U-Statistics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Meaning and Use of Kurtosis
Psychological Methods Copyright 1997 by the American Psychological Association, Inc. 1997, Vol. 2, No. 3,292-307 1082-989X/97/$3.00 On the Meaning and Use of Kurtosis Lawrence T. DeCarlo Fordham University For symmetric unimodal distributions, positive kurtosis indicates heavy tails and peakedness relative to the normal distribution, whereas negative kurtosis indicates light tails and flatness. Many textbooks, however, describe or illustrate kurtosis incompletely or incorrectly. In this article, kurtosis is illustrated with well-known distributions, and aspects of its interpretation and misinterpretation are discussed. The role of kurtosis in testing univariate and multivariate normality; as a measure of departures from normality; in issues of robustness, outliers, and bimodality; in generalized tests and estimators, as well as limitations of and alternatives to the kurtosis measure [32, are discussed. It is typically noted in introductory statistics standard deviation. The normal distribution has a kur- courses that distributions can be characterized in tosis of 3, and 132 - 3 is often used so that the refer- terms of central tendency, variability, and shape. With ence normal distribution has a kurtosis of zero (132 - respect to shape, virtually every textbook defines and 3 is sometimes denoted as Y2)- A sample counterpart illustrates skewness. On the other hand, another as- to 132 can be obtained by replacing the population pect of shape, which is kurtosis, is either not discussed moments with the sample moments, which gives or, worse yet, is often described or illustrated incor- rectly. Kurtosis is also frequently not reported in re- ~(X i -- S)4/n search articles, in spite of the fact that virtually every b2 (•(X i - ~')2/n)2' statistical package provides a measure of kurtosis. -
The Probability Lifesaver: Order Statistics and the Median Theorem
The Probability Lifesaver: Order Statistics and the Median Theorem Steven J. Miller December 30, 2015 Contents 1 Order Statistics and the Median Theorem 3 1.1 Definition of the Median 5 1.2 Order Statistics 10 1.3 Examples of Order Statistics 15 1.4 TheSampleDistributionoftheMedian 17 1.5 TechnicalboundsforproofofMedianTheorem 20 1.6 TheMedianofNormalRandomVariables 22 2 • Greetings again! In this supplemental chapter we develop the theory of order statistics in order to prove The Median Theorem. This is a beautiful result in its own, but also extremely important as a substitute for the Central Limit Theorem, and allows us to say non- trivial things when the CLT is unavailable. Chapter 1 Order Statistics and the Median Theorem The Central Limit Theorem is one of the gems of probability. It’s easy to use and its hypotheses are satisfied in a wealth of problems. Many courses build towards a proof of this beautiful and powerful result, as it truly is ‘central’ to the entire subject. Not to detract from the majesty of this wonderful result, however, what happens in those instances where it’s unavailable? For example, one of the key assumptions that must be met is that our random variables need to have finite higher moments, or at the very least a finite variance. What if we were to consider sums of Cauchy random variables? Is there anything we can say? This is not just a question of theoretical interest, of mathematicians generalizing for the sake of generalization. The following example from economics highlights why this chapter is more than just of theoretical interest. -
Notes for a Graduate-Level Course in Asymptotics for Statisticians
Notes for a graduate-level course in asymptotics for statisticians David R. Hunter Penn State University June 2014 Contents Preface 1 1 Mathematical and Statistical Preliminaries 3 1.1 Limits and Continuity . 4 1.1.1 Limit Superior and Limit Inferior . 6 1.1.2 Continuity . 8 1.2 Differentiability and Taylor's Theorem . 13 1.3 Order Notation . 18 1.4 Multivariate Extensions . 26 1.5 Expectation and Inequalities . 33 2 Weak Convergence 41 2.1 Modes of Convergence . 41 2.1.1 Convergence in Probability . 41 2.1.2 Probabilistic Order Notation . 43 2.1.3 Convergence in Distribution . 45 2.1.4 Convergence in Mean . 48 2.2 Consistent Estimates of the Mean . 51 2.2.1 The Weak Law of Large Numbers . 52 i 2.2.2 Independent but not Identically Distributed Variables . 52 2.2.3 Identically Distributed but not Independent Variables . 54 2.3 Convergence of Transformed Sequences . 58 2.3.1 Continuous Transformations: The Univariate Case . 58 2.3.2 Multivariate Extensions . 59 2.3.3 Slutsky's Theorem . 62 3 Strong convergence 70 3.1 Strong Consistency Defined . 70 3.1.1 Strong Consistency versus Consistency . 71 3.1.2 Multivariate Extensions . 73 3.2 The Strong Law of Large Numbers . 74 3.3 The Dominated Convergence Theorem . 79 3.3.1 Moments Do Not Always Converge . 79 3.3.2 Quantile Functions and the Skorohod Representation Theorem . 81 4 Central Limit Theorems 88 4.1 Characteristic Functions and Normal Distributions . 88 4.1.1 The Continuity Theorem . 89 4.1.2 Moments . -
Theoretical Statistics. Lecture 5. Peter Bartlett
Theoretical Statistics. Lecture 5. Peter Bartlett 1. U-statistics. 1 Outline of today’s lecture We’ll look at U-statistics, a family of estimators that includes many interesting examples. We’ll study their properties: unbiased, lower variance, concentration (via an application of the bounded differences inequality), asymptotic variance, asymptotic distribution. (See Chapter 12 of van der Vaart.) First, we’ll consider the standard unbiased estimate of variance—a special case of a U-statistic. 2 Variance estimates n 1 s2 = (X − X¯ )2 n n − 1 i n Xi=1 n n 1 = (X − X¯ )2 +(X − X¯ )2 2n(n − 1) i n j n Xi=1 Xj=1 n n 1 2 = (X − X¯ ) − (X − X¯ ) 2n(n − 1) i n j n Xi=1 Xj=1 n n 1 1 = (X − X )2 n(n − 1) 2 i j Xi=1 Xj=1 1 1 = (X − X )2 . n 2 i j 2 Xi<j 3 Variance estimates This is unbiased for i.i.d. data: 1 Es2 = E (X − X )2 n 2 1 2 1 = E ((X − EX ) − (X − EX ))2 2 1 1 2 2 1 2 2 = E (X1 − EX1) +(X2 − EX2) 2 2 = E (X1 − EX1) . 4 U-statistics Definition: A U-statistic of order r with kernel h is 1 U = n h(Xi1 ,...,Xir ), r iX⊆[n] where h is symmetric in its arguments. [If h is not symmetric in its arguments, we can also average over permutations.] “U” for “unbiased.” Introduced by Wassily Hoeffding in the 1940s. 5 U-statistics Theorem: [Halmos] θ (parameter, i.e., function defined on a family of distributions) admits an unbiased estimator (ie: for all sufficiently large n, some function of the i.i.d. -
Chapter 4. an Introduction to Asymptotic Theory"
Chapter 4. An Introduction to Asymptotic Theory We introduce some basic asymptotic theory in this chapter, which is necessary to understand the asymptotic properties of the LSE. For more advanced materials on the asymptotic theory, see Dudley (1984), Shorack and Wellner (1986), Pollard (1984, 1990), Van der Vaart and Wellner (1996), Van der Vaart (1998), Van de Geer (2000) and Kosorok (2008). For reader-friendly versions of these materials, see Gallant (1987), Gallant and White (1988), Newey and McFadden (1994), Andrews (1994), Davidson (1994) and White (2001). Our discussion is related to Section 2.1 and Chapter 7 of Hayashi (2000), Appendix C and D of Hansen (2007) and Chapter 3 of Wooldridge (2010). In this chapter and the next chapter, always means the Euclidean norm. kk 1 Five Weapons in Asymptotic Theory There are …ve tools (and their extensions) that are most useful in asymptotic theory of statistics and econometrics. They are the weak law of large numbers (WLLN, or LLN), the central limit theorem (CLT), the continuous mapping theorem (CMT), Slutsky’s theorem,1 and the Delta method. We only state these …ve tools here; detailed proofs can be found in the techinical appendix. To state the WLLN, we …rst de…ne the convergence in probability. p De…nition 1 A random vector Zn converges in probability to Z as n , denoted as Zn Z, ! 1 ! if for any > 0, lim P ( Zn Z > ) = 0: n !1 k k Although the limit Z can be random, it is usually constant. The probability limit of Zn is often p denoted as plim(Zn). -
Lecture 14 Testing for Kurtosis
9/8/2016 CHE384, From Data to Decisions: Measurement, Kurtosis Uncertainty, Analysis, and Modeling • For any distribution, the kurtosis (sometimes Lecture 14 called the excess kurtosis) is defined as Testing for Kurtosis 3 (old notation = ) • For a unimodal, symmetric distribution, Chris A. Mack – a positive kurtosis means “heavy tails” and a more Adjunct Associate Professor peaked center compared to a normal distribution – a negative kurtosis means “light tails” and a more spread center compared to a normal distribution http://www.lithoguru.com/scientist/statistics/ © Chris Mack, 2016Data to Decisions 1 © Chris Mack, 2016Data to Decisions 2 Kurtosis Examples One Impact of Excess Kurtosis • For the Student’s t • For a normal distribution, the sample distribution, the variance will have an expected value of s2, excess kurtosis is and a variance of 6 2 4 1 for DF > 4 ( for DF ≤ 4 the kurtosis is infinite) • For a distribution with excess kurtosis • For a uniform 2 1 1 distribution, 1 2 © Chris Mack, 2016Data to Decisions 3 © Chris Mack, 2016Data to Decisions 4 Sample Kurtosis Sample Kurtosis • For a sample of size n, the sample kurtosis is • An unbiased estimator of the sample excess 1 kurtosis is ∑ ̅ 1 3 3 1 6 1 2 3 ∑ ̅ Standard Error: • For large n, the sampling distribution of 1 24 2 1 approaches Normal with mean 0 and variance 2 1 of 24/n 3 5 • For small samples, this estimator is biased D. N. Joanes and C. A. Gill, “Comparing Measures of Sample Skewness and Kurtosis”, The Statistician, 47(1),183–189 (1998). -
Covariances of Two Sample Rank Sum Statistics
JOURNAL OF RESEARCH of the National Bureou of Standards - B. Mathematical Sciences Volume 76B, Nos. 1 and 2, January-June 1972 Covariances of Two Sample Rank Sum Statistics Peter V. Tryon Institute for Basic Standards, National Bureau of Standards, Boulder, Colorado 80302 (November 26, 1971) This note presents an elementary derivation of the covariances of the e(e - 1)/2 two-sample rank sum statistics computed among aU pairs of samples from e populations. Key words: e Sample proble m; covariances, Mann-Whitney-Wilcoxon statistics; rank sum statistics; statistics. Mann-Whitney or Wilcoxon rank sum statistics, computed for some or all of the c(c - 1)/2 pairs of samples from c populations, have been used in testing the null hypothesis of homogeneity of dis tribution against a variety of alternatives [1, 3,4,5).1 This note presents an elementary derivation of the covariances of such statistics under the null hypothesis_ The usual approach to such an analysis is the rank sum viewpoint of the Wilcoxon form of the statistic. Using this approach, Steel [3] presents a lengthy derivation of the covariances. In this note it is shown that thinking in terms of the Mann-Whitney form of the statistic leads to an elementary derivation. For comparison and completeness the rank sum derivation of Kruskal and Wallis [2] is repeated in obtaining the means and variances. Let x{, r= 1,2, ... , ni, i= 1,2, ... , c, be the rth item in the sample of size ni from the ith of c populations. Let Mij be the Mann-Whitney statistic between the ith andjth samples defined by n· n· Mij= ~ t z[J (1) s=1 1' = 1 where l,xJ~>xr Zr~= { I) O,xj";;;x[ } Thus Mij is the number of times items in the jth sample exceed items in the ith sample. -
Analysis of Covariance (ANCOVA) with Two Groups
NCSS Statistical Software NCSS.com Chapter 226 Analysis of Covariance (ANCOVA) with Two Groups Introduction This procedure performs analysis of covariance (ANCOVA) for a grouping variable with 2 groups and one covariate variable. This procedure uses multiple regression techniques to estimate model parameters and compute least squares means. This procedure also provides standard error estimates for least squares means and their differences, and computes the T-test for the difference between group means adjusted for the covariate. The procedure also provides response vs covariate by group scatter plots and residuals for checking model assumptions. This procedure will output results for a simple two-sample equal-variance T-test if no covariate is entered and simple linear regression if no group variable is entered. This allows you to complete the ANCOVA analysis if either the group variable or covariate is determined to be non-significant. For additional options related to the T- test and simple linear regression analyses, we suggest you use the corresponding procedures in NCSS. The group variable in this procedure is restricted to two groups. If you want to perform ANCOVA with a group variable that has three or more groups, use the One-Way Analysis of Covariance (ANCOVA) procedure. This procedure cannot be used to analyze models that include more than one covariate variable or more than one group variable. If the model you want to analyze includes more than one covariate variable and/or more than one group variable, use the General Linear Models (GLM) for Fixed Factors procedure instead. Kinds of Research Questions A large amount of research consists of studying the influence of a set of independent variables on a response (dependent) variable. -
What Is Statistic?
What is Statistic? OPRE 6301 In today’s world. ...we are constantly being bombarded with statistics and statistical information. For example: Customer Surveys Medical News Demographics Political Polls Economic Predictions Marketing Information Sales Forecasts Stock Market Projections Consumer Price Index Sports Statistics How can we make sense out of all this data? How do we differentiate valid from flawed claims? 1 What is Statistics?! “Statistics is a way to get information from data.” Statistics Data Information Data: Facts, especially Information: Knowledge numerical facts, collected communicated concerning together for reference or some particular fact. information. Statistics is a tool for creating an understanding from a set of numbers. Humorous Definitions: The Science of drawing a precise line between an unwar- ranted assumption and a forgone conclusion. The Science of stating precisely what you don’t know. 2 An Example: Stats Anxiety. A business school student is anxious about their statistics course, since they’ve heard the course is difficult. The professor provides last term’s final exam marks to the student. What can be discerned from this list of numbers? Statistics Data Information List of last term’s marks. New information about the statistics class. 95 89 70 E.g. Class average, 65 Proportion of class receiving A’s 78 Most frequent mark, 57 Marks distribution, etc. : 3 Key Statistical Concepts. Population — a population is the group of all items of interest to a statistics practitioner. — frequently very large; sometimes infinite. E.g. All 5 million Florida voters (per Example 12.5). Sample — A sample is a set of data drawn from the population. -
Chapter 6 Asymptotic Distribution Theory
RS – Chapter 6 Chapter 6 Asymptotic Distribution Theory Asymptotic Distribution Theory • Asymptotic distribution theory studies the hypothetical distribution -the limiting distribution- of a sequence of distributions. • Do not confuse with asymptotic theory (or large sample theory), which studies the properties of asymptotic expansions. • Definition Asymptotic expansion An asymptotic expansion (asymptotic series or Poincaré expansion) is a formal series of functions, which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. (In asymptotic distribution theory, we do use asymptotic expansions.) 1 RS – Chapter 6 Asymptotic Distribution Theory • In Chapter 5, we derive exact distributions of several sample statistics based on a random sample of observations. • In many situations an exact statistical result is difficult to get. In these situations, we rely on approximate results that are based on what we know about the behavior of certain statistics in large samples. • Example from basic statistics: What can we say about 1/ x ? We know a lot about x . What do we know about its reciprocal? Maybe we can get an approximate distribution of 1/ x when n is large. Convergence • Convergence of a non-random sequence. Suppose we have a sequence of constants, indexed by n f(n) = ((n(n+1)+3)/(2n + 3n2 + 5) n=1, 2, 3, ..... 2 Ordinary limit: limn→∞ ((n(n+1)+3)/(2n + 3n + 5) = 1/3 There is nothing stochastic about the limit above. The limit will always be 1/3. • In econometrics, we are interested in the behavior of sequences of real-valued random scalars or vectors. -
Chapter 5 the Delta Method and Applications
Chapter 5 The Delta Method and Applications 5.1 Linear approximations of functions In the simplest form of the central limit theorem, Theorem 4.18, we consider a sequence X1,X2,... of independent and identically distributed (univariate) random variables with finite variance σ2. In this case, the central limit theorem states that √ d n(Xn − µ) → σZ, (5.1) where µ = E X1 and Z is a standard normal random variable. In this chapter, we wish to consider the asymptotic distribution of, say, some function of Xn. In the simplest case, the answer depends on results already known: Consider a linear function g(t) = at+b for some known constants a and b. Since E Xn = µ, clearly E g(Xn) = aµ + b =√g(µ) by the linearity of the expectation operator. Therefore, it is reasonable to ask whether n[g(Xn) − g(µ)] tends to some distribution as n → ∞. But the linearity of g(t) allows one to write √ √ n g(Xn) − g(µ) = a n Xn − µ . We conclude by Theorem 2.24 that √ d n g(Xn) − g(µ) → aσZ. Of course, the distribution on the right hand side above is N(0, a2σ2). None of the preceding development is especially deep; one might even say that it is obvious that a linear transformation of the random variable Xn alters its asymptotic distribution 85 by a constant multiple. Yet what if the function g(t) is nonlinear? It is in this nonlinear case that a strong understanding of the argument above, as simple as it may be, pays real dividends. -
Asymptotic Results for the Linear Regression Model
Asymptotic Results for the Linear Regression Model C. Flinn November 29, 2000 1. Asymptotic Results under Classical Assumptions The following results apply to the linear regression model y = Xβ + ε, where X is of dimension (n k), ε is a (unknown) (n 1) vector of disturbances, and β is a (unknown) (k 1)×parametervector.Weassumethat× n k, and that × À ρ(X)=k. This implies that ρ(X0X)=k as well. Throughout we assume that the “classical” conditional moment assumptions apply, namely E(εi X)=0 i. • | ∀ 2 V (εi X)=σ i. • | ∀ We Þrst show that the probability limit of the OLS estimator is β, i.e., that it is consistent. In particular, we know that 1 βˆ = β +(X0X)− X0ε 1 E(βˆ X)=β +(X0X)− X0E(ε X) ⇒ | | = β In terms of the (conditional) variance of the estimator βˆ, 2 1 V (βˆ X)=σ (X0X)− . | Now we will rely heavily on the following assumption X X lim n0 n = Q, n n →∞ where Q is a Þnite, nonsingular k k matrix. Then we can write the covariance ˆ × of βn in a sample of size n explicitly as 2 µ ¶ 1 ˆ σ Xn0 Xn − V (β Xn)= , n| n n so that 2 µ ¶ 1 ˆ σ Xn0 Xn − lim V (βn Xn) = lim lim n n n →∞ | 1 =0 Q− =0 × Since the asymptotic variance of the estimator is 0 and the distribution is centered on β for all n, we have shown that βˆ is consistent. Alternatively, we can prove consistency as follows.