Biological Safety Guide

Total Page:16

File Type:pdf, Size:1020Kb

Biological Safety Guide Environmental Health and Safety BIOLOGICAL SAFETY GUIDE Version 2.1 – Revised April 2017 Biological Safety Office Environmental Health and Safety Division 1405 Goss Lane Augusta, GA 30901 706-721-2663 [email protected] TABLE OF CONTENTS Introduction ................................................................................................................................. ..4 Chapter 1 – Roles and Responsibilities ...................................................................................... 5 Chapter 2 – Biosafety Requirements .......................................................................... …………..8 Obtaining Approval for the Use of Biological Materials ............................................................. 8 Communication/Coordination with Other Compliance Offices ................................................ 10 Renewal of Biological Registration Information ....................................................................... 11 Amendments to BSPs/CBSPs ................................................................................................. 11 Laboratory record Keeping ...................................................................................................... 12 Chapter 3 – Opening, Closing and Moving a Laboratory ........................................................ 13 Chapter 4 – Risk Assessment .................................................................................................... 15 Pathogens ............................................................................................................................... 15 Procedures which may be associated with additional risk of exposure .................................. 18 Personnel (experience of staff) ............................................................................................... 18 Chapter 5 - Risk Management and Biosafety Levels ............................................................... 19 Biosafety Levels at Augusta University ................................................................................... 19 General Laboratory Safety Procedures ................................................................................... 19 Tissue, Cell and Microbiological Culture Practices ................................................................ 21 Vacuum Packed Tubes/Vials .................................................................................................. 23 Transport of Biological Material on Campus ........................................................................... 23 Laboratory Equipment/Personal Protective Equipment .......................................................... 24 Chapter 6 – Occupational Health ............................................................................................... 32 Requirement for Occupational Health Services ...................................................................... 32 Tuberculosis (TB) Screening ................................................................................................... 32 Immunizations ......................................................................................................................... 32 Respiratory Protection ............................................................................................................. 33 Medical Restrictions ................................................................................................................ 33 Pregnancy ............................................................................................................................... 33 Work with Animals ................................................................................................................... 34 Latex Gloves and Related Allergies ........................................................................................ 35 Antibiotic Allergies ................................................................................................................... 35 Chapter 7 – Accidents, Exposures, Spill Response ................................................................. 36 Chapter 8 – Decontamination of Biologicals ............................................................................ 40 Autoclave Use and Maintenance ............................................................................................. 40 Chemical Decontaminants ...................................................................................................... 41 Deactivation of Biological Toxins ............................................................................................. 43 Deactivation of Prions ............................................................................................................. 46 Chapter 9 – Biological Waste Management .............................................................................. 48 Definition of Biomedical Waste ................................................................................................ 48 Solid Biomedical Waste (including sharps) ............................................................................. 48 Pathological Waste .................................................................................................................. 51 Liquid Biological Wastes ......................................................................................................... 51 Chemotherapy Wastes ............................................................................................................ 52 Mixed Wastes .......................................................................................................................... 52 Requisition for New or Additional Biohazardous Waste Containers ....................................... 53 Requisition for Biohazardous Waste Pickup ........................................................................... 53 Chapter 10 – Placard Signs and Labels .................................................................................... 54 2 Chapter 11 – Teaching Laboratories .......................................................................................... 56 Registration of Biological Materials ......................................................................................... 56 Occupational Health Requirements ......................................................................................... 56 Minimum Apparel Requirements ............................................................................................. 56 Personal Protective Equipment Requirements ....................................................................... 56 Laboratory Facility Requirements ............................................................................................ 56 Laboratory Equipment Requirements...................................................................................... 57 Standard Laboratory Practices ................................................................................................ 57 Transportation of Biological Materials ..................................................................................... 57 Training Requirements ............................................................................................................ 57 Decontamination ...................................................................................................................... 58 Waste Disposal ........................................................................................................................ 58 Spills .................................................................................................................................... 59 Accidents/Incidents.................................................................................................................. 60 Appendices ................................................................................................................................... 61 Appendix A – Bloodborne Pathogen Exposure Control Plan .................................................. 61 Appendix B – Tuberculosis Exposure Control Plan ................................................................ 66 Appendix C – Human Gene Transfer Clinical Trials ............................................................... 67 Appendix D – Guide to Shipping Biological Substances & Support Materials ........................ 68 3 INTRODUCTION Purpose This Biosafety Guide has been developed by the Division of Environmental Health and Safety (EH&S) Biosafety Office and the Institutional Biosafety Committee (IBC) at Augusta University. This Guide is part of the Augusta University Biosafety Program instituted to accomplish the following goals: • Protect personnel from exposures to biological agents; • Prevent environmental contamination; • Provide an environment for high quality research while maintaining a safe work place; • Comply with applicable federal, state and local regulations and guidelines, and; • Create a secure laboratory environment to prevent unauthorized utilization of a biological agent. Scope The Biosafety Guide and Biosafety Program is applicable to all personnel who are engaged in research or instructional activities where biological materials are used or the potential for exposure to biological materials exists. This guide focuses on Biosafety Levels (BSL) 1 and 2. No work which will require BSL3 or BSL4 containment shall be conducted at Augusta University. Accessibility • The Biosafety
Recommended publications
  • VACUUM RECOVERY of ASPHALT EMULSION RESIDUE (An Arizona Method)
    ARIZ 504 July 1980 (3 Pages) VACUUM RECOVERY OF ASPHALT EMULSION RESIDUE (An Arizona Method) Scope (d) No. 10 sieve conforming to AASHTO designation M 92. I. This method describes a low temperature vacuum procedure for recovery of the asphalt residue (e) Vacuum recovery apparatus as shown from asphalt emulsions. It is is not suitable for assembled in Fig. I. quantitative recovery of solvents from emulsions I) Vacuum source capable of producing an containing low boiling range distillates. absolute vacuum within the system of approximately 710 mm (28 in.) mercury. Apparatus 2) Thermometer - shall have a range of _5° to 1. The apparatus shall consist of the following: +200°C (23°F to 392°F). The overall length (a) Brass stirring rod. shall be 600 mm (24 in.) and the distance from the bottom of the bulb to the zero point (b) 8 oz. ointment can. shall be 300 mm (12 in.) (c) 100 ml. stainless steel beaker. 3) Stirrer hot plate. VACUUM RECOVERY APPARATUS 300 mm Allihn condenser H20 Out / Thermometer Vacuum Release Pinch Clamp 500 m. 1,000 ml. Filtration Flask Filtration Flask Teflon Stirring Bar H20 In 500 ml. Filtration Flask Portable Heat Gun FIGURE I ARIZ 504 July 1980 4) Teflon covered stirring bar. (g) Insert the stoppered themometer (positioned 5) 1000 ml. and two 500 ml. filtering flasks with in the stopper at an angle to prevent contact with tubulation. stirring bar) into the flask and set on hot plate at a medium high heat setting (#4). The bulb of the 6) 300 mm Allihn condensor.
    [Show full text]
  • A Statutory Authority Established Under the Food Safety
    File No. 12015/03/2017-QA Food Safety and Standards Authority of India (A statutory Authority established under the Food Safety and Standards Act, 2006) (Quality Assurance Division) FDA Bhawan, Kotla Road, New Delhi – 110002 Dated, the 28th June, 2018 RFP No. 01/2018-19 FOR SETTING UP MICROBIOLOGY SECTION AND INSTALLATION OF EQUIPMENTS: CORRIGENDUM Further to this office Tender Enquiry No. 01/2018-19 dated 15th June 2018 and Pre-Bid conference held on 25th June 2018. 2. The following amendment are made in the ibid tender: PART II – ESSENTIAL DETAILS OF ITEMS/SERVICES REQUIRED 2. Technical Details: Technical specifications for CLEAN ROOM laboratory set up & FURNITURE at CFL, Kolkata, on turnkey basis - Sl. No Specifications 1. GENERAL: The microbiology laboratory shall be modular with unidirectional flow with different zones. The area purposed for the Microbiology Lab is mentioned in Annexure A to accommodate the area/activities mentioned below. A representative zoning floor plan is shown as Annexure B which can be suitably modified by the bidder keeping the flow (personnel and sample) unidirectional and avoiding cross contamination. The modified layout should be submitted to FSSAI for approval along with the BOQ for civil and electrical work as per specifications mentioned. 1. Sample receiving area, a documentation room and office area (Unclassified). 2. Media preparation room (Unclassified) attached to sterilization room and washing (having sufficient space to store dry media/reagents and prepared media in refrigerators) 3. Sample preparation room (Class B/ISO 7) over pressure 45 pa having LAF 4. Inoculation room (Class B/ISO 7) over pressure 45 pa 2 nos (One having biosafety cabinet and another for automated systems/open lab) 5.
    [Show full text]
  • Temperature Distribution in a Vacuum Flask
    Solved with COMSOL Multiphysics 5.0 Temperature Distribution in a Vacuum Flask Introduction The following example solves for the temperature distribution within a vacuum flask holding hot coffee. The main interest here is to illustrate how to use MATLAB® functions to define material properties and boundary condition directly within the COMSOL model. Two MATLAB functions are used to define the temperature dependent thermal conductivity of the vacuum flask shell and the insulation foam, while a third function defines the heat transfer coefficient that corresponds to a natural convective cooling for a vertical plate and surrounding air. Model Definition Assume axial symmetry for this simulation to reduce the model geometry to the 2D cross-section of the vacuum flask geometry shown in Figure 1. The vacuum flask consists of a steel shell isolated with a foam material, and a cork made of nylon. On the inside wall apply a constant temperature, assuming that the vacuum flask is filled with coffee of constant temperature. 1 | TEMPERATURE DISTRIBUTION IN A VACUUM FLASK Solved with COMSOL Multiphysics 5.0 Nylon cork Air Steel shell Constant temperature Insulation foam Figure 1: Cross section of the vacuum flask geometry Define the temperature dependent thermal conductivity of steel according to the following polynomial expression: –4 2 –8 3 ksteel = 71.12– 0.115T + 1.16e T – 4.25e T As shown in Figure 2, in the temperature interval of interest for the model, the thermal conductivity decreases with increasing temperature. 2 | TEMPERATURE DISTRIBUTION IN A VACUUM FLASK Solved with COMSOL Multiphysics 5.0 Figure 2: Thermal conductivity of the steel wall versus temperature.
    [Show full text]
  • Version 1.1 2015
    BIOLOGICAL SAFETY MANUAL Version 1.1 2015 Environmental Health & Radiation Safety 3160 Chestnut Street, Suite 400 Philadelphia, PA 19104-6287 215-898-4453 [email protected] T ABLE OF C ONTENTS SECTION Page EMERGENCY CONTACTS ................................................................................ 4 INTRODUCTION ................................................................................................. 5 FREQUENTLY ASKED QUESTIONS ................................................................. 8 BIOLOGICAL RISK ASSESSMENT .................................................................. 10 BIOSAFETY LEVELS ........................................................................................ 14 ANIMAL BIOSAFETY LEVELS ......................................................................... 20 BIOSAFETY CABINETS ................................................................................... 25 COMMON LAB EQUIPMENT ........................................................................... 30 INFECTIOUS AGENTS ..................................................................................... 34 RECOMBINANT DNA ....................................................................................... 36 HUMAN SOURCE MATERIAL .......................................................................... 38 NON-HUMAN PRIMATE MATERIAL ................................................................ 41 SELECT AGENTS ............................................................................................. 44 BIOLOGICAL
    [Show full text]
  • Monitoring Cell Cultures in Real Time in a Biochip
    Ricardo Filipe Soares Serrão Degree in Cell and Molecular Biology Monitoring cell cultures in real time in a biochip Dissertation to obtain master’s degree in Biotechnology Supervisor: Professor Doctor João Pedro Conde, Department of Bioengineering, Instituto Superior Técnico, INESC-MN September 2019 ii Ricardo Filipe Soares Serrão Degree in Cell and Molecular Biology Monitoring cell cultures in real time in a biochip Dissertation to obtain master’s degree in Biotechnology Supervisor: Professor Doctor João Pedro Conde, Department of Bioengineering, Instituto Superior Técnico, INESC-MN September 2019 iii iv “We’re all stories, in the end. Just make it a good one, eh?” The Doctor v vi “Copyright” Monitoring cell cultures in real time in a biochip Ricardo Filipe Soares Serrão, FCT/UNL e UNL A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. vii viii Acknowledgements There are not enough words to thanks to every person who direct or indirectly supported me throughout this last year. First, I have to express my gratitude o Prof. Dr. João Pedro Conde for his attention and availability during the whole year. It was a pleasure to work under his supervision and I’m thankful for the opportunity given to work in a motivational and challenging environment.
    [Show full text]
  • Liquefaction, Storage and Transfer of Cryofluids
    Storage and transfer of cryofluids Christian Gianese www.neel.cnrs.fr Guilty 1: Arsène d’Arsonval (1851 - 1940) He invented a glass container with double wall, the vacuum being done in the space between the outer and inner walls: the vase d'Arsonval. About 1902, he collaborated with Georges Claude on the liquefaction of gases and inspires industries Air Liquid. www.neel.cnrs.fr Guilty 2: James Dewar (1842 - 1923) He discovered a process to produce liquid oxygen in 1891 and liquid hydrogen in 1898, in industrial quantities. He developed an insulating bottle, the Dewar flask, still named after him, to study low temperature gas phenomena. In fact, he improves the d’Arsonval vessel by depositing a layer of silver on the inside wall, to minimize the heat input by radiation. He also used this bottle to transport liquid gases such as hydrogen. In 1905, he observed that cold charcoal could produce a vacuum. www.neel.cnrs.fr Thermos The first vacuum flasks for commercial use were made in 1904 when a german company, Thermos GmbH, was formed. Thermos, their tradename for their flasks, remains a registered trademark in some countries but was declared a genericized in the US in 1963 as it is colloquially synonymous with vacuum flasks in general; in fact it is far more common to speak of a domestic thermos than a vacuum flask. www.neel.cnrs.fr STORAGE www.neel.cnrs.fr The most important factors in storage systems Logistics Volume of storage, dimensions, transport, etc Reliability, safety Economics ! Rate of evaporation of cryogenic liquids (helium:
    [Show full text]
  • Organic Chemistry Ii
    University of Maribor Faculty of Chemistry and Chemical Engineering Laboratory for Organic and Polymer Chemistry and Technology Laboratory Course ORGANIC CHEMISTRY II Muzafera Paljevac and Peter Krajnc Proofreader: Dr. Victor Kennedy 1. THE LIST OF LABORATORY EXPERIMENTS IN ORGANIC CHEMISTRY II LAB COURSE 1. Determination of melting point 2. Continuous (fractional) distillation 3. Distillation with water steam 4. Recrystallization, Sublimation 5. Paper and thin layer chromatography _____________________________________________________________________________________ 6. Synthesis of acetylsalicylic acid 7. Synthesis of tert-butyl chloride 8. Synthesis of methyl orange 9. Synthesis of aniline 10. Synthesis of ethyl acetate 11. Synthesis of ethyl iodide 1 2. LABORATORY RULES AND REGULATIONS - You must wear a lab coat at all times when working in the laboratory. You are expected to provide your own lab coat, and you will not be allowed to work in the lab without one. - Safety glasses and gloves will be supplied when required and must be worn where notices, experimental instructions or supervisors say so. - Long hair must be tied back when using open flames. - Eating and drinking are strictly prohibited in the laboratory. - Coats, backpacks, etc., should not be left on the lab benches and stools. There are coat racks just outside the lab. Be aware that lab chemicals can destroy personal possessions. - Always wash your hands before leaving the lab. - Notify the instructor immediately in case of an accident. - Before leaving the laboratory, ensure that gas lines and water faucets are shut off. - Consider all chemicals to be hazardous, and minimize your exposure to them. Never taste chemicals; do not inhale the vapors of volatile chemicals or the dust of finely divided solids, and prevent contact between chemicals and your skin, eyes and clothing.
    [Show full text]
  • Simple Calorimeter for Heats of Fusion. Data on The
    U.S. Department of Commerce, Bureau of Standards RESEARCH PAPER RP607 Part of Bureau of Standards Journal of Research, Vol. 11, October 1933 A SIMPLE CALORIMETER FOR HEATS OF FUSION. DATA ON THE FUSION OF PSEUDOCUMENE, MESITYLENE (« AND 0), HEMIMELLITENE, o- AND m-XYLENE, AND ON TWO TRANSITIONS OF HEMIMELLITENE By Frederick D. Rossini abstract A vacuum flask with a thermoelement serves as a simple calorimeter for measuring heats of fusion quickly and economically, with an accuracy of a few percent. The following heats of fusion (with estimated uncertainties), in k-cal. per mole, were obtained: pseudocumene, — 44.1° C, 2.75±0.06; hemimelli- tene,-25.5° C, 2.00±0.05; mesitylene (a), — 44.8° C, 2.28±0.06; mesitylene (0), -51.7° C., 1.91±0.05; o-xylene,-25.3° C, 3.33±0.07; m-xylene,-47.9° C, 2.76 ±0.05. Hemimellitene was found to have two transitions below the freez- ing point, with the following heats of transition, in A>cal. per mole: hemimelli- tene (7-»0),-58±2° C.,0.28±0.04; hemimellitene (P^a),- 46 ± 1° C.,0.36±0.04. CONTENTS Page I. Introduction 553 II. Apparatus and method 553 III. Materials 554 IV. Standardization experiments 555 V. Experimental data 557 VI. Conclusion 559 I. INTRODUCTION The simple calorimeter described here was assembled in order to provide a means for measuring as quickly and economically as prac- ticable, and with an accuracy of a few percent, the heats of fusion of certain hydrocarbons for which there are no data.
    [Show full text]
  • APR PET S-12 Dissolution Screening
    PET Dissolution Test Document Code – PET-S-12 Publication or Revision Date: November 16, 2018 Introduction – Scope, Significance and Use This protocol is derived from a copyrighted method owned by M&G Polymers USA LLC and international copyright treaties protect the method. In consideration for the use of this method, users agree to hold APR and M&G Polymers USA LLC and its affiliated companies harmless and not be liable for any incidental, consequential or other indirect damages resulting from the use of this method. Disclaimer: This document has been prepared by the Association of Plastic Recyclers as a service to the plastic industry to promote the most efficient use of the nation’s plastic recycling infrastructure and to enhance the quality and quantity of recycled postconsumer plastic. The information in this document is offered without warranty of any kind, either expressed or implied, including WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, which are expressly disclaimed. APR and its members accept no responsibility for any harm or damages arising from the use of or reliance upon this information by any party. Participation in the Recognition Program is purely voluntary and does not guarantee compliance with any U.S. law or regulation or that a package or plastic article incorporating the innovation is recyclable or will be recycled. Equipment/Supplies List • Heat resistant gloves • Apron; full length that covers torso, arms and legs • Faceshield (hood sash if available) • Metal beaker with handle, at least 700 ml capacity • Fiberglass matting for setting hot beaker on while heating and cooling • Thermometer with metal armor casing • Safety glasses • Vented Hood • Hot Plate • 1000 ml filtering flask • Buchner funnel • Filter Paper (Whatman #1, 11 micron, VWR Catalog #28450-128) ©2018 Association of Plastic Recyclers.
    [Show full text]
  • Mycoplasma Screening of Cultured Cells by Fluorescence Microscopy
    Mycoplasma Screening of Cultured Cells by Fluorescence Microscopy Prepare cell samples Make sure cells have been passages at least 2 times after a thaw so mycoplasma have recovery time from their time in cold storage!! 1. With sterile tweezers or Pasteur pipet attached to vacuum flask place one 22x22mm or 25mm round sterile glass coverslip into well of sterile 6well plate (# wells = # cell lines tested) or 35mm dish. 2. Add 3 ml of (cell line specific) complete medium without antibiotics (important because they may inhibit mycoplasma and produce a false negative) slowly to the well (touch first drop of medium to the edge of the coverslip until capillary action carries the liquid under the coverslip and completely covers the underside, which holds the coverslip to the dish and disallows cell growth on the underside). 3. Add 2-4 drops of cell suspension (approximately 10^5cells) to the medium in the well. Rock gently. (Note: For testing non-adherent cells, a negative indicator line must be used. The line to be tested must be coplated with the indicator line. Mycoplasma will transfer to the indicator line within 2 days and will be visualized.) 4. Incubate 2-3 days at appropriate temperature for cell line until they are approximately 70% confluent (mycoplasma live on the outer membrane, and thus are easier to visualize when cells are subconfluent). To Fix 1. Add 3 ml methanol gently to the side of the dish (do not remove growth medium). 2. Leave for 3 min at room temperature. 3. Aspirate methanol/medium solution. 4. Add 3 ml methanol for 15 min at room temperature.
    [Show full text]
  • Purdue Biological Safety Manual," Please Complete and Return a Copy of This Form to Your Supervisor Or Designated Trained Individual
    BIOLOGICAL SAFETY MANUAL Revised April 2004 TABLE OF CONTENTS Emergency Numbers iv Awareness Certification v Policy Statement 1 Scope and Application 1 Institutional Biosafety Committee 2 Biosafety Training 3 Medical Surveillance and Examinations 3 Hazard Identification 3 Protective Equipment 4 REM Services 4 Recombinant DNA (rDNA) 4 Biohazards 5 Routes of Exposure to Biohazards 5 Antigens 7 Principles of Biosafety 8 Laboratory Biosafety Level Criteria 9 Biosafety Level 1 9 Biosafety Level 2 10 Biosafety Level 3 12 Use of Animals 16 Vertebrate Animal Biosafety Level Criteria 16 Animal Biosafety Level 1 16 Animal Biosafety Level 2 17 Animal Biosafety Level 3 18 Bloodborne Pathogens Program 22 Decontamination and Disposal 22 Sterilization Procedures 23 Disposal Procedures 24 Sharps Handling Procedures 24 Clean and Contaminated Sharps Handling (Table) 26 Infectious Waste and Look-Alike Waste (Table) 27 Spills of Biohazardous Materials 27 ii The official version of this information will only be maintained in an on-line web format. Review the material on-line prior to placing reliance on a dated printed version. TABLE OF CONTENTS (Continued) APPENDICES Appendix A: Personal Protective Equipment (PPE) Policy & Hazard Assessment 29 Appendix B: Bio-Material Pick-up Certificate Disposal 30 Appendix C: Biological Safety Cabinets 31 Appendix D: Working Safely in a Biological Safety Cabinet 33 Ultraviolet Lamps 33 Biosafety Cabinet HEPA Filters 33 Additional Information 34 Appendix E: Biological Agent Risk Classification 36 NIH Agent Classification 37 Select Agents 47 Appendix F: Dangers of Cell and Tissue Culture Systems 50 Classification of Cell and/or Tissue Cultures According to Containment Level 50 Appendix G: Risk Classification For Oncogenic Agents 52 Criteria for Low Risk Oncogenic Agents 52 Criteria for Moderate Risk Oncogenic Viruses 52 Criteria for High Risk Oncogenic Viruses 53 Appendix H: Biosafety Reference Material 54 iii The official version of this information will only be maintained in an on-line web format.
    [Show full text]
  • Laboratory Methods for the Diagnosis of Meningitis
    CHAPTER 4 Biosafety Laboratorians working with infectious agents are at risk of laboratory-acquired infections as a result of accidents or unrecognized incidents. The degree of hazard depends upon the virulence and dose of the biological agent, route of exposure, host resistance, proper biosafety training, and experience with biohazards. Laboratory-acquired infections occur when microorganisms are inadvertently ingested, inhaled, or introduced into tissues. Multiple instances of laboratory- acquired meningococcal infection have been reported with a case fatality rate of 50% (1, 2). While laboratory-acquired H. influenzae and S. pneumoniae infections are not as extensively reported, deadly infections with any of these organisms are possible if appropriate biosafety procedures are not strictly followed in a properly equipped laboratory. Biosafety Level 2 (BSL- 2) practices are required for work involving these agents as they present a potential hazard to personnel and the environment. The following requirements have been established for laboratorians working in BSL-2 facilities: • Laboratory personnel must receive specific training in handling pathogenic agents and be directed by fully trained and experienced scientists. • Access to the laboratory must be limited to personnel who have a need to be in the laboratory and have undergone proper training when work is being conducted. • Extreme precautions must be taken with contaminated sharp items and sharps must be disposed of in labeled appropriate hardened plastic containers. • Personal protective equipment (PPE) must be worn at all times, and particular care must be taken when performing procedures that have the potential to create aerosols. I. Protective clothing and equipment A. Laboratory coats Protective coats, gowns, smocks, or uniforms designated for laboratory use must be worn while working in the laboratory.
    [Show full text]