Screening Assessment Cyanides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Piccolo® General Chemistry 13
Piccolo® General Chemistry 13 For In Vitro Diagnostic Use and For Professional Use Only Customer and Technical Service: 1-800-822-2947 Applicable to US customers only Customers outside the US: +49 6155 780 210 CLIA Waived: Use lithium heparin whole blood, only Moderate Complexity: Use lithium heparin whole blood, lithium heparin plasma, or serum Abaxis, Inc. ABAXIS Europe GmbH 3240 Whipple Rd. Bunsenstr. 9-11 Union City, CA 94587 64347 Griesheim USA Germany 1. Intended Use The Piccolo® General Chemistry 13 used with the Piccolo blood chemistry analyzer or the Piccolo Xpress® chemistry analyzer, is intended to be used for the in vitro quantitative determination of alanine aminotransferase (ALT), albumin, alkaline phosphatase (ALP), amylase, aspartate aminotransferase (AST), calcium, creatinine, gamma glutamyltransferase (GGT), glucose, total bilirubin, total protein, blood urea nitrogen (BUN), and uric acid in heparinized whole blood, heparinized plasma, or serum in a clinical laboratory setting or point-of-care location. For US Customers Only The tests on this panel are waived under CLIA ’88 regulations. If a laboratory modifies the test system instructions, then the tests are considered high complexity and subject to all CLIA requirements. For CLIA waived labs, only lithium heparin whole blood may be tested. For use in moderate complexity labs, lithium heparinized whole blood, lithium heparinized plasma, or serum may be used. A CLIA Certificate of Waiver is needed to perform CLIA waived testing. A Certificate of Waiver can be obtained from the Centers for Medicare & Medicaid Services (CMS). Please contact the Commission on Laboratory Accreditation (COLA) at 1- 800-981-9883 for assistance in obtaining one. -
Safety Data Sheet Acc
Product Distributed by Rio Grande SDS access on web: www.riogrande.com Page 1 of 13 Safety Data Sheet acc. to OSHA HCS (29 CFR 1910.1200) Printing date 03/20/2015 Reviewed on 03/20/2015 1 Identification · Product identifier · Trade name: Midas® 24K Gold Cyanide-Based Concentrate Plating Solution · Article number: 335-082 · Recommended use and restriction on use · Recommended use: Electroplating material · Restrictions on use: No further relevant information available. · Details of the supplier of the Safety Data Sheet · Manufacturer/Supplier: RIO GRANDE 7500 Bluewater Rd. NW Alburquerque NM 87121-1962 1-800-545-6566 [email protected] · Emergency telephone number: ChemTel Inc. (800)255-3924, +1 (813)248-0585 2 Hazard(s) identification · Classification of the substance or mixture GHS06 Skull and crossbones Acute Tox. 2 H300 Fatal if swallowed. Acute Tox. 2 H310 Fatal in contact with skin. Acute Tox. 3 H331 Toxic if inhaled. GHS07 Skin Sens. 1 H317 May cause an allergic skin reaction. · Additional information: There are no other hazards not otherwise classified that have been identified. 0 percent of the mixture consists of ingredient(s) of unknown toxicity. · Label elements · GHS label elements The product is classified and labeled according to the Globally Harmonized System (GHS). · Hazard pictograms GHS06 · Signal word Danger · Hazard-determining components of labeling: potassium cyanide (Contd. on page 2) 40.1.3 Page 2 of 13 Safety Data Sheet acc. to OSHA HCS (29 CFR 1910.1200) Printing date 03/20/2015 Reviewed on 03/20/2015 Trade name: Midas® 24K Gold Cyanide-Based Concentrate Plating Solution (Contd. -
Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds
Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds Library Listing – 1,523 spectra Subset of Aldrich FT-IR Library related to organometallic, inorganic, boron and deueterium compounds. The Aldrich Material-Specific FT-IR Library collection represents a wide variety of the Aldrich Handbook of Fine Chemicals' most common chemicals divided by similar functional groups. These spectra were assembled from the Aldrich Collections of FT-IR Spectra Editions I or II, and the data has been carefully examined and processed by Thermo Fisher Scientific. Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds Index Compound Name Index Compound Name 1066 ((R)-(+)-2,2'- 1193 (1,2- BIS(DIPHENYLPHOSPHINO)-1,1'- BIS(DIPHENYLPHOSPHINO)ETHAN BINAPH)(1,5-CYCLOOCTADIENE) E)TUNGSTEN TETRACARBONYL, 1068 ((R)-(+)-2,2'- 97% BIS(DIPHENYLPHOSPHINO)-1,1'- 1062 (1,3- BINAPHTHYL)PALLADIUM(II) CH BIS(DIPHENYLPHOSPHINO)PROPA 1067 ((S)-(-)-2,2'- NE)DICHLORONICKEL(II) BIS(DIPHENYLPHOSPHINO)-1,1'- 598 (1,3-DIOXAN-2- BINAPH)(1,5-CYCLOOCTADIENE) YLETHYNYL)TRIMETHYLSILANE, 1140 (+)-(S)-1-((R)-2- 96% (DIPHENYLPHOSPHINO)FERROCE 1063 (1,4- NYL)ETHYL METHYL ETHER, 98 BIS(DIPHENYLPHOSPHINO)BUTAN 1146 (+)-(S)-N,N-DIMETHYL-1-((R)-1',2- E)(1,5- BIS(DI- CYCLOOCTADIENE)RHODIUM(I) PHENYLPHOSPHINO)FERROCENY TET L)E 951 (1,5-CYCLOOCTADIENE)(2,4- 1142 (+)-(S)-N,N-DIMETHYL-1-((R)-2- PENTANEDIONATO)RHODIUM(I), (DIPHENYLPHOSPHINO)FERROCE 99% NYL)ETHYLAMIN 1033 (1,5- 407 (+)-3',5'-O-(1,1,3,3- CYCLOOCTADIENE)BIS(METHYLD TETRAISOPROPYL-1,3- IPHENYLPHOSPHINE)IRIDIUM(I) -
Re‐Evaluation of Sodium Ferrocyanide (E
SCIENTIFIC OPINION ADOPTED: 29 June 2018 doi: 10.2903/j.efsa.2018.5374 Re-evaluation of sodium ferrocyanide (E 535), potassium ferrocyanide (E 536) and calcium ferrocyanide (E 538) as food additives EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), Maged Younes, Peter Aggett, Fernando Aguilar, Riccardo Crebelli, Birgit Dusemund, Metka Filipic, Maria Jose Frutos, Pierre Galtier, David Gott, Ursula Gundert-Remy, Gunter Georg Kuhnle, Claude Lambre, Jean-Charles Leblanc, Inger Therese Lillegaard, Peter Moldeus, Alicja Mortensen, Agneta Oskarsson, Ivan Stankovic, Ine Waalkens-Berendsen, Matthew Wright, Alessandro Di Domenico, Henk Van Loveren, Alessandra Giarola, Zsuzsanna Horvath, Federica Lodi and Rudolf Antonius Woutersen Abstract The Panel on Food Additives and Nutrient Sources added to Food (ANS) provided a scientific opinion re-evaluating the safety of sodium ferrocyanide (E 535), potassium ferrocyanide (E 536), and evaluating the safety of calcium ferrocyanide (E 538) as food additives. The Panel considered that adequate exposure and toxicity data were available. Ferrocyanides (E 535–538) are solely authorised in two food categories as salt substitutes. To assess the dietary exposure to ferrocyanides (E 535–538) from their use as food additives, the exposure was calculated based on regulatory maximum level exposure assessment scenario (maximum permitted level (MPL)) and the refined exposure assessment scenario. Dietary exposure to ferrocyanides was calculated based on mean and high levels consumption of salts in both the regulatory maximum level and the refined scenario. In the MPL scenario, the exposure to ferrocyanides (E 535–538) from their use as a food additive was up to 0.009 mg/kg body weight (bw) per day in children and adolescents. -
National Food Safety Standard on Sodium Ferrocyanide China
THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S. GOVERNMENT POLICY Voluntary - Public Date: 2/2/2012 GAIN Report Number: China - Peoples Republic of Post: Beijing National Food Safety Standard on Sodium Ferrocyanide Report Categories: FAIRS Subject Report Approved By: Scott Sindelar Prepared By: M. Melinda Meador and Ma Jie Report Highlights: On November 17, 2011, China notified the WTO of National Food Safety Standard: Food Additive Sodium Ferrocyanide as SPS/N/CHN/485. This standard applies to food additive sodium ferrocyanide made from sodium cyanide and ferrous sulfate or ferrum reductum, sodium hydroxide and hydrogen cyanide. It specifies the scope, technical requirements and testing methods for food additive sodium ferrocyanide. The date for submission of final comments to China is January 16, 2012. The proposed date of entry is to be determined. Comments can be sent to China’s SPS Enquiry Point at [email protected]. This report is an INFORMAL translation of this document. General Information: BEGIN TRANSLATION GB National Food Safety Standard GB XXXX XXXX National Food Safety Standard Food Additive Sodium Ferrocyanide (Draft for Soliciting Opinions) Date of Issue: XXXX-XX-XX Date of Effectiveness: XXXX-XX-XX Issued by the Ministry of Health of the People’s Republic of China National Food Safety Standard Food Additive Sodium Ferrocyanide 1. Scope This standard applies to food additive sodium ferrocyanide made from sodium cyanide and ferrous sulfate or ferrum reductum, sodium hydroxide and hydrogen cyanide. 2. Molecular formula, constitutional formula and relative molecular mass 2.1 Molecular formula Na4Fe CN 6·10H2O 2.2 Relative molecular mass 484. -
Research on Best Practices for Winter Weather Operations
Research on Best Practices for Winter Weather Operations Technical Report 0-6669-1 Cooperative Research Program PRAIRIE VIEW A&M UNIVERSITY PRAIRIE VIEW, TEXAS TEXAS A&M TRANSPORTATION INSTITUTE COLLEGE STATION, TEXAS in cooperation with the Federal Highway Administration and the Texas Department of Transportation http://tti.tamu.edu/documents/0-6669-1.pdf Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA/TX-12/0-6669-1 4. Title and Subtitle 5. Report Date RESEARCH ON BEST PRACTICES FOR WINTER WEATHER December 2011 OPERATIONS Published: October 2012 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Judy A. Perkins, Judith Mwakalonge, Debbie Jasek, Jodi Carson, Report 0-6669-1 Kwaku Obeng-Boampong, and Geza Pesti 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Prairie View A&M University & Texas A&M Transportation Institute 11. Contract or Grant No. Prairie View, Texas 77446 Project 0-6669 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation Technical Report: Research and Technology Implementation Office November 2010–October 2011 P.O. Box 5080 14. Sponsoring Agency Code Austin, Texas 78763-5080 15. Supplementary Notes Project performed in cooperation with the Texas Department of Transportation Project Title: Best Practices for Emergency Operations URL: http://tti.tamu.edu/documents/0-6669-1.pdf 16. Abstract There is a growing need to identify actionable practices relative to winter weather operations. Because of the potential and inherent hazards during cold weather, it has become increasingly important to ensure that these practices can be effectively employed as well as protect the health and safety of employees working in extreme conditions. -
HOW TO: Salt and Preservatives in Organic Food
What should I know about using salt and preservatives in organic food? Salt plays an important role in processed food products both for its flavoring properties and as a preservative. For those reasons both salt and sea salt are allowed in organic products as long as the salt or sea salt does not have any prohibited additives. Here we discuss the use of salt, prohibited additives, and answer common questions. Are additives allowed in the salt I use in my organic products? Though salt and sea salt are allowed in all categories of organic products, anti-caking/free-flow agents and whiteners are generally not allowed in these products. Common anti-caking/free- flow agents that are not allowed include: • Calcium silicate • Ferric ammonium citrate • Sodium ferrocyanide • Magnesium silicate • Magnesium carbonate • Propylene glycol • Aluminum calcium silicate • Sodium aluminosilicate Makers of organic products must be able to show that the salt does not contain any of the above flow agents, anti-caking agents, or any whiteners. The producer may need to contact the manufacturer of the salt to get a statement of what is in the salt, or may be required to locate a salt that is free of whiteners and anti-caking and flow agents. There is one exception to this rule, salt formulated with magnesium carbonate is allowed in products labeled as “made with organic ingredients.” However, using salt formulated with magnesium carbonate is prohibited in products labeled “organic” (products containing at least 95% organic ingredients) or “100% organic”. It is possible that salt could be formulated with an anti-caking or flow agent not on the list above. -
Rpt POL-TOXIC AIR POLLUTANTS 98 BY
SWCAA TOXIC AIR POLLUTANTS '98 by CAS ASIL TAP SQER CAS No HAP POLLUTANT NAME HAP CAT 24hr ug/m3 Ann ug/m3 Class lbs/yr lbs/hr none17 BN 1750 0.20 ALUMINUM compounds none0.00023 AY None None ARSENIC compounds (E649418) ARSENIC COMPOUNDS none0.12 AY 20 None BENZENE, TOLUENE, ETHYLBENZENE, XYLENES BENZENE none0.12 AY 20 None BTEX BENZENE none0.000083 AY None None CHROMIUM (VI) compounds CHROMIUM COMPOUN none0.000083 AY None None CHROMIUM compounds (E649962) CHROMIUM COMPOUN none0.0016 AY 0.5 None COKE OVEN COMPOUNDS (E649830) - CAA 112B COKE OVEN EMISSIONS none3.3 BN 175 0.02 COPPER compounds none0.67 BN 175 0.02 COTTON DUST (raw) none17 BY 1,750 0.20 CYANIDE compounds CYANIDE COMPOUNDS none33 BN 5,250 0.60 FIBROUS GLASS DUST none33 BY 5,250 0.60 FINE MINERAL FIBERS FINE MINERAL FIBERS none8.3 BN 175 0.20 FLUORIDES, as F, containing fluoride, NOS none0.00000003 AY None None FURANS, NITRO- DIOXINS/FURANS none5900 BY 43,748 5.0 HEXANE, other isomers none3.3 BN 175 0.02 IRON SALTS, soluble as Fe none00 AN None None ISOPROPYL OILS none0.5 AY None None LEAD compounds (E650002) LEAD COMPOUNDS none0.4 BY 175 0.02 MANGANESE compounds (E650010) MANGANESE COMPOU none0.33 BY 175 0.02 MERCURY compounds (E650028) MERCURY COMPOUND none33 BY 5,250 0.60 MINERAL FIBERS ((fine), incl glass, glass wool, rock wool, slag w FINE MINERAL FIBERS none0.0021 AY 0.5 None NICKEL 59 (NY059280) NICKEL COMPOUNDS none0.0021 AY 0.5 None NICKEL compounds (E650036) NICKEL COMPOUNDS none0.00000003 AY None None NITROFURANS (nitrofurans furazolidone) DIOXINS/FURANS none0.0013 -
Turning Water Into Ink Student Worksheet
Turning Water into Ink Student Worksheet Name______________________________________________________________________ Overview You will look like a true magician as you pour two clear solutions together and make something that looks like real ink! What to Learn By the end of this experiment you will understand how to make a saturated solution, and how to identify a chemical reaction. Materials sodium ferrocyanide (MSDS) ferric ammonium sulfate (MSDS) 2 test tubes distilled water goggles and gloves water Lab Time CAUTION: Do not mix sodium ferrocyanide with any other chemical other than specified here, as it can produce hydrogen cyanide gas, which is lethal. Handle this chemical with care, wear gloves, and keep it locked away when not in use. 1. Measure out a tiny bit of sodium ferrocyanide into a test tube filled partway with water. You want to add enough of the crystals so that when you shake the solution (with the cap on), all of the crystals dissolve into the water and make a saturated solution. 2. Into a second test tube, dissolve another tiny bit of ferric ammonium sulfate in water, adding just enough to make a saturated solution. * 3. When you’re ready, pour one test tube into the other and note the change! 4. When finished, rinse with plenty of water and make sure to clean up lab area thoroughly. *NOTE: You can use this as real ink by using it BEFORE you combine them together like this: dip a toothpick into the first solution (sodium ferrocyanide solution) and with the tip write onto a sheet of paper. While the writing is drying, dip a piece of paper towel in the other solution (ferric ammonium sulfate solution) and gently blot along where you wrote on the paper… and the color appears as blue ink. -
EPA Source Water Protection Practices Bulletins
United States Office of Water EPA 816-F-02-019 Environmental Protection (4606) August 2002 Agency Source Water Protection Practices Bulletin Managing Highway Deicing to Prevent Contamination of Drinking Water We depend on clear roads and highways for safe travel and the continual flow of goods and services. Deicing chemicals are used to clear roads covered by snow and ice during winter weather. The runoff associated with highway deicing may contain various chemicals and sediment which have the potential to enter surface and ground water sources. This bulletin focuses on the management of highway deicing chemicals. See the bulletin on storm water runoff for additional management measures. USE OF HIGHWAY DEICING CHEMICALS Each winter, state, county, and local transportation departments stock their arsenal with the tools necessary to face whatever winter storms may bring. This arsenal includes a variety of chemicals to melt snow and ice. This preparedness has a high price tag; in the U.S., an estimated $2 billion is spent each year on chemicals, materials, labor, and equipment for winter road maintenance. The most commonly used and economical deicer is sodium chloride, better known as salt;15 million tons of deicing salt are used in the U.S. each year. Salt is effective because it lowers the freezing point of water, preventing ice and snow from bonding to the pavement and allowing easy removal by plows. However, the use of salt is not without problems. Salt contributes to the corrosion of vehicles and infrastructure, and can damage water bodies, ground water, and roadside vegetation. These issues have led to the investigation and use of other chemicals as substitutes for and supplements to salt. -
Chemical Substance Control Level Classification Table (Ver. 9)
Supplement 1 Chemical Substance Control Level Classification Table (Ver. 9) Use of Level 1 Prohibited Substances: Table 1-1 Chemical substances whose use is prohibited under domestic or international laws and regulations, or per customer requests Threshold Value: Table 1-1 Concentration level that is guaranteed in materials delivered by suppliers to USHIO as well as USHIO products shipped Control Value: Table 1-2 The content concentration that cannot be exceeded unless the chemical substance is intentionally used or mixed in as well as the concentration level that needs to be controlled by USHIO and its suppliers When the content concentration as impurities of prohibited substances exceeds the control value, USHIO will request reanalysis, an explanation of the reason and reduction in content concentration to a level below the control value. Use of Level 2 Restricted Substances: Table 2 Chemical substances contained in products whose use will be prohibited based on deadlines specified under domestic or international laws and regulations, or per customer requests Level 3 Controlled Substances: Table 3 Chemical substances whose use is controlled and which are not prohibited or restricted at the present time Additional clause 1. There may be cases when the value in the specifications, drawings, etc., exceeds the reference value specified in this standard. In such cases, the values specified in the specifications, drawings, etc., take precedence. 2. This standard is based on JIG-101. USHIO further added chemical substances and threshold values based on social circumstances that include customer requests, SVHC of REACH regulation and other substances. 3. (*S) sign is put on SVHC of the REACH regulation. -
Comparison of Actual and Simulated Ferrocyanide Waste Properties
PNL- 10175 UC-72 1 Ferrocyanide Safety Project: Comparison of Actual and Simulated Ferrocyanide Waste Properties R. D. Scheele L. L. Burger R. L. Sell P. R. Bredt R. J. Barrington September 1994 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830 Pacific Northwest Laboratory Richland, Washington 99352 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Summary In the 1950s, additional high-level radioactive waste storage capacity was needed to accommodate the wastes that would result from the production of recovery of additional nuclear defense materials. To provide this additional waste storage capacity, the Hanford Site operating contractor developed a process to decontaminate aqueous wastes by precipitating radiocesium as an alkali nickel ferrocyanide; this process allowed disposal of the aqueous waste.