Plyometric Training and the High Jump

Total Page:16

File Type:pdf, Size:1020Kb

Plyometric Training and the High Jump OVERVIEW VIEWPOINT© by IAAF Plyometric Training 27:3; 9-21, 2012 and the High Jump by Jürgen Schiffer • Integration of plyometric training in the athlete’s training programme, AUTHOR • Practical aspects of plyometric training, • Plyometrics and resistance training, Jürgen Schiffer, PhD, is the Vice-Director • Plyometrics and circuit training, of the Central Library of the German Sport • Plyometric drills, University in Cologne and the Documenta- • Plyometrics and the high jump. tion Editor of NSA. The History of Plyometric Training Introduction Although western training scientists be- came aware of plyometrics in the mid-1970s, this form of training was developed in the Sovi- lyometric training is an important ele- et Union in the 1950s and early 1960s (DUKE, ment of the training programme of most 1990). The term was initially synonymous with P top-level jumpers, including high jump- triple jumpers and triple jump training (see, for ers. Although it has developed over more than example, YOUNG & MARINO, 1985). To de- half a century and been reported in the literature, velop the type of loads that the plant leg had its proper utilisation is still not fully understood by to withstand in the hop and step phases, ath- many coaches. Some apply plyometrics incor- letes trained by jumping down from one box rectly, which can reduce the positive training ef- onto the plant leg and instantly jumping up fects or even lead to injuries, while others avoid onto another box. The terms “stretch-shorten- the means, and thus compromise the potential ing” training, “depth jump” training, “reactive” performances of their athletes. training, “drop jump” training and “eccentric- concentric” training started appearing in the The aim of this article is to address this literature more and more in the 1960s. situation by providing a summary of the main aspects of plyometric training, drawn from the A particularly important piece of literature at current literature, as a general guide and as a the time was a study by Verhoshanski (1967), starting point for further study and discussion. where he advocated depth-jump heights be- Special emphasis is given to the use of plyo- tween 0.75 and 1.15m. According to REID metrics in training for the high jump. (1989), many coaches took this to mean ath- The main points to be covered are: letes could develop the stretch reflex by jump- ing down from boxes higher and higher, land • The history of plyometric training, on pre-stretched plant leg and bound back up • The scientific basis of plyometric training, onto another box. Such training was not sub- • Plyometric training compared to traditional stantiated by scientific research and the injury resistance training and ballistic training, score increased. However, over-zealous coach- New Studies in Athletics · no. 3.2012 9 Plyometric Training and the High Jump es often rationalised that athletes who could not The Scientific Basis of Plyometric complete the drill were simply too weak. Training Valeriy Borzov’s (URS) double victory in the During plyometric, or stretch-shortening, sprints at the 1972 Olympic Games in Munich exercises the muscle is rapidly stretched (ec- 1972 made everyone aware of how plyometrics centric contraction) and then shortened to can be incorporated into a sprint training pro- accelerate the body upward, as in a counter- gramme. Borzov made extensive use of vari- movement jump (see Figure 1). ous jumping exercises in his training but was by no means the first sprinter to utilise plyometric training. Armin Hary (FRG), the 100m gold med- allist in the 1960 Olympics, made use of various jumping exercises throughout his training pro- gramme. Many sprinters have also participated in the long jump, the training for which serves a similar purpose. A good example is Irena Sze- winska (POL), the multiple Olympic medallist, who incorporated extensive jump training into her programme (GAMBETTA, 1987). However, plyometric training has by no means been the exclusive domain of the sprint- ers/jumpers. Throwers, too, have used plyo- metrics, both for the upper and lower body. Upper body plyometrics has mainly taken the form of medicine ball exercises using 3-6kg Figure 1: Countermovement jump (Hoffman, 2002) balls. Janis Lusis (URS), former javelin world record holder and Olympic champion, made This stretch-shortening cycle has been dem- extensive use of jump training in the form of onstrated to enhance power performance to a hurdle jumps, hopping, and bounding to de- greater extent than concentric training only (e. velop the explosive power in his legs. g. by performing squat jumps) (Bosco, Vii- tasalo, Komi & Luhtanen, 1982). The im- Plyometric type training has also been utilised proved performance seen in the countermove- in the realm of middle distance and distance ment jump is attributed to a greater amount of training. Hill bounding, advocated by Arthur Lyd- stored elastic energy acquired during the ec- iard in the late 1950s, was designed to yield a centric phase that is able to be recruited during powerful stride but is nothing more than bound- the upward movement of the jump (Bosco & ing with the added resistance of the hill. Pekka Komi, 1979). In addition, the pre-stretch during Vasala (FIN), the 1972 Olympic champion over the countermovement results in a greater neural 1500m, used a six-week period of a ‘bounding stimulation (Schmidtbleicher, Gollhofer endurance phase’ in his training. This was per- & Frick, 1988) as well as an increase in the formed up a 400m slope of 5-15° gradient. joint moment (a turning effect of an eccentric force, also referred to as torque at the start of All these examples show that plyometric the upward movement (Kraemer & Newton, training in itself is not new, but the proper appli- 2000)). The greater joint moment results in a cation as a training method needs further clari- greater force exerted against the ground with a fication and guidelines (GAMBETTA, 1987). subsequent increase in impulse (greater force applied over time) and acceleration of the body upward. BOBBERT et al. (1996) have suggested that this latter mechanism may be the primary 10 New Studies in Athletics · no. 3.2012 Plyometric Training and the High Jump reason for the greater jump height observed dur- 1. The primary training method has used tra- ing a countermovement jump, whereas the other ditional resistance training programmes mechanisms may play more of a secondary role. with a relatively high intensity of training (4-6 RM) performed at a relatively slow ve- The performance of a stretch-shortening cycle locity of movement. requires a finely coordinated action of agonist, antagonist, and synergistic muscle groups. 2. Plyometric training is another training During the rapid action of the stretch-shorten- method that is used to enhance power ing cycle, the agonist and synergistic muscle performance. Most plyometric exercises groups must apply a great deal of force in a require the athletes to rapidly accelerate relatively short period of time. To maximise and decelerate their body weight during this action, the antagonist muscle groups a dynamic movement. The athletes’ body must be relaxed during the time the agonists weight is most often used as the overload, and synergists are active. However, a nov- but the use of external objects such as ice to stretch-shortening movements needs medicine balls also provides a good training some training to coordinate these movements. stimulus for certain plyometric exercises. Through training, contraction of the antagonist muscle muscle groups is reduced, which al- 3. The final method of training to enhance lows for a greater coordination of these muscle muscular power and explosive sports perfor- groups and produces a more powerful and ef- mance is a combination of traditional re- fective vertical jump. In addition, during the ini- sistance training and plyometric training. tial workouts, the EMG (electrical activity of the This form of resistance training is referred exercising muscles, indicating extent of activa- to as ballistic training. Ballistic movements tion) of the agonist muscle groups appears to (see Figure 2) are forced movements initi- be reduced. This is likely the result of activation ated by muscle actions but continued by of the golgi tendon organ (a muscle proprio- the momentum of the limbs (KENT, 2006). ceptor) to protect the muscle from excessive Ballistic movements are performed at a stretch. As the training programme continues, much lower intensity of training (approxi- these inhibitory effects exhibited by the muscle mately 30% of 1 RM) using a much higher proprioceptors may be reduced, allowing for velocity of movement (Wilson, Newton, improved stretch-shortening perform-ance Murphy & Humphries, 1993). The have (Schmidtbleicher et al, 1988). three main phases: 1) an initial phase of concentric action that starts the move- The primary question when discussing plyo- ment, 2) a coasting phase that relies on the metric training is whether plyometric drills should momentum generated in the initial phase, be considered a supplement to the normal train- and 3) a deceleration phase accompanied ing regimen or an alternative way of training. Spe- by eccentric actions (KENT, 2006). cifically, will plyometric training itself be as effec- tive in improving power and strength performance as resistance training? Will including these drills as part of the overall training programme provide any additional benefit for the athlete? Plyometric Training Compared to Traditional Resistance Training and Ballistic Training Three methods of training are generally used to improve the power of athletes who participate in dynamic, explosive sports: Figure 2: Ballistic training (HOffMAN, 2002) New Studies in Athletics · no. 3.2012 11 Plyometric Training and the High Jump Studies have demonstrated the effective- Integration of Plyometric Training in ness of plyometric training for improving pow- the Athlete’s Training Programme er, generally expressed as increases in vertical jump height (e.
Recommended publications
  • The Effects of a Six-Week Ballistic and Plyometric Training Programme on Female Golfers’ Drive Performance and Neuromuscular Characteristics
    The effects of a six-week ballistic and plyometric training programme on female golfers’ drive performance and neuromuscular characteristics Anita Ya Ting Chau A thesis submitted to Auckland University of Technology in fulfilment of the requirements for the degree of Masters of Sport and Exercise 2018 School of Sport and Recreation Supervisors: Dr. Adam Storey Dr. Scott R. Brown Abstract Golf-specific resistance training has become an additional method to increase drive distance and subsequent drive performance in recent years. However, the methods and subsequent benefits to such specific training modalities has thus far been isolated to male golfers. Female golfers may have differential outcomes from using identical golf-specific resistance training programmes to that of their male counterparts. To explore this unknown question in further detail, three separate investigations were undertaken within this thesis. Firstly, a systematic review was undertaken of the current literature pertaining to the effects of resistance training on golf drive performance and neuromuscular characteristics. Various types of resistance training protocols are reported within the golf literature with the intention to increase club head speed (CHS) to further drive distance. Researchers in the majority of these studies have recruited male golfers and have shown clear improvements in CHS. However, to date, no researchers have examined the effects of ballistic and plyometric training for female golfers. Secondly, ten skilled female golfers (HCP ≤ 10) were recruited to determine the reliability of an inertial measurement unit (IMU) to measure the rotational velocity of the lead wrist in the golf swing to use as an indicator for drive performance. Test-retest reliability was assessed over two separate occasions (separated by a minimum of six days).
    [Show full text]
  • Ballistic Training: the Effectiveness of Maximal Power Training on Physical Performance
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies Legacy Theses 2000 Ballistic training: the effectiveness of maximal power training on physical performance Fagan, Cory D. Fagan, C. D. (2000). Ballistic training: the effectiveness of maximal power training on physical performance (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/21700 http://hdl.handle.net/1880/40625 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Ballistic Training: The Effectiveness of bla..irnal Power Training on Physical Performance Cory D. Fagan A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE FACULTY OF KINESIOLOGY CALGARY. ALBERTA JULY, 2000 O Cory D. Fagan 2000 National Library Bibliotheque nationale I*B of Canada du Canada Acquisitions and Acquisitions et Bibliographic Services services bibliographiques 395 Wellington Street 395, rue Wellington OttawaON K1AON4 Ottawa ON K1A ON4 Canada Canada The author has granted a non- L'auteur a accorde une licence non exclusive licence allowing the exclusive permettant a la National Library of Canada to Bibliotheque nationale du Canada de reproduce, loan, distribute or sell reproduire, preter, distribuer ou copies of thls thesis in microform, vendre des copies de cette these sous paper or electronic formats.
    [Show full text]
  • Download Plyometrics Free Ebook
    PLYOMETRICS DOWNLOAD FREE BOOK Donald A. Chu, Gregory Myer | 248 pages | 01 Oct 2013 | Human Kinetics Publishers | 9780736079600 | English | Champaign, United States The Best Plyometric Exercises to Build Muscle The word sounds so complicated, but it's easier to understand. Journal Plyometrics Sports Sciences. Jump laterally to the right as the arms Plyometrics forward. Verkhoshansky was well known and respected worldwide in both Plyometrics scientific and in the coaching arenas. Except you will clap on the way up, and then let your chest drop and feel that eccentric, stretching Plyometrics the muscle. You Plyometrics find it helpful to hold your arms straight in front of you or in prayer position Plyometrics in the low lunge to help maintain balance. Immediately leap forward to land on your left foot. Repeat the first side before switching. This article has multiple issues. Close Close Login. This can enhance the positive effect of the Plyometrics and further increase the practitioner's ability to apply explosive power. Plyometrics are great for anyone involved in team sports. Plyometrics in a lunge position with the right foot forward and the left leg behind. This in turn would bring about a forced eccentric contraction which was then immediately switched to a concentric contraction as the athlete jumped upward. Categories : Physical exercise Weight training methodologies Strength training. Why not give the classic Olympic event a shot? Plyometrics method of training, or Plyometrics I say aid to training, has been around for about 40 years and every athlete that has tried it has reported the impressive results that they get.
    [Show full text]
  • The Importance of Muscular Strength: Training Considerations
    Sports Med https://doi.org/10.1007/s40279-018-0862-z REVIEW ARTICLE The Importance of Muscular Strength: Training Considerations 1 2 3 Timothy J. Suchomel • Sophia Nimphius • Christopher R. Bellon • Michael H. Stone4 Ó Springer International Publishing AG, part of Springer Nature 2018 Abstract This review covers underlying physiological exercises, plyometric exercise, unilateral exercise, and characteristics and training considerations that may affect kettlebell training may be limited in their potential to muscular strength including improving maximal force improve maximal strength but are still relevant to strength expression and time-limited force expression. Strength is development by challenging time-limited force expression underpinned by a combination of morphological and and differentially challenging motor demands. Training to neural factors including muscle cross-sectional area and failure may not be necessary to improve maximum architecture, musculotendinous stiffness, motor unit muscular strength and is likely not necessary for maxi- recruitment, rate coding, motor unit synchronization, and mum gains in strength. Indeed, programming that com- neuromuscular inhibition. Although single- and multi- bines heavy and light loads may improve strength and targeted block periodization models may produce the underpin other strength-power characteristics. Multiple greatest strength-power benefits, concepts within each sets appear to produce superior training benefits compared model must be considered within the limitations of the to single sets; however, an athlete’s training status and the sport, athletes, and schedules. Bilateral training, eccentric dose–response relationship must be considered. While 2- training and accentuated eccentric loading, and variable to 5-min interset rest intervals may produce the greatest resistance training may produce the greatest comprehen- strength-power benefits, rest interval length may vary sive strength adaptations.
    [Show full text]
  • Handbook of Sports Medicine and Science Strength Training for Sport IOC Medical Commission Sub-Commission on Publications in the Sport Sciences
    Handbook of Sports Medicine and Science Strength Tkaining - for Sport EDITED BY William J. Kraemer PhD The Human Performance Laboratory Department of Kinesiology Neag School of Education University of Connecticut Storrs, CT, USA Keijo Hakkinen PhD The Neuromuscular Research Center Department of Biology of Physical Activity University of Jyviiskyla Jyvaskyla, Finland b Blackwell Sclsnce Handbook of Sports Medicine and Science Strength Training for Sport IOC Medical Commission Sub-Commission on Publications in the Sport Sciences Howard G. Knuttgen PM (Co-ordinator) Boston, Massachusetts, USA Francesco Conconi MD Ferrara, Italy Harm Kuipers MD, PM Maastricht, The Netherlands Per A.F.H. Renstrom MD,P~D Stockholm, Sweden Handbook of Sports Medicine and Science Strength Tkaining - for Sport EDITED BY William J. Kraemer PhD The Human Performance Laboratory Department of Kinesiology Neag School of Education University of Connecticut Storrs, CT, USA Keijo Hakkinen PhD The Neuromuscular Research Center Department of Biology of Physical Activity University of Jyviiskyla Jyvaskyla, Finland b Blackwell Sclsnce 0 2000 by The right of the Authors to be DISTRIBUTORS Blackwell Science Ltd identified as the Authors of this Work Editorial Offices: has been asserted in accordance Marston Book Services Ltd 9600 Garsington Road, Oxford OX4 2DQ with the Copyright, Designs and PO Box 269 350 Main Street, Malden Patents Act 1988. Abingdon, Oxon OX14 4YN MA 02148 5020, USA (Orders: Tel: 01235 465500 54 University Street, Carlton All rights reserved. No part of
    [Show full text]
  • Openair@RGU the Open Access Institutional Repository at Robert
    OpenAIR@RGU The Open Access Institutional Repository at Robert Gordon University http://openair.rgu.ac.uk Citation Details Citation for the version of the work held in ‘OpenAIR@RGU’: SWINTON, P. A., 2013. A biomechanical investigation of contemporary powerlifting training practices and their potential application to athletic development. Available from OpenAIR@RGU. [online]. Available from: http://openair.rgu.ac.uk Copyright Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository, are protected by copyright and intellectual property law. If you believe that any material held in ‘OpenAIR@RGU’ infringes copyright, please contact [email protected] with details. The item will be removed from the repository while the claim is investigated. A BIOMECHANICAL INVESTIGATION OF CONTEMPORARY POWERLIFTING TRAINING PRACTICES AND THEIR POTENTIAL APPLICATION TO ATHLETIC DEVELOPMENT PAUL ALAN SWINTON School of Health Sciences Robert Gordon University, UK Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy, March 2013 TABLE OF CONTENTS Title page I Table of contents II Tables and illustrations VI Acknowledgements X Publications and presentations XI Abbreviations list XIII Glossary XIV Abstract XV CHAPTER 1. INTRODUCTION 1 CHAPTER 2. LITERATURE REVIEW 2.1 Resistance training 5 2.1.1 Introduction to resistance training 5 2.1.2 Resistance training models 7 2.1.3 Resistance training and sports performance 18 2.2 Strength athletes 29 2.3 Application of Biomechanics 34 2.3.1 Traditional applications 34 2.3.2 The variable based approach 38 2.4 Summary 54 II CHAPTER 3. CONTEMPORARY TRAINING PRACTICES OF POWERLIFTERS 3.1 Prelude 55 3.2 Introduction 56 3.3 Methods 61 3.4 Results 63 3.4.1 Survey 63 3.4.2 Interviews 66 3.5 Discussion 67 3.6 Summary and Conclusion 84 CHAPTER 4.
    [Show full text]
  • Effects of General, Special, and Specific Resistance
    Journal of Strength and Conditioning Research, 2001, 15(1), 148±156 q 2001 National Strength & Conditioning Association Brief Review Effects of General, Special, and Speci®c Resistance Training on Throwing Velocity in Baseball: A Brief Review COOP DERENNE,1 KWOK W. HO,1 AND JAMES C. MURPHY2 1Department of Kinesiology and Leisure Science, College of Education, University of Hawaii-Manoa, Honolulu, Hawaii 96822; 2University of British Columbia, Vancouver, British Columbia, Canada, V6K2B2. ABSTRACT mary analytical attention, the trunk and lower extrem- Throwing velocity is a necessary requirement for success in ities play a vital role in throwing mechanics. Toyosh- baseball. All position players, including pitchers, may in- ima et al. (65) conducted a biomechanical study on the crease their defensive performance if their throwing velocity overhand throw. The results indicated that 46.9% of is improved. A review of the literature suggests that throw- the velocity of the overhand throw could be attributed ing velocity can be increased by resistance training and/or to the stride and body rotation, whereas 53.1% of the biomechanical improvement of the throwing motion. This velocity was due to action of the arm. Therefore, resis- paper reviews the 3 broad categories of resistance-training tance-training programs for baseball players to im- methods by which throwing velocity is increased. The results prove throwing velocity, particularly for pitchers, of research using general, special, and speci®c throwing re- should be designed to include arm, trunk, and lower- sistance-training exercises are presented. The role and ap- body exercises. plications of these different exercises for baseball players of different ages are discussed.
    [Show full text]
  • Effects of Velocity-Based Training on Strength and Power in Elite Athletes—A Systematic Review
    International Journal of Environmental Research and Public Health Review Effects of Velocity-Based Training on Strength and Power in Elite Athletes—A Systematic Review Michał Włodarczyk 1,* , Przemysław Adamus 2, Jacek Zieli ´nski 1 and Adam Kantanista 3 1 Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, 61-871 Pozna´n,Poland; [email protected] 2 Independent Researcher, 63-000 Wielkopolska, Poland; [email protected] 3 Department of Physical Education and Lifelong Sports, Poznan University of Physical Education, 61-871 Pozna´n,Poland; [email protected] * Correspondence: [email protected] Abstract: Due to drawbacks of the percentage-based approach, velocity-based training was proposed as a method to better and more accurately prescribe training loads to increase general and specific performance. The purpose of this study was to perform a systematic review of the studies that show effects of velocity-based resistance training on strength and power performance in elite athletes. Electronic searches of computerized databases were performed according to a protocol that was agreed by all co-authors. Four databases—SportDiscus with Full Text and MEDLINE via EBSCO, SCOPUS, and Web of Science—were searched. Seven studies were found which researched the effects of velocity-based resistance training on athletes after a given training period. The analyzed studies suggest that applying velocity losses of 10–20% can help induce neuromuscular adaptations and reduce neuromuscular fatigue. Using velocity zones as part of a separate or combined (e.g., Citation: Włodarczyk, M.; Adamus, P.; Zieli´nski,J.; Kantanista, A. Effects plyometric) training program can elicit adaptations in body composition and performance parameters.
    [Show full text]
  • Training for Power: Principles and Practice
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Middlesex University Research Repository Training For Power: Principles And Practice Anthony Turner MSc, PGCE, CSCS, ASCC Developing an athlete’s ability to generate power is a key goal of periodisation. This development can be enhanced through manipulation of the force­velocity curve, whereby athletes first increase force output (maximum strength), and then the ability to apply this force under progressively time constrained movement skills specific to their sport. The first part of this article looks at the physiological and biomechanical theories that govern the efficacy of power training, and reviews the effect of strength training and ballistic training on power development. The second part focuses on training prescription . Introduction Since power development amongst athletes is often considered a key component to successful sports performance (as most activities are force and time dependent), understanding this component of physical fitness is essential if it is to be efficiently integrated into strength and conditioning (S&C) programmes. Successful achievement of such an outcome however, is based on a sound understanding of the scientific principles that underpin power. The aim of this article therefore, is to provide an overview of these physiological and biomechanical determinates and suggest means to manipulate them in order to increase the efficacy of such integration. The second part of this article then discusses training theories for the development of power. Anthony Turner is a Strength & Conditioning Coach and a Senior Principles of power training Lecturer and Programme Leader for the MSc in Strength & Conditioning Power and the force­velocity curve at Middlesex University, London, Quantitatively, power can be described as work per unit of time, or often, England.
    [Show full text]
  • Power Characteristics of Conventional and Hexagonal Barbell Jump Squats Josh Kieffer
    Ithaca College Digital Commons @ IC Ithaca College Theses 2019 Power Characteristics of Conventional and Hexagonal Barbell Jump Squats Josh Kieffer Follow this and additional works at: https://digitalcommons.ithaca.edu/ic_theses Part of the Exercise Science Commons POWER CHARACTERISTICS OF CONVENTIONAL AND HEXAGONAL BARBELL JUMP SQUATS A Masters Thesis presented to the Faculty of the Graduate Program in Exercise and Sport Sciences Ithaca College __________________ In partial fulfillment of the requirements for the degree Master of Science __________________ by Josh Kieffer August 2019 Ithaca College School of Health Sciences and Human Performance Ithaca, New York CERTIFICATE OF APPROVAL __________________ MASTER OF SCIENCE THESIS __________________ This is to certify that the Thesis of Josh Kieffer submitted in partial fulfillment of the requirements for the degree of Master of Science in the School of Health Sciences and Human Performance at Ithaca College has been approved. Thesis Adviser: ________________________________________________ Committee Member: ________________________________________________ Candidate: ________________________________________________ Chair, Graduate Program: ________________________________________________ Dean of Graduate Studies: ________________________________________________ Date: ________________________________________________ ABSTRACT Training to develop power typically involves performing a combination of slow-moving resistance exercises against heavy loads (e.g., back squats) and/or fast-moving exercises against light loads (e.g., jump squats). Hexagonal barbell exercises such as hexagonal barbell deadlift (HBD) and hexagobal barbell jump squats (HBJS) are commonly used alternatives to conventional barbell exercises such as the back squat (BS) and jump squat. The change in load position with these hexagonal barbell exercises appears to allow for greater force, velocity, and power compared to conventional barbell exercises, however knowledge on hexagonal barbell exercises is limited by lack of studies.
    [Show full text]
  • Effects of High-Velocity Versus Low-Velocity Resistance Training
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2013 Effects of High-Velocity versus Low-Velocity Resistance Training on Resting Metabolic Rate and Functional Performance in Older Adults Laura Ashleigh Morgan University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Exercise Science Commons Recommended Citation Morgan, Laura Ashleigh, "Effects of High-Velocity versus Low-Velocity Resistance Training on Resting Metabolic Rate and Functional Performance in Older Adults" (2013). Theses and Dissertations. 852. http://scholarworks.uark.edu/etd/852 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Effects of High-Velocity versus Low-Velocity Resistance Training on Resting Metabolic Rate and Functional Performance in Older Adults Effects of High-Velocity versus Low-Velocity Resistance Training on Resting Metabolic Rate and Functional Performance in Older Adults A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Kinesiology by Laura Morgan University of Arkansas Bachelor of Science in Education in Kinesiology, 2010 August 2013 University of Arkansas This thesis is approved for recommendation to the Graduate Council. Dr. Inza Fort Thesis Director Dr. Ro DiBrezzo Committee Member Dr. R. Michelle Gray Committee Member Abstract The purpose of this study was to compare the effects of a 12-week high-velocity resistance training (HVRT) protocol to a traditional low-velocity resistance training (LVRT) protocol on resting metabolic rate (RMR) and other selected measures of muscular and functional fitness in older adults.
    [Show full text]
  • 1 the Effect of Weight and Ballistic Training on Speed, Agility, Vertical
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by St Mary's University Open Research Archive The effect of weight and ballistic training on speed, agility, vertical jump height and skill performance in soccer players. Principle Researcher: Cedric Sciberras Project Supervisors: Dr. Stephen David Patterson and Paul Reid 3rd June 2017 This Research Project is submitted as partial fulfilment of the requirements for the degree of Master of Science, St Mary’s University. 1 TABLE OF CONTENTS Abstract 5 Chapter 1 Introduction 6 Chapter 2 Methods 9 2.1 Experimental Approach to the Problem 9 2.2 Subjects 9 2.3 Procedures 10 2.4 Statistical Analysis 15 Chapter 3 Results 16 Chapter 4 Discussion 19 Chapter 5 Practical applications 26 References 27 Appendix A Participant information sheet and consent form 34 Appendix B Application for ethical approval 35 Appendix C Participant screening form 68 Appendix D Confirmation letter for participation in the study 70 2 LIST OF FIGURES Figure 1 - LSPT setup 15 Figure 2a - Pre and post-test mean scores for the weight training group 16 Figure 2b - Pre and post-test mean scores for the ballistic training group 17 3 LIST OF TABLES Table 1 - Anthropometric data of the participants 10 Table 2 - Progression of exercises for players in the weight training group 12 Table 3 - Progression of exercises for players in the ballistic training group 12 Table 4 - Results for ANOVA analysis showing main effects and group effects 18 4 ABSTRACT The aim of the study was to investigate the effects of two strength training methods, weight training (WT) and ballistic training (BT) on speed, agility, vertical jump height and passing skill.
    [Show full text]