Abstract Interpretation: a Semantics-Based Tool for Program Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Interpretation: a Semantics-Based Tool for Program Analysis Abstract Interpretation a SemanticsBased Tool for Program Analysis Neil D Jones DIKU University of Cop enhagen Denmark Flemming Nielson Computer Science Department Aarhus University Denmark June Contents Introduction Goals and Motivations Relation to Program Verication and Transformation The Origins of Abstract Interpretation A Sampling of Dataow Analyses Outline Basic Concepts and Problems to b e Solved A Naive Analysis of the Simple Program Accumulating Semantics for Imp erative Programs Correctness and Safety Scott Domains Lattice Duality and Meet versus Join Abstract Values Viewed as Relations or Predicates Imp ortant Points from Earlier Sections Towards Generalizing the Cousot Framework Proving Safety by Logical Relations Abstract Interpretation Using a TwoLevel Metalanguage Syntax of Metalanguage Sp ecication of Analyses Correctness of Analyses Induced Analyses Exp ected Forms of Analyses Extensions and Limitations Other Analyses Language Prop erties and Language Types Approaches to Abstract Interpretation Examples of Instrumented Semantics Analysis of Functional Languages Complex Abstract Values Abstract Interpretation of Logic Programs Glossary 1 Introduction Desirable mathematical background for this chapter includes basic concepts such as lattices complete partial orders homomor phisms etc the elements of domain theory eg as in the chapter by Abramsky or the b o oks Schmidt or Nielson a the elements of denotational semantics eg as in the chapter by Tennent or the b o oks Schmidt or Nielson a interpretations as used in logic There will b e some use of structural op erational semantics Kahn Plotkin Nielson a for example deduction rules for a pro grams semantics and type system The use of category theory will b e kept to a minimum but would b e a useful background for the domainrelated parts of Section Goals and Motivations Our primary goal is to obtain as much information as p ossible ab out a programs p ossible run time b ehaviour without actually having to run it on all input data and to do this automatically A widely used technique for such program analysis is nonstandard execution which amounts to p erforming the programs computations using value descriptions or abstract values in place of the actual computed values The results of the analysis must describ e al l possible program executions in contrast to proling and other runtime instrumentation which describ e only one run at a time We use the term abstract interpretation for a semanticsbased version of nonstandard execution Nonstandard execution can b e roughly describ ed as follows p erform commands or evaluate expressions satisfy goals etc using stores values drawn from abstract value domains instead of the actual stores values used in computations deduce information ab out the programs computations on actual in put data from the resulting abstract descriptions of stores values One reason for using abstract stores values instead of the actual ones is for computability to ensure that analysis results are obtained in nite time Another is to obtain results that describ e the result of computations on a set of p ossible inputs The rule of signs is a simple familiar abstract interpretation using abstract values p ositive negative and the latter is needed to express for example the result of adding a p ositive and a negative number Another classical example is to check arithmetic computations by cast ing out nines a metho d using abstract values to detect errors in hand computations The idea is to p erform a series of additions sub tractions and multiplications with the following twist whenever a result exceeds it is replaced by the sum of its digits rep eatedly if necessary The result obtained this way should equal the sum mo dulo of the digits of the result obtained by the standard arithmetic op erations For example consider the alleged calculation This is checked by reducing to to and to and then reducing to and so further to and nally is reduced to This diers from the sum mo dulo of the digits of so the calculation was incorrect That the metho d is correct follows from a b mo d a b mo d a b mo d a mo d b mo d mo d a b mo d a mo d b mo d mo d The metho d abstracts the actual computation by only recording values mo dulo Even though much information is lost useful results are still obtained since this implication holds if the alleged answer mo dulo diers from the answer got by casting out nines there is denitely an error On the need for approximation Due to the unsolvability of the halting problem and nearly any other question concerning program b ehaviour no analysis that always terminates can b e exact Therefore we have only three alternatives Consider systems with a nite number of nite b ehaviours eg pro grams without lo ops or decidable prop erties eg type checking as in Pascal Unfortunately many interesting problems are not so ex pressible Ask interactively for help in case of doubt But exp erience has shown that users are often unable to infer useful conclusions from the myr iads of esoteric facts provided by a machine This is one reason why interactive program proving systems have turned out to b e less useful in practice than hop ed Accept approximate but correct information Consequently most research in abstract interpretation has b een concerned with eectively nding safe descriptions of program b ehaviour yielding answers which though sometimes to o conservative in relation to the pro grams actual b ehaviour never yield unreliable information In a formal sense we seek a v relation instead of equality The eect is that the price paid for exact computability is loss of precision A natural analogy abstract interpretation is to formal semantics as numerical analysis is to mathematical analysis Problems with no known analytic solution can b e solved numerically giving approximate solutions for example a numerical result r and an error estimate Such a result is reliable if it is certain that the correct result lies within the interval r r The solution is acceptable for practical usage if is small enough In general more precision can b e obtained at greater computational cost Safety Abstract interpretation usually deals with discrete nonnumerical ob jects that require a dierent idea of approximation than the numerical analysts By analogy the results pro duced by abstract interpretation of programs should b e considered as correct by a pure semantician as long as the answers are safe in the following sense A b o olean question can b e answered true false or I dont know while answers for the rule of signs could b e p ositive negative or This apparently crude approach is analogous to the numerical analysts and for practical usage the problem is not to give uninformative answers to o often analogous to the problem of obtaining a small An approximate program analysis is safe if the results it gives can always b e dep ended on The results are allowed to b e imprecise as long as they always err on the safe side so if b o olean variable J is sometimes true we allow it to b e describ ed as I dont know but not as false Again in general more precision can b e obtained at greater computational cost Dening the term safe is however a bit more subtle than it app ears In applications eg co de optimization in a compiler it usually means the result of abstract interpretation may safely b e used for program transfor mation ie without changing the programs semantics To dene safety it is essential to understand precisely how the abstract values are to b e interpreted in relation to actual computations For an example supp ose we have a function denition f X X exp n where exp is an expression in X X Two subtly dierent dependency n analyses asso ciate with exp a subset of f s arguments Analysis I fX X g fX j exps value dep ends on X in at least one i im j j computation of f X X g n Analysis I I fX X g fX j exps value dep ends on X in every i im j j computation of f X X g n For the example f W X Y Z if W then X Y else X Z analysis I yields fW X Y Zg which is the smallest variable set always sucient to evaluate the expression Analysis I I yields fW Xg signifying that regardless of the outcome of the test evaluation of exp requires the values of b oth W and X but not necessarily those of Y or Z These are b oth dep endence analyses but have dierent mo dality Anal ysis I for p ossible dep endence is used in the binding time analysis phase of partial evaluation a program transformation which p erforms as much as p ossible of a programs computation when given knowledge of only some of its inputs Any variable dep ending on at least one unknown input in at least one computation might b e unknown at sp ecialization time Thus if any among W X Y Z are unknown then the value of exp will b e unknown Analysis I I for denite dep endence is a need analysis identifying that the values of W and X will always b e needed to return the value Such anal yses are used for to optimize
Recommended publications
  • Integrated Program Debugging, Verification, and Optimization Using Abstract Interpretation (And the Ciao System Preprocessor)
    Integrated Program Debugging, Verification, and Optimization Using Abstract Interpretation (and The Ciao System Preprocessor) Manuel V. Hermenegildo a,b Germ´anPuebla a Francisco Bueno a Pedro L´opez-Garc´ıa a aDepartment of Computer Science, Technical University of Madrid (UPM) {herme,german,bueno,pedro.lopez}@fi.upm.es http://www.clip.dia.fi.upm.es/ bDepts. of Comp. Science and Electrical and Computer Eng., U. of New Mexico [email protected] – http://www.unm.edu/~herme Abstract The technique of Abstract Interpretation has allowed the development of very so- phisticated global program analyses which are at the same time provably correct and practical. We present in a tutorial fashion a novel program development frame- work which uses abstract interpretation as a fundamental tool. The framework uses modular, incremental abstract interpretation to obtain information about the pro- gram. This information is used to validate programs, to detect bugs with respect to partial specifications written using assertions (in the program itself and/or in system libraries), to generate and simplify run-time tests, and to perform high-level program transformations such as multiple abstract specialization, parallelization, and resource usage control, all in a provably correct way. In the case of valida- tion and debugging, the assertions can refer to a variety of program points such as procedure entry, procedure exit, points within procedures, or global computations. The system can reason with much richer information than, for example, traditional types. This includes data structure shape (including pointer sharing), bounds on data structure sizes, and other operational variable instantiation properties, as well as procedure-level properties such as determinacy, termination, non-failure, and bounds on resource consumption (time or space cost).
    [Show full text]
  • Abstract Interpretation and Abstract Domains with Special Attention to the Congruence Domain
    Malardalen¨ University Master Thesis Abstract Interpretation and Abstract Domains with special attention to the congruence domain Stefan Bygde May 2006 Department of Computer Science and Electronics Malardalen¨ University Vaster¨ as,˚ Sweden Abstract This thesis is a survey on a framework for program analysis known as Abstract interpre- tation. Abstract interpretation uses abstract semantics to obtain important properties of programs. Different abstract semantics can be used in abstract interpretation, to obtain different properties. For instance there are semantics that spots upper and lower limits for the values of the variables of the program. These different semantics are called abstract domains and this thesis is meant to summarize different numerical abstract domains as well as give mathematical properties to them. The thesis also offers a small survey of free software libraries that implements abstract domains. Special attention will be given to the congruence domain. The congruence domain was implemented in a program analysis tool developed at M¨alardalen University. In the congruence domain the property ”variable x is always congruent to n modulo m” is obtained. Abstract operators for this domain are presented and new bit-operators are introduced. Contents 1 Introduction 4 1.1 Static analysis and WCET . ..................... 4 1.2 SWEET . ................................ 5 1.3 Motivation and results ......................... 7 1.4 Related work . ......................... 7 1.5 Outline . ................................ 7 2 Collecting semantics 8 2.1 Definitions ................................ 8 2.2 The transition system . ......................... 9 3 Abstract Interpretation 9 3.1 The idea of abstraction ......................... 10 3.2 Galois connections . ......................... 10 3.2.1 An example . ......................... 11 3.3 Relational and non-relational domains ................
    [Show full text]
  • Static Program Analysis Via 3-Valued Logic
    Static Program Analysis via 3-Valued Logic ¡ ¢ £ Thomas Reps , Mooly Sagiv , and Reinhard Wilhelm ¤ Comp. Sci. Dept., University of Wisconsin; [email protected] ¥ School of Comp. Sci., Tel Aviv University; [email protected] ¦ Informatik, Univ. des Saarlandes;[email protected] Abstract. This paper reviews the principles behind the paradigm of “abstract interpretation via § -valued logic,” discusses recent work to extend the approach, and summarizes on- going research aimed at overcoming remaining limitations on the ability to create program- analysis algorithms fully automatically. 1 Introduction Static analysis concerns techniques for obtaining information about the possible states that a program passes through during execution, without actually running the program on specific inputs. Instead, static-analysis techniques explore a program’s behavior for all possible inputs and all possible states that the program can reach. To make this feasible, the program is “run in the aggregate”—i.e., on abstract descriptors that repre- sent collections of many states. In the last few years, researchers have made important advances in applying static analysis in new kinds of program-analysis tools for identi- fying bugs and security vulnerabilities [1–7]. In these tools, static analysis provides a way in which properties of a program’s behavior can be verified (or, alternatively, ways in which bugs and security vulnerabilities can be detected). Static analysis is used to provide a safe answer to the question “Can the program reach a bad state?” Despite these successes, substantial challenges still remain. In particular, pointers and dynamically-allocated storage are features of all modern imperative programming languages, but their use is error-prone: ¨ Dereferencing NULL-valued pointers and accessing previously deallocated stor- age are two common programming mistakes.
    [Show full text]
  • Design of Semantics by Abstract Interpretation
    …/… Design of Semantics by Abstract Interpretation -- Abstraction of the relational into a nondeterministic Plotkin/- Smyth/Hoare denotational/functional semantics; -- Abstraction of the natural/demoniac relational into a determin­ istic denotational/functional semantics;Scott’ssemantics; Patrick COUSOT -- Abstraction of nondeterministic denotational semantics to weakest École Normale Supérieure precondition/strongest postcondition predicate transformer se­ DMI, 45, rue d’Ulm mantics; 75230 Paris cedex 05 Abstraction of predicate transformer semantics to à la Hoare France -- ax­ ;Programproofmethods; [email protected] iomatic semantics http://www.dmi.ens.fr/ cousot Extension to the λ-calculus. ˜ • MPI-Kolloquium, Max-Planck-Institut für Informatik, Saarbrücken, am Montag, dem 2. Juni 1997 um 14.15 Uhr 1 1 Extended version of the invited address at MFPS XIII, CMU, Pittsburgh, March 24, 1997 © P. Cousot 1 MPI-Kolloquium, Max-Planck-Institut für Informatik, Saarbrücken, 2. Juni 1997 © P. Cousot 3 MPI-Kolloquium, Max-Planck-Institut für Informatik, Saarbrücken, 2. Juni 1997 Content Application of abstract interpretation ideas to the design of formal semantics: Examples of Abstract Interpretations Examples of abstract interpretations; • Abstraction of fixpoint semantics; • -- Maximal trace semantics of nondeterministic transition systems; -- Abstraction of the trace into a natural/demoniac/angelic relational semantics; …/… © P. Cousot 2 MPI-Kolloquium, Max-Planck-Institut für Informatik, Saarbrücken, 2. Juni 1997 © P. Cousot 4 MPI-Kolloquium,
    [Show full text]
  • Abstract Interpretation Based Program Testing
    1 Abstract Interpretation Based Program Testing Patrick Cousot and Radhia Cousot Département d’informatique Laboratoire d’informatique École normale supérieure École polytechnique 45 rue d’Ulm 91128 Palaiseau cedex, France 75230 Paris cedex 05, France [email protected] [email protected] http://lix.polytechnique.fr/˜rcousot http://www.di.ens.fr/˜cousot Abstract— Every one can daily experiment that programs II. An informal introduction to abstract are bugged. Software bugs can have severe if not catas­ testing trophic consequences in computer-based safety critical ap­ plications. This impels the development of formal methods, Abstract testing is the verification that the abstract se­ whether manual, computer-assisted or automatic, for verify­ mantics of a program satisfies an abstract specification. ing that a program satisfies a specification. Among the auto­ matic formal methods, program static analysis can be used The origin is the abstract interpretation based static check­ to check for the absence of run-time errors. In this case the ing of safety properties [1], [2] such as array bound checking specification is provided by the semantics of the program­ and the absence of run-time errors which was extended to ming language in which the program is written. Abstract in­ terpretation provides a formal theory for approximating this liveness properties such as termination [3], [4]. semantics, which leads to completely automated tools where Consider for example, the factorial program (the random run-time bugs can be statically and safely classified as un­ assignment ? is equivalent to the reading of an input value reachable, certain, impossible or potential. We discuss the or the passing of an unknown but initialized parameter extension of these techniques to abstract testing where speci­ fications are provided by the programmers.
    [Show full text]
  • Abstract Interpretation of Programs for Model-Based Debugging
    Abstract Interpretation of Programs for Model-Based Debugging Wolfgang Mayer Markus Stumptner Advanced Computing Research Centre University of South Australia [mayer,mst]@cs.unisa.edu.au Language Abstract Semantics Test-Cases Developing model-based automatic debugging strategies has been an active research area for sev- Program eral years. We present a model-based debug- Conformance Test Components ging approach that is based on Abstract Interpre- Fault Conflict sets tation, a technique borrowed from program analy- Assumptions sis. The Abstract Interpretation mechanism is inte- grated with a classical model-based reasoning en- MBSD Engine gine. We test the approach on sample programs and provide the first experimental comparison with earlier models used for debugging. The results Diagnoses show that the Abstract Interpretation based model provides more precise explanations than previous Figure 1: MBSD cycle models or standard non-model based approaches. 2 Model-based debugging 1 Introduction Model-based software debugging (MBSD) is an application of Model-based Diagnosis (MBD) [19] techniques to locat- Developing tools to support the software engineer in locating ing errors in computer programs. MBSD was first intro- bugs in programs has been an active research area during the duced by Console et. al. [6], with the goal of identifying last decades, as increasingly complex programs require more incorrect clauses in logic programs; the approach has since and more effort to understand and maintain them. Several dif- been extended to different programming languages, includ- ferent approaches have been developed, using syntactic and ing VHDL [10] a n d JAVA [21]. semantic properties of programs and languages. The basic principle of MBD is to compare a model,ade- This paper extends past research on model-based diagnosis scription of the correct behaviour of a system, to the observed of mainstream object oriented languages, with Java as con- behaviour of the system.
    [Show full text]
  • Abstract Interpretation: a Unified Lattice Model for Static Analysis of Programs by Construction Or Approximation of Fixpoints
    ABSTRACT INTERPRETATION : ‘A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS Patrick Cousot*and Radhia Cousot** Laboratoire d’Informatique, U.S.M.G., BP. 53 38041 Grenoble cedex, France 1. Introduction Abstract program properties are modeled by a com– plete semilattice, Birkhoff[611. Elementary Pro- A program denotes computations in some universe of gram constructs are locally interpreted by order objects. Abstract interpretation of programs con– preserving functions which are used to associate sists in using that denotation to describe compu– a system of recursive equations with a program. The tations in another universe of abstract objects, program global properties are then defined as one so that the results of abstract execution give of the extreme fixpoints of that system, Tarski [55]. some information on the actual computations. An The abstraction process is defined in section 6. It intuitive example (which we borrow from Sintzoff is shown that the program properties obtained by 172]) is the rule of signs. The text ‘1515* 17 an abstract interpretation of a program are consis– may be understood to denote computations on the tent with those obtained by a more refined inter– abstract universe {(+), (-), (~)} where the se- pretation of that program. In particular, an ab– mantics of arithmetic operators is defined by the stract interpretation may be shown to be consistent rule of signs. The abstract execution -1515* 17 with the formal semantics of the language. Levels => -(+) * (+) e> (–) * (+) => (–), proves that of abstraction are formalized by showing that con- –1515 * 17 is a negative number. Abstract interpre– sistent abstract interpretations form a lattice tation is concerned by a particular underlying (section 7).
    [Show full text]
  • Arxiv:1007.3250V1 [Cs.PL] 19 Jul 2010 Ple Opromhg-Adlwlvlotmztosand Optimizations Low-Level and High- Perform to Applied Ae Rpoesro the of Etc
    Verification of Java Bytecode using Analysis and Transformation of Logic Programs E. Albert1, M. G´omez-Zamalloa1, L. Hubert2, and G. Puebla2 1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain 2 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain {elvira,mzamalloa,laurent,german}@clip.dia.fi.upm.es Abstract. State of the art analyzers in the Logic Programming (LP) paradigm are nowadays mature and sophisticated. They allow inferring a wide variety of global properties including termination, bounds on re- source consumption, etc. The aim of this work is to automatically transfer the power of such analysis tools for LP to the analysis and verification of Java bytecode (jvml). In order to achieve our goal, we rely on well-known techniques for meta-programming and program specialization. More pre- cisely, we propose to partially evaluate a jvml interpreter implemented in LP together with (an LP representation of) a jvml program and then analyze the residual program. Interestingly, at least for the examples we have studied, our approach produces very simple LP representations of the original jvml programs. This can be seen as a decompilation from jvml to high-level LP source. By reasoning about such residual programs, we can automatically prove in the CiaoPP system some non-trivial prop- erties of jvml programs such as termination, run-time error freeness and infer bounds on its resource consumption. We are not aware of any other system which is able to verify such advanced properties of Java bytecode. 1 Introduction Verifying programs in the (Constraint) Logic Programming paradigm —(C)LP— offers a good number of advantages, an important one being the maturity and sophistication of the analysis tools available for it.
    [Show full text]
  • Verification by Abstract Interpretation
    Verification by Abstract Interpretation Patrick Cousot École normale supérieure, Département d’informatique 45 rue d’Ulm, 75230 Paris cedex 05, France [email protected], www.di.ens.fr/~cousot Dedicated to Zohar Manna, for his 26th birthday. Abstract. Abstract interpretation theory formalizes the idea of abstrac- tion of mathematical structures, in particular those involved in the spec- ification of properties and proof methods of computer systems. Verifica- tion by abstract interpretation is illustrated on the particular cases of predicate abstraction, which is revisited to handle infinitary abstractions, and on the new parametric predicate abstraction. 1 Introduction Abstract interpretation theory [7,8,9,11,13] formalizes the idea of abstraction of mathematical structures, in particular those involved in the specification of properties and proof methods of computer systems. Verification by abstract interpretation is illustrated on the particular cases of predicate abstraction [4,15,19] (where the finitary program-specific ground atomic propositional components of inductive invariants have to be provided) which is revisited (in that it is derived by systematic approximation of the con- crete semantics of a programming language using an infinitary abstraction) and on the new parametric predicate abstraction, a program-independent generaliza- tion (where parameterized infinitary predicates are automatically combined by reduction and instantiated to particular programs by approximation). 2 Elements of Abstract Interpretation Let us first recall a few elements of abstract interpretation from [7,9,11]. 2.1 Properties and Their Abstraction. Given a set Σ of objects (such as program states, execution traces, etc.), we represent properties P of objects s ∈ Σ as sets of objects P ∈ ℘(Σ) (which have the considered property).
    [Show full text]
  • Abstract Interpretation: Theory and Practice
    Abstract Interpretation: Theory and Practice Patrick Cousot École normale supérieure Département d'informatique, 45 rue d'Ulm 75230 Paris cedex 05, France [email protected] http://www.di.ens.fr/~cousot/ Our objective in this talk is to give an intuitive account of abstract interpre- tation theory [1,2,3,4,5] and to present and discuss its main applications [6]. Abstract interpretation theory formalizes the conservative approximation of the semantics of hardware and software computer systems. The semantics pro- vides a formal model describing all possible behaviors of a computer system in interaction with any possible environment. By approximation we mean the observation of the semantics at some level of abstraction, ignoring irrelevant de- tails. Conservative means that the approximation can never lead to an erroneous conclusion. Abstract interpretation theory provides thinking tools since the idea of ab- straction by conservative approximation is central to reasoning (in particular on computer systems) and mechanical tools since the idea of an effective computable approximation leads to a systematic and constructive formal design methodol- ogy of automatic semantics-based program manipulation algorithms and tools (e.g. [7]). Semantics have been studied in the framework of abstract interpretation [8,9] and compared according to their relative precision. A number of semantics including among others small-step, big-step, termination and nontermination se- mantics, Plotkin's natural, Smyth's demoniac, Hoare's angelic relational and cor- responding denotational semantics, Dijkstra's weakest precondition and weakest liberal precondition predicate transformers and Hoare's partial and total ax- iomatic semantics have all been derived by successive abstractions starting from an operational maximal trace semantics of a transition system.
    [Show full text]
  • Extending Abstract Interpretation to Dependency Analysis of Database Applications
    1 Extending Abstract Interpretation to Dependency Analysis of Database Applications Angshuman Jana1, Raju Halder1, K. V. Abhishekh1, S. D. Ganni1, and Agostino Cortesi2 1Indian Institute of Technology Patna, India {ajana.pcs13, halder, kalahasti.cs13, ganni.cs13}@iitp.ac.in 2Università Ca’ Foscari Venezia, Italy [email protected] Abstract—Dependency information (data- and/or control-dependencies) among program variables and program statements is playing crucial roles in a wide range of software-engineering activities, e.g. program slicing, information flow security analysis, debugging, code-optimization, code-reuse, code-understanding. Most existing dependency analyzers focus on mainstream languages and they do not support database applications embedding queries and data-manipulation commands. The first extension to the languages for relational database management systems, proposed by Willmor et al. in 2004, suffers from the lack of precision in the analysis primarily due to its syntax-based computation and flow insensitivity. Since then no significant contribution is found in this research direction. This paper extends the Abstract Interpretation framework for static dependency analysis of database applications, providing a semantics-based computation tunable with respect to precision. More specifically, we instantiate dependency computation by using various relational and non-relational abstract domains, yielding to a detailed comparative analysis with respect to precision and efficiency. Finally, we present a prototype semDDA, a semantics-based Database Dependency Analyzer integrated with various abstract domains, and we present experimental evaluation results to establish the effectiveness of our approach. We show an improvement of the precision on an average of 6% in the interval, 11% in the octagon, 21% in the polyhedra and 7% in the powerset of intervals abstract domains, as compared to their syntax-based counterpart, for the chosen set of Java Server Page (JSP)-based open-source database-driven web applications as part of the GotoCode project.
    [Show full text]
  • Static Analysis for Software Assurance: Soundness, Scalability and Adaptiveness
    Static Analysis for Software Assurance: Soundness, Scalability and Adaptiveness [Position Paper] Arnaud J. Venet Michael R. Lowry CMU / NASA Ames Research Center NASA Ames Research Center Moffett Field, CA 94035 Moffett Field, CA 94035 [email protected] [email protected] ABSTRACT The three objectives of no false negatives, high precision Standard approaches to software assurance are either process- (few false positives), and scaling to large systems push the based or test-based. We propose to include static analysis boundaries of computational complexity. In other words, by Abstract Interpretation to the software development cy- except for especially simple classes of defects, no single veri- cle. Static analysis by Abstract Interpretation provides a fication algorithm will be able to achieve all three. However, high level of assurance as well as ground-truth evidence in in case studies described here and elsewhere, human experts support of its findings. Successes in the verification of large have demonstrated that given a particular software system industrial codes demonstrate the readiness of this technol- being certified; they can adapt a custom algorithmic ap- ogy. However, in order to be practical in real development proach by carefully selecting, composing, and tuning known environments, static analysis must be able to scale and yield verification algorithms to simultaneously achieve these three few false positives without the need for expert hand-tuning. objectives. We present a research agenda to reach this goal based on the development of adaptive static analysis algorithms. Can this adaptive expert human approach of selecting and composing verification algorithms be automated? In this po- sition paper we discuss this approach within the context of Categories and Subject Descriptors Abstract Interpretation for static analysis.
    [Show full text]