Gram Stain Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Gram Stain Introduction Gram Stain Introduction The Gram stain is a differential staining procedure used to categorize bacteria as Gram positive or Gram negative based on the chemical and physical properties of their cell’s walls. The bacteria are differentiated through a series of staining and decolorization steps. Gram positive cells will stain purple and Gram-negative cells will stain red to pink. Supplies and Reagents 1. Personal protective equipment (PPE) 3. 2. Slide rack 1. 3. Timer 4. Absorbent paper, such as bibulous paper 5. Water (tap water or deionized) 6. Crystal violet 7. Gram’s iodine 8. Decolorizer 9. Safranin (or carbol fuchsin) 5. 7. 10. Brightfield microscope with 100X objective 11. Immersion oil Instructions 1. Use appropriate PPE according to your laboratory’s procedures and safety manual. 2. Place the prepared fixed smear on a slide rack then flood the slide with crystal violet. 3. Wait at least 15 seconds* then rinse the slide with 9. 11. water. 4. Flood the slide with Gram’s iodine. 5. After 15 seconds* rinse the slide with water. 6. Apply the decolorizer to the slide. 7. Rinse the slide immediately with water. 8. Flood the slide with counterstain. 9. Wait at least 15 seconds* then rinse the slide with water. 10. Blot the slide with absorbent paper. Be careful not to wipe the cells off the slide. 11. Allow the newly stained slide to air dry completely. 12. View the slide under oil using the oil immersion objective for a total magnification of 1000X. 13. Record results based on your laboratory’s criteria. * Be sure to check manufacturer’s instructions for the timing of each step. This job aid is a component of the free, on-demand CDC training course “Biochemicals and Gram Negative Organism ID” Find the course at https://www.cdc.gov/labtraining. .
Recommended publications
  • Gst Gram Staining Learning Objectives the Student Will  Use Aseptic Techniques in the Safe Inoculation of Various Forms of Media
    GSt Gram Staining Learning Objectives The student will Use aseptic techniques in the safe inoculation of various forms of media. Follow oral and written instructions and manage time in the lab efficiently. Use the bright field light microscope to view microbes under oil immersion, make accurate observations and appropriate interpretations and store the microscope according to lab procedures. Properly prepare a bacterial smear for accurate staining and describe the chemical basis for simple staining and negative staining. Background/Theory Differential staining distinguishes organisms based on their interactions with multiple stains. In other words, two organisms may appear to be different colors. Differential staining techniques commonly used in clinical settings include Gram staining, acid-fast staining, endospore staining, flagella staining, and capsule staining. This link to the OpenStax Microbiology text provides more detail on these differential staining techniques. (OpenStax CNX, 2018) The Gram stain is a differential staining procedure that involves multiple steps. It was developed by Danish microbiologist Hans Christian Gram in 1884 as an effective method to distinguish between bacteria containing the two most common types of cell walls. (OpenStax CNX, 2018) One type consists of an inner plasma membrane and a thick outer layer of peptidoglycan. The other type consists of a double phospholipid Figure 1 Simplified structures of Gram negative cells (left) and Gram positive bilayer with a thin layer of cells (right) peptidoglycan between the two. The Gram Staining technique remains one of the most frequently used staining techniques. The steps of the Gram stain procedure are listed below and illustrated in Figure. (OpenStax CNX, 2018) 1.
    [Show full text]
  • Carbol Fuchsin Acc. to Ziehl-Neelsen
    Rev.07– 27/10/2011 Carbol Fuchsin acc. to Ziehl-Neelsen Manufacturer: Diapath Via Savoldini,71- 24057 MARTINENGO- BG- PH+39.0363.986.411 [email protected] CODE PACKAGING C0421 125 ml C0422 500 ml C0423 1000 ml Description Carbol fuchsin solution is used for the staining of acid resistant bacteria in the Ziehl-Neelsen method (see, also special stain kit code 010201). This staining is suitable to highlight mycobacteria, Nocardia and parasites on histological sections, smears, excreta and cultures. The protocol is based on typical structure of acid resistant bacteria, which acquire and keep dyes so that following decolorizing treatments are possible. Dark blue background is obtained with Methylene blue. Composition Phenol CAS No. 108-95-2 EC No. 203-6327 Basic fuchsine CAS No. 58969-01-0 EC No. 221-816-5 C.I. 42510 Ethanol CAS No.64-17-5 EC No.20-578-6 Staining protocol Histological sections (Ziehl-Neelsen staining) 1. Dewax sections and hydrate to distilled water 2. Carbol fuchsin solution for 30 minutes 3. Wash very well in running cold water 4. Acid alcohol* till sections are pale pink 5. Water for 5 minutes 6. Methylene blue solution for 30 seconds 7. Distilled water 8. Dehydrate very quickly, clarify and mount *Acid alcohol: 100 ml of ethyl alcohol 70° + 3 ml hydrochloric acid Cytological specimens (Ziehl-Neelsen staining) 1. Carbol fuchsin for 30 minutes 2. Wash in distilled water 3. Acid alcohol* 10 seconds 4. Wash in distilled water 5. Methylene blue for 30 seconds 6. Distilled water 7. Dehydrate very quickly, clarify and mount NOTE: Methylene blue could cover the possible presence of acid resistant bacteria in the specimen.
    [Show full text]
  • Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
    City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I.
    [Show full text]
  • Francisella Tularensis 6/06 Tularemia Is a Commonly Acquired Laboratory Colony Morphology Infection; All Work on Suspect F
    Francisella tularensis 6/06 Tularemia is a commonly acquired laboratory Colony Morphology infection; all work on suspect F. tularensis cultures .Aerobic, fastidious, requires cysteine for growth should be performed at minimum under BSL2 .Grows poorly on Blood Agar (BA) conditions with BSL3 practices. .Chocolate Agar (CA): tiny, grey-white, opaque A colonies, 1-2 mm ≥48hr B .Cysteine Heart Agar (CHA): greenish-blue colonies, 2-4 mm ≥48h .Colonies are butyrous and smooth Gram Stain .Tiny, 0.2–0.7 μm pleomorphic, poorly stained gram-negative coccobacilli .Mostly single cells Growth on BA (A) 48 h, (B) 72 h Biochemical/Test Reactions .Oxidase: Negative A B .Catalase: Weak positive .Urease: Negative Additional Information .Can be misidentified as: Haemophilus influenzae, Actinobacillus spp. by automated ID systems .Infective Dose: 10 colony forming units Biosafety Level 3 agent (once Francisella tularensis is . Growth on CA (A) 48 h, (B) 72 h suspected, work should only be done in a certified Class II Biosafety Cabinet) .Transmission: Inhalation, insect bite, contact with tissues or bodily fluids of infected animals .Contagious: No Acceptable Specimen Types .Tissue biopsy .Whole blood: 5-10 ml blood in EDTA, and/or Inoculated blood culture bottle Swab of lesion in transport media . Gram stain Sentinel Laboratory Rule-Out of Francisella tularensis Oxidase Little to no growth on BA >48 h Small, grey-white opaque colonies on CA after ≥48 h at 35/37ºC Positive Weak Negative Positive Catalase Tiny, pleomorphic, faintly stained, gram-negative coccobacilli (red, round, and random) Perform all additional work in a certified Class II Positive Biosafety Cabinet Weak Negative Positive *Oxidase: Negative Urease *Catalase: Weak positive *Urease: Negative *Oxidase, Catalase, and Urease: Appearances of test results are not agent-specific.
    [Show full text]
  • Biofire Blood Culture Identification System (BCID) Fact Sheet
    BioFire Blood Culture Identification System (BCID) Fact Sheet What is BioFire BioFire BCID is a multiplex polymerase chain reaction (PCR) test designed to BCID? identify 24 different microorganism targets and three antibiotic resistance genes from positive blood culture bottles. What is the purpose The purpose of BCID is to rapidly identify common microorganisms and of BCID? antibiotic resistance genes from positive blood cultures so that antimicrobial therapy can be quickly optimized by the physician and the antibiotic stewardship pharmacist. It is anticipated that this will result in improved patient outcomes, decreased length of stay, improved antibiotic stewardship, and decreased costs. When will BCID be BCID is performed on all initially positive blood cultures after the gram stain is routinely performed and reported. performed? When will BCID not For blood cultures on the same patient that subsequently become positive with be routinely a microorganism showing the same morphology as the initial positive blood performed? culture, BCID will not be performed. BCID will not be performed on positive blood cultures with gram positive bacilli unless Listeria is suspected. BCID will not be performed on blood culture bottles > 8 hours after becoming positive. BCID will not be performed between 10PM-7AM on weekdays and 2PM-7AM on weekends. BCID will not be performed for clinics that have specifically opted out of testing. How soon will BCID After the blood culture becomes positive and the gram stain is performed and results be available? reported, the bottle will be sent to the core Microbiology lab by routine courier. BCID testing will then be performed. It is anticipated that total turnaround time will generally be 2-3 hours after the gram stain is reported.
    [Show full text]
  • The Use of Matrix-Assisted Laser Desorption Ionization
    Session: OS202 MALDI-TOF - diagnostics for the micro lab in the 21st century Category: 4b. Diagnostic bacteriology – non-culture based, including molecular and MALDI-TOF 25 April 2017, 14:30 - 14:40 OS1031 The use of matrix-assisted laser desorption ionization - time-of-flight mass spectrometry (MALDI-TOF MS) for rapid bacterial identification in patients with smear- positive bacterial meningitis - a study of diagnostic accuracy Boaz Bishop*1, Yuval Geffen2, Ola Kassis3, Adi Kamar4, Mical Paul5, Ami Neuberger6 1Rambam Medical Center; Department of Internal Medicine B 2Rambam Health Care Campus; Microbiology Laboratory 3Technion 4Rambam Medical Center; Microbiology Laboratory 5Rambam Health Care Center; Division of Infectious Diseases 6Rambam Medical Center; Unit of Infectious Diseases Background: Bacterial meningitis is a rapidly occurring fatal disease, thus immediate diagnosis and adequate therapy are crucial. Diagnosis is obtained by cerebral spinal fluid (CSF); cultures results are the gold standard for diagnosis, but are available only within 24-72 hours. MALDI-TOF-MS identifies a wide range of bacteria by examining protein profiles. Little data exists regarding the use of MALDI- TOF-MS for examining CSF samples. We aimed at assessing the accuracy of MALDI-TOF-MS in rapid identification of CSF pathogens in patients with meningitis. Material/methods: We conducted a prospective study examining samples with positive CSF Gram stains with MALDI-TOF-MS. The results were compared with the CSF culture; identification was considered accurate when identical to the CSF culture results (species and genus level). Lab workers preforming the MALDI-TOF MS and ones interpreting its results were blinded to the result of the direct smear, besides the fact of it being positive.
    [Show full text]
  • GRAM STAIN REAGENTS - for in Vitro Use Only - Catalogue No
    GRAM STAIN REAGENTS - For in vitro use only - Catalogue No. SG51-55 Our Gram-Stain Reagents are intended to be The last step is the application of a counterstain. The used as a differential stain for the microscopic most common counterstain is safranin, which colors examination of bacterial cultures and laboratory decolorized cells pink. An alternate counterstain is basic specimens. fuchsin, which gives the decolorized cells more of a Gram staining is the single most useful test in bright pink or fuchsia coloration. The basic fuchsin the microbiology laboratory given its simplicity and counterstain works particularly well for anaerobic ability to differentiate bacteria into two main bacteria, but poorly for Legionella and Bordetella groups: gram-positive organisms and gram negative species. organisms. Hans Christian Joachim Gram first devised the original procedure in the late 19 th century, and although modifications have since been Formulation per Litre made, the basic principles and results remain the same. Our formulation is often referred to as the SG51 Gram Crystal Violet Hucker Modification. The staining spectrum includes almost all Crystal Violet ................................................ 20.0 g bacteria, many fungi, and parasites such as Ammonium Oxalate ....................................... 8.0 g Trichomonas , Strongyloides , and protozoan cysts. Methanol ................................................. 200.0 mL The notable exceptions include intracellular pathogens such as Chlamydia and Rickettsia , and SG52 Gram Iodine those organisms lacking a true cell wall such as Mycobacterium , Mycoplasma , and Ureaplasma . Iodine Crystals .............................................. 3.33 g The differential properties of the staining Potassium Iodide ........................................... 6.67 g process are attributed to the differences in composition between gram-positive and gram- SG53 Gram Decolorizer negative cell walls.
    [Show full text]
  • LAB 2: Staining and Streaking Protocols for Simple Stain, Gram Stain, Streak Plate Technique and Culture Maintenance
    LAB 2: Staining and Streaking Protocols for Simple stain, Gram Stain, Streak Plate Technique and Culture Maintenance Lab 2a: INTRODUCTION To Staining Live specimens are difficult to see with the bright field microscope. The contrast between a cell, which is primarily water, and the background, which is water, is poor. Staining is used to increase contrast and can be employed to provide information about the chemistry of a specimen. Stains, or dyes, are salts in which one of the ions is colored. In a basic stain, the color is in the positively charged ion. In an acidic stain the color is in the negatively charged ion. Bacterial surfaces have a slight negative charge. Thus, there is an affinity between a positively charged color ion and the negatively charged bacterial cell. In the Direct or Positive Staining Procedure a cell takes up a positively charged dye and becomes stained. Methylene blue, crystal violet, and safranin, are all basic dyes. In the Indirect or Negative Staining Procedure, a cell is immersed in a negatively charged dye. As the cell will repel the dye, the cell appears clear in a background of color. Nigrosine is an example of an acidic stain. Staining procedures that use one dye to increase contrast between specimen and background are simple staining procedures. Complex staining procedures employ a series of stains and chemical reagents to increase contrast and reveal information about the specimen. Any staining procedure that allows differentiation of one type of bacterium from another is a differential staining procedure. For all staining procedures, it is first required that cells be fixed to the slide.
    [Show full text]
  • Use of the Diagnostic Bacteriology Laboratory: a Practical Review for the Clinician
    148 Postgrad Med J 2001;77:148–156 REVIEWS Postgrad Med J: first published as 10.1136/pmj.77.905.148 on 1 March 2001. Downloaded from Use of the diagnostic bacteriology laboratory: a practical review for the clinician W J Steinbach, A K Shetty Lucile Salter Packard Children’s Hospital at EVective utilisation and understanding of the Stanford, Stanford Box 1: Gram stain technique University School of clinical bacteriology laboratory can greatly aid Medicine, 725 Welch in the diagnosis of infectious diseases. Al- (1) Air dry specimen and fix with Road, Palo Alto, though described more than a century ago, the methanol or heat. California, USA 94304, Gram stain remains the most frequently used (2) Add crystal violet stain. USA rapid diagnostic test, and in conjunction with W J Steinbach various biochemical tests is the cornerstone of (3) Rinse with water to wash unbound A K Shetty the clinical laboratory. First described by Dan- dye, add mordant (for example, iodine: 12 potassium iodide). Correspondence to: ish pathologist Christian Gram in 1884 and Dr Steinbach later slightly modified, the Gram stain easily (4) After waiting 30–60 seconds, rinse with [email protected] divides bacteria into two groups, Gram positive water. Submitted 27 March 2000 and Gram negative, on the basis of their cell (5) Add decolorising solvent (ethanol or Accepted 5 June 2000 wall and cell membrane permeability to acetone) to remove unbound dye. Growth on artificial medium Obligate intracellular (6) Counterstain with safranin. Chlamydia Legionella Gram positive bacteria stain blue Coxiella Ehrlichia Rickettsia (retained crystal violet).
    [Show full text]
  • CARBOL FUCHSIN STAIN (ZIEHL-NEELSEN) - for in Vitro Use Only - Catalogue No
    CARBOL FUCHSIN STAIN (ZIEHL-NEELSEN) - For in vitro use only - Catalogue No. SC24K Our Carbol Fuchsin (Ziehl-Neelsen) Stain is Formulation per 100 mL used in the microscopic detection of acid-fast microorganisms such as Mycobacterium . SC25 Carbol Fuchsin Stain (Ziehl-Zeelsen) Acid-fast organisms such as Mycobacterium Basic Fuchsin ..................................................... 0.3 g have cell walls that are resistant to conventional Phenol ................................................................ 5.0 g staining by aniline dyes such as the Gram stain. Ethanol ............................................................ 10 mL However methods that promote the uptake of dyes De-ionized Water ............................................. 90 mL are available; once stained these organisms are not easily decolorized even with acid-alcohol or acid- SC26 Carbol Fuchsin Decolorizer acetone solutions therefore they are described as Hydrochloric Acid .......................................... 3.0 mL acid-fast. Their resistance to destaining is a useful Ethanol .......................................................... 97.0 mL characteristic in differentiating these organisms from contaminating organisms and host cells. SC27 Carbol Fuchsin Counterstain (Methylene Blue) The Ziehl-Neelsen staining procedure is often Methylene Blue ................................................. 0.3 g referred to as hot carbolfuchsin because of the need De-ionized Water ............................................100 mL to apply heat during the staining
    [Show full text]
  • AFB Smear Microscopy
    AFB Smear Microscopy 1 Terminology • AFB Smear Microscopy: Microscopic examination of specially stained smears to detect acid-fast organisms such as Mycobacterium tuberculosis and non- tuberculous mycobacteria (NTM) • Acid Fast Bacilli (AFB): organisms (including mycobacteria) that resist decolorization with acid alcohol due to the lipid-rich mycolic acids in the cell wall thereby retaining the primary stain 2 Terminology • Processing: digestion, decontamination, and/or concentration of a primary patient specimen prior to setting up culture and smear • Smear: A small amount of primary patient specimen (direct or processed) is placed on a slide for the purpose of microscopic examination 3 AFB Microscopy • Examination of smears is a rapid, convenient and inexpensive test • All types of specimens can be evaluated – sputum, tissue, body fluids, etc. • Positive AFB smear results provide a first indication of mycobacterial infection and potential TB disease • Must be accompanied by additional testing including culture for confirmatory diagnosis 4 AFB Microscopy Results Guide Decisions • Clinical management – Patient therapy may be initiated for TB based on smear result and clinical presentation – Changes in smear status important for monitoring response to therapy • Laboratory testing – Algorithms for use of nucleic acid amplification tests are often based on smear positivity • Public health interventions – Smear status and grade useful for identifying the most infectious cases – Contact investigations prioritized based on smear result – Decisions regarding respiratory isolation based on smear result 5 Smear-positive TB Cases • Smear-positivity and grade indicates relative bacterial burden and correlates with disease presentation • Patients that are sputum smear-positive are 5–10 times more infectious than smear negative patients • Untreated or treated with an inappropriate regimen, a sputum smear-positive patient may infect 10-15 persons/year 6 Sputum Smear Results • In 2010, 43% of pulmonary TB cases in the U.S.
    [Show full text]
  • Kinyoun Carbol Fuchsin Stain
    KINYOUN CARBOL FUCHSIN STAIN - For in vitro use only - Catalogue No. SK50 Our Kinyoun Carbol Fuchsin Stain is used in staining reagents provided but in most instances requires the microscopic detection of acid-fast a modified staining procedure and additional reagents not microorganisms such as Mycobacterium . provided. Acid-fast organisms such as Mycobacterium have cell walls that are resistant to conventional staining by aniline dyes such as the Gram stain. Formulation per 100 mL However methods that promote the uptake of dyes are available; once stained these organisms are not SK50 Kinyoun Carbol Fuchsin Stain easily decolorized even with acid-alcohol or acid- Basic Fuchsin ................................................... 3.33 g acetone solutions therefore they are described as Phenol .............................................................. 6.67 g acid-fast. Their resistance to destaining is a useful Ethanol ......................................................... 16.7 mL characteristic in differentiating these organisms Deionized Water ........................................... 83.3 mL from contaminating organisms and host cells. The Kinyoun staining procedure is often SC26 Carbol Fuchsin Decolorizer referred to as cold carbolfuchsin because no heat is Hydrochloric Acid .......................................... 3.0 mL applied during the staining process unlike the Ziehl- Ethanol .......................................................... 97.0 mL Neelsen procedure. The primary stain for the Kinyoun procedure is the aniline
    [Show full text]