 Tigers are always to be considered DANGEROUS *You should never be alone with a tiger when in close proximity, even when they are under anesthetic. *You should never attempt to physically handle a tiger. *Never enter a tiger enclosure or den unless you have checked that they are secure elsewhere. *Never cross over the warning line around dens or exhibits when a tiger is in residence. *Any locks should always be double checked by another keeper before bringing an animal into a den and after putting it out on exhibit. *Do not handle cubs unless you have double checked the mother is secure. 2 First, it is clear that tigers in captivity are dangerous animals that can cause serious harm to visitors and handlers alike any time they come in direct contact with these animals. Despite the appearance of pseudo-domestication in some trained tigers, these animals retain their predatory instincts and neural-visceral reflexes, and they can inflict serious wounds using their teeth or claws suddenly and without forewarning. Tigers (and other large cats) have the ability to cause significant trauma and hidden injuries. The most common location for these injuries is the nape of the neck—tigers and other large cats can realign their jaws so that they can bite down between a victim’s vertebrae and into the spinal cord. Bite wounds can also result in significant bacterial infections (Nyhus et al, 2003).
    [Show full text]
  • Sumatran Tiger
    [ABCDE] Volume 1, Issue 7 Nov. 6, 2001 CURRICULUM GUIDE: TIGERS e r I n E d u c a p a p t i o w s n P N e r o t g s r a P o m n t o g i n h s T a h e W C e u h r T r i f c u O l u e r m o C A t e T h h T e t C A o r m KLMNO e u l O u An Integrated Curriculum c f i r Resource Program T r h u e C W e a h s T h i n g t o n P m o a s r t g N o r e P w s n p o a i p t a e c r u I d n E ASSOCIATED PRESS PHOTO IN THIS ISSUE Word Study Tiger Resources Wild Vocabulary 2 4 7 A look at extinction Tigers in Print Academic Content 3 5 Endangered Species 8 Standards © 2001 The Washington Post Company An Integrated Curriculum For The Washington Post Newspaper In Education Program KLMNO Volume 1, Issue 7 Nov. 6, 2001 Sumatran Tiger Tiger Resources KidsPost Article: "Earning His Stripes” On the Web and in Print ON THE WEB http://www.fonz.org/animals/tigertiger/tiger- Lesson: Investigating rare and endangered animals cubpr1.htm Level: Intermediate Friends of the National Zoo Subjects: Science See pictures and learn about Sumatran tigers at the zoo. Related Activity: Geography, English, Language Arts www.5tigers.org Procedure 5 Tigers: The Tiger Information Center Dedicated to providing an international forum focusing Read and Discuss on the preservation of wild tigers across Asia and in Read the KidsPost article.
    [Show full text]