Towards a Second Stage of Indeterminism in Science

Total Page:16

File Type:pdf, Size:1020Kb

Towards a Second Stage of Indeterminism in Science Interdisciplinary Science Reviews, 12, B. B. Mandelbrot: 1987, 117-127 It occupies a critical position along the tortuous path that eventually led to fractals. This, and the fact that this text appears in a Towards a second stage journal called Interdisciplinary Science of indeterminism in Reviews, seems to call for a few philosophical and autobiographical comments. My research science career, which must be described as “improbable,” was triggered by a casual side interest in diverse isolated empirical Benoit Mandelbrot regularities that everyone else viewed as of little consequence. As I look back, my life divides into three well-separated periods. When the International Congress for Logic, A period of gestation started with my PhD Methodology, and the Philosophy of Science thesis in 1952 and lasted until 1964. was held in Jerusalem, in September 1964, I Jumping ahead, the third period that delivered an invited address titled “The started in 1975, witnessed consolidation and Epistemology of Chance in Certain Newer increasingly broad, rapid, and smooth Sciences.” But I hardly tried to prepare a development, marked by books that do seem text for the Proceedings, and for many years to involve an effective mix of technique and I kept resisting friendly suggestions – philosophy. Fractal geometry has the special notably by the Berkeley molecular biologist charm of allowing uninterrupted interplay Gunther S. Stent – that the draft be between concrete fields (ranging from widely reworked, completed and printed. One practiced ones to the very obscure) and reason was that success kept eluding sophisticated pure mathematics. It has been repeated attempts to state a technical point, successful as mathematics. In fact, it has while also making clear its philosophical shamed the iconoclastic tradition that ran implications. But it is good to see the old from Laplace to Bourbaki by stimulating or text published at long last. It has been reviving several mathematical theories; it substantially edited for style and shortened, has become a widely used tool in the but not otherwise modified, and it is description of nature and in the wide search preceded by a few pages of miscellaneous for order in chaos; and finally, fractal art is observations, which have been recast in the now becoming widely admired as art, form of a dialogue. References were updated irrespective of its unusual origin. in 2002. The middle period lasted from 1964 to 1975. From the viewpoint of fractals' development, it was in many ways the most 1. Reflections from the interesting but from a personal viewpoint it perspective of 1987 on a was most frustrating. This period was premature fractal manifesto punctuated by successive fractal manifestos, the most notable ones having been a 1972 written in 1964 lecture at the Collège de France in Paris, which followed a Trumbull Lecture at Yale in While the word fractal did not appear until 1970, and the even earlier 1964 Jerusalem 1975, this 1964 draft was important in the lecture with which we deal here. evolution of fractal geometry, an When chance or duty makes me reread interdisciplinary enterprise I conceived in this and other unpublished texts of the 1964, then developed. I have devoted to it middle period, I am surprised at the almost all my creative life. precision and clarity given to many ideas that were not fully worked out until much later in Question: my life. But my style failed to encourage the Why should this old text be of historical reader to plow through papers that had interest today? already acquired the reputation of advancing very disturbing ideas. It is useful, therefore, weather and of prices were “wild.” I used to to state at this point one basic idea of use “erratic,” an ill-chosen Latin word that fractals. did not last. My work invited the sciences to Why is school geometry so often described move on to a second stage of indeterminism. as “cold” and “dry?” One reason is this How was this invitation received? geometry’s inability to tell what shape a Certainly not to my satisfaction! On the one cloud is, or a mountain, or a coastline. hand, many influential scholars considered Clouds are not spheres, mountains are not my discoveries to be potentially important, cones, coastlines are not circles, and more and offered me a series of renowned pulpits generally, man’s oldest questions concerning from which to present them. Yet, until 1975, the shape of this world were left unanswered they were called controversial. In fact, they by Euclid and his successors, who concerned provoked little discussion, pro or con, to themselves exclusively with an unrealistically justify them being so called controversial. orderly universe. In order to achieve a They failed to affect the work of numerous, handle on nature, a radically different diverse, distinguished and often well- geometry is needed, one that must disposed people who heard me. To use a contradict many old ideas that have become term favored by Stent, my work suffered so familiar as to seem obvious and from being “premature.” universally valid. However, to negate these ideas completely would be self-defeating Question: because it would replace excessive order You have said that, in your work, a with utter chaos. Fractal geometry is a new growing role is played by sophisticated and very different broad area of order within graphics, dear to a geometer’s and an artist’s the domain of the old chaos. Some fractals eye. Could you elaborate? imitate the mountains and the clouds, while others are wild and wonderful new shapes. BBM: More generally, the new fractal world is in Being premature is particularly painful some cases hard to tell from the real one, when one’s whole scientific work has been and in other cases it is of fantastic and interdisciplinary. Thus, it is unusual indeed surprising beauty. that fractal geometry managed to survive and to become part of the mainstream, Question: without having to be first forgotten and later Is there any relation between second stage rediscovered by others, when its time came. indeterminism and chaotic fluctuations? Why did its time come after 1975, but not before? We cannot be sure, except that an BBM: essential role has clearly been played by The conventional wisdom has long been computer graphics – of which I became a that the study of the weather and of pioneer by necessity. economics is harder than the study of perfect Mention of Stent’s paper necessarily brings gases, but will eventually use the same forth a thought concerning the issue of means to achieve the same degree of uniqueness in scientific discovery. Indeed, perfection. To the contrary, my work Stent draws our attention to the (hostile) suggested a profound qualitative distinction review that the biochemist Erwin Chargaff between the underlying fluctuations, and as wrote of The Double Helix by James D. a result the theories of the corresponding Watson. In that review, we read that phenomena were bound to differ sharply. On “Timon of Athens could not have been the one hand, the fluctuations that written, Les Desmoiselles d’Avignon could characterize the theory of gases should be not have been painted, had Shakespeare and viewed as “mild,” and the first stage of Picasso not existed. But of how many indeterminism in science was comparatively scientific achievements can this be claimed? easy because of their being mild. On the One could almost say that, with very few other hand, the facts already established by exceptions, it is not the men that make 1964 indicated that the fluctuations of the science, it is science that makes the men. What A does today, B or C or D could surely that – for better or worse – were greatly do tomorrow.” affected by my peculiar life story. Would This may be true of many of the individual another individual, or some collectivity, have strands of fractal geometry. But fractal reached the same philosophy and built the geometry is not merely a juxtaposition of its same whole? A worthy question for the individual strands. It arose as an integrated future, assuming that this whole actually whole, ruled by a philosophy that was survives. conceived and developed under conditions 2.1. Differences in scientific 2. Text of the Premature development It is often asserted that differences in Fractal Manifesto of 1964 development between sciences are solely due to differences of “age” as measured from Since the turn of the century, acceptance the earliest systematic investigation of the of indeterministic stochastic theories in different topics. I disagree. Indeed, science has spread spectacularly. A new probability theory saw its first triumphs in epistemology has arisen as a result, physics, but first arose in the study of the superseding the epistemology built upon statistical problems raised by economic- deterministic causal theories. In certain psychological choice. In the hands of areas of physics, the new approach was Laplace (circa 1800), a probabilistic view of rapidly and strikingly successful, for example social science and an arch-deterministic view in the study of thermal fluctuations in gases of physics had reached a high point at the and in solids, and in quantum mechanics. same time. Even as late as 1912, statistical Elsewhere, progress has turned out to be social science could still be presented as a slow, and the fulfillment of high initial model to be followed by statistical physics. expectations is continually postponed. Such Similarly, in the works of Boussinesq (1872) is the case of meteorology and in most of and Osborne Reynolds (1895), the statistical economics. The present paper proposes to concept of turbulence in fluids was roughly trace this difference to the existence of a contemporary with Maxwell’s and deep qualitative contrast between the nature Boltzmann’s (1866) kinetic theories of gases.
Recommended publications
  • Indeterminism in Physics and Intuitionistic Mathematics
    Indeterminism in Physics and Intuitionistic Mathematics Nicolas Gisin Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland (Dated: November 5, 2020) Most physics theories are deterministic, with the notable exception of quantum mechanics which, however, comes plagued by the so-called measurement problem. This state of affairs might well be due to the inability of standard mathematics to “speak” of indeterminism, its inability to present us a worldview in which new information is created as time passes. In such a case, scientific determinism would only be an illusion due to the timeless mathematical language scientists use. To investigate this possibility it is necessary to develop an alternative mathematical language that is both powerful enough to allow scientists to compute predictions and compatible with indeterminism and the passage of time. We argue that intuitionistic mathematics provides such a language and we illustrate it in simple terms. I. INTRODUCTION I have always been amazed by the huge difficulties that my fellow physicists seem to encounter when con- templating indeterminism and the highly sophisticated Physicists are not used to thinking of the world as in- circumlocutions they are ready to swallow to avoid the determinate and its evolution as indeterministic. New- straightforward conclusion that physics does not neces- ton’s equations, like Maxwell’s and Schr¨odinger’s equa- sarily present us a deterministic worldview. But even tions, are (partial) differential equations describing the more surprising to me is the attitude of most philoso- continuous evolution of the initial condition as a func- phers, especially philosophers of science. Indeed, most tion of a parameter identified with time.
    [Show full text]
  • Wittgenstein on Freedom of the Will: Not Determinism, Yet Not Indeterminism
    Wittgenstein on Freedom of the Will: Not Determinism, Yet Not Indeterminism Thomas Nadelhoffer This is a prepublication draft. This version is being revised for resubmission to a journal. Abstract Since the publication of Wittgenstein’s Lectures on Freedom of the Will, his remarks about free will and determinism have received very little attention. Insofar as these lectures give us an opportunity to see him at work on a traditional—and seemingly intractable—philosophical problem and given the voluminous secondary literature written about nearly every other facet of Wittgenstein’s life and philosophy, this neglect is both surprising and unfortunate. Perhaps these lectures have not attracted much attention because they are available to us only in the form of a single student’s notes (Yorick Smythies). Or perhaps it is because, as one Wittgenstein scholar put it, the lectures represent only “cursory reflections” that “are themselves uncompelling." (Glock 1996: 390) Either way, my goal is to show that Wittgenstein’s views about freedom of the will merit closer attention. All of these arguments might look as if I wanted to argue for the freedom of the will or against it. But I don't want to. --Ludwig Wittgenstein, Lectures on Freedom of the Will Since the publication of Wittgenstein’s Lectures on Freedom of the Will,1 his remarks from these lectures about free will and determinism have received very little attention.2 Insofar as these lectures give us an opportunity to see him at work on a traditional—and seemingly intractable— philosophical problem and given the voluminous secondary literature written about nearly every 1 Wittgenstein’s “Lectures on Freedom of the Will” will be abbreviated as LFW 1993 in this paper (see bibliography) since I am using the version reprinted in Philosophical Occasions (1993).
    [Show full text]
  • Is the Cosmos Random?
    IS THE RANDOM? COSMOS QUANTUM PHYSICS Einstein’s assertion that God does not play dice with the universe has been misinterpreted By George Musser Few of Albert Einstein’s sayings have been as widely quot- ed as his remark that God does not play dice with the universe. People have naturally taken his quip as proof that he was dogmatically opposed to quantum mechanics, which views randomness as a built-in feature of the physical world. When a radioactive nucleus decays, it does so sponta- neously; no rule will tell you when or why. When a particle of light strikes a half-silvered mirror, it either reflects off it or passes through; the out- come is open until the moment it occurs. You do not need to visit a labora- tory to see these processes: lots of Web sites display streams of random digits generated by Geiger counters or quantum optics. Being unpredict- able even in principle, such numbers are ideal for cryptography, statistics and online poker. Einstein, so the standard tale goes, refused to accept that some things are indeterministic—they just happen, and there is not a darned thing anyone can do to figure out why. Almost alone among his peers, he clung to the clockwork universe of classical physics, ticking mechanistically, each moment dictating the next. The dice-playing line became emblemat- ic of the B side of his life: the tragedy of a revolutionary turned reaction- ary who upended physics with relativity theory but was, as Niels Bohr put it, “out to lunch” on quantum theory.
    [Show full text]
  • PA As a Stochastic Process
    Anti-Essentialism in Public Administration Conference A decentering tendency has undermined the foundations of public administration theory Fort Lauderdale, FL March 2-3, 2007 Theorizing Public Administration as a Stochastic Process Catherine Horiuchi University of San Francisco Working Paper: Not for attribution or citation with author’s permission Abstract The capacity of information networks to capture and manipulate ever-larger streams of globally acquired, real-time data accelerates fragmentation of traditional public administration protocols, away from managing stable states toward temporary and permeable framing of governmental and corporate interests. Technologies simultaneously provide historic opportunities for dissent, individualism, and small-d democratic movements. Intermittent, overlapping governance – characterized by private government, small wars, state failures, and opportunistic shifts of power and capital from public stewardship to private parties – results in ideological or pragmatic retreats from and progressions of institutional boundaries. Ephemeral balances rather than negotiated long-term settlements demark the edges of public and private. This fluidity of realms increasingly affects the duration and allocation of administrative responsibilities between formerly firmly edged divisions of local, state, and national governments. The assumption of a static state in public administration theory does not hold. Government becomes a metaphorical fluid, an eddy that retains its shape more or less, long enough to become an object of analysis and action. The new assumption of administrative fluidity invokes a world of measurement estimating impacts of partially ordered and partially stochastic events. Sensemaking derives from sophisticated evaluative and probabilistic analyses. Traditional construction of the field with its assumption of durable governmental operations may no longer be a best-fit theory for multi-layered, ephemeral states.
    [Show full text]
  • Reliable Reasoning”
    Abstracta SPECIAL ISSUE III, pp. 10 – 17, 2009 COMMENTS ON HARMAN AND KULKARNI’S “RELIABLE REASONING” Glenn Shafer Gil Harman and Sanjeev Kulkarni have written an enjoyable and informative book that makes Vladimir Vapnik’s ideas accessible to a wide audience and explores their relevance to the philosophy of induction and reliable reasoning. The undertaking is important, and the execution is laudable. Vapnik’s work with Alexey Chervonenkis on statistical classification, carried out in the Soviet Union in the 1960s and 1970s, became popular in computer science in the 1990s, partly as the result of Vapnik’s books in English. Vapnik’s statistical learning theory and the statistical methods he calls support vector machines now dominate machine learning, the branch of computer science concerned with statistical prediction, and recently (largely after Harman and Kulkarni completed their book) these ideas have also become well known among mathematical statisticians. A century ago, when the academic world was smaller and less specialized, philosophers, mathematicians, and scientists interested in probability, induction, and scientific methodology talked with each other more than they do now. Keynes studied Bortkiewicz, Kolmogorov studied von Mises, Le Dantec debated Borel, and Fisher debated Jeffreys. Today, debate about probability and induction is mostly conducted within more homogeneous circles, intellectual communities that sometimes cross the boundaries of academic disciplines but overlap less in their discourse than in their membership. Philosophy of science, cognitive science, and machine learning are three of these communities. The greatest virtue of this book is that it makes ideas from these three communities confront each other. In particular, it looks at how Vapnik’s ideas in machine learning can answer or dissolve questions and puzzles that have been posed by philosophers.
    [Show full text]
  • 18.600: Lecture 31 .1In Strong Law of Large Numbers and Jensen's
    18.600: Lecture 31 Strong law of large numbers and Jensen's inequality Scott Sheffield MIT Outline A story about Pedro Strong law of large numbers Jensen's inequality Outline A story about Pedro Strong law of large numbers Jensen's inequality I One possibility: put the entire sum in government insured interest-bearing savings account. He considers this completely risk free. The (post-tax) interest rate equals the inflation rate, so the real value of his savings is guaranteed not to change. I Riskier possibility: put sum in investment where every month real value goes up 15 percent with probability :53 and down 15 percent with probability :47 (independently of everything else). I How much does Pedro make in expectation over 10 years with risky approach? 100 years? Pedro's hopes and dreams I Pedro is considering two ways to invest his life savings. I Riskier possibility: put sum in investment where every month real value goes up 15 percent with probability :53 and down 15 percent with probability :47 (independently of everything else). I How much does Pedro make in expectation over 10 years with risky approach? 100 years? Pedro's hopes and dreams I Pedro is considering two ways to invest his life savings. I One possibility: put the entire sum in government insured interest-bearing savings account. He considers this completely risk free. The (post-tax) interest rate equals the inflation rate, so the real value of his savings is guaranteed not to change. I How much does Pedro make in expectation over 10 years with risky approach? 100 years? Pedro's hopes and dreams I Pedro is considering two ways to invest his life savings.
    [Show full text]
  • Stochastic Models Laws of Large Numbers and Functional Central
    This article was downloaded by: [Stanford University] On: 20 July 2010 Access details: Access Details: [subscription number 731837804] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Stochastic Models Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597301 Laws of Large Numbers and Functional Central Limit Theorems for Generalized Semi-Markov Processes Peter W. Glynna; Peter J. Haasb a Department of Management Science and Engineering, Stanford University, Stanford, California, USA b IBM Almaden Research Center, San Jose, California, USA To cite this Article Glynn, Peter W. and Haas, Peter J.(2006) 'Laws of Large Numbers and Functional Central Limit Theorems for Generalized Semi-Markov Processes', Stochastic Models, 22: 2, 201 — 231 To link to this Article: DOI: 10.1080/15326340600648997 URL: http://dx.doi.org/10.1080/15326340600648997 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]
  • On the Law of the Iterated Logarithm for L-Statistics Without Variance
    Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. 3 (2008), No. 3, pp. 417-432 ON THE LAW OF THE ITERATED LOGARITHM FOR L-STATISTICS WITHOUT VARIANCE BY DELI LI, DONG LIU AND ANDREW ROSALSKY Abstract Let {X, Xn; n ≥ 1} be a sequence of i.i.d. random vari- ables with distribution function F (x). For each positive inte- ger n, let X1:n ≤ X2:n ≤ ··· ≤ Xn:n be the order statistics of X1, X2, · · · , Xn. Let H(·) be a real Borel-measurable function de- fined on R such that E|H(X)| < ∞ and let J(·) be a Lipschitz function of order one defined on [0, 1]. Write µ = µ(F,J,H) = ← 1 n i E L : (J(U)H(F (U))) and n(F,J,H) = n Pi=1 J n H(Xi n), n ≥ 1, where U is a random variable with the uniform (0, 1) dis- ← tribution and F (t) = inf{x; F (x) ≥ t}, 0 <t< 1. In this note, the Chung-Smirnov LIL for empirical processes and the Einmahl- Li LIL for partial sums of i.i.d. random variables without variance are used to establish necessary and sufficient conditions for having L with probability 1: 0 < lim supn→∞ pn/ϕ(n) | n(F,J,H) − µ| < ∞, where ϕ(·) is from a suitable subclass of the positive, non- decreasing, and slowly varying functions defined on [0, ∞). The almost sure value of the limsup is identified under suitable con- ditions. Specializing our result to ϕ(x) = 2(log log x)p,p > 1 and to ϕ(x) = 2(log x)r,r > 0, we obtain an analog of the Hartman- Wintner-Strassen LIL for L-statistics in the infinite variance case.
    [Show full text]
  • Quantum Mechanics and Free Will: Counter−Arguments
    Quantum mechanics and free will: counter−arguments Martín López−Corredoira Astronomisches Institut der Universitaet Basel, Venusstrasse 7, CH−4102−Binningen, Switzerland E−mail: [email protected] Abstract Since quantum mechanics (QM) was formulated, many voices have claimed this to be the basis of free will in the human beings. Basically, they argue that free will is possible because there is an ontological indeterminism in the natural laws, and that the mind is responsible for the wave function collapse of matter, which leads to a choice among the different possibilities for the body. However, I defend the opposite thesis, that free will cannot be defended in terms of QM. First, because indeterminism does not imply free will, it is merely a necessary condition but not enough to defend it. Second, because all considerations about an autonomous mind sending orders to the body is against our scientific knowledge about human beings; in particular, neither neurological nor evolutionary theory can admit dualism. The quantum theory of measurement can be interpreted without the intervention of human minds, but other fields of science cannot contemplate the mentalist scenario, so it is concluded that QM has nothing to say about the mind or free will, and its scientific explanation is more related to biology than to physics. A fatalistic or materialist view, which denies the possibility of a free will, makes much more sense in scientific terms. 1. Definition of free will First of all, we must clarify the meaning of the term to which we refer: Free will: a source totally detached from matter (detached from nature) which is the origin (cause) of options, thoughts, feelings,..
    [Show full text]
  • The Law of Large Numbers and the Monte-Carlo Method
    Lecture 17: The Law of Large Numbers and the Monte-Carlo method The Law of Large numbers Suppose we perform an experiment and a measurement encoded in the random variable X and that we repeat this experiment n times each time in the same conditions and each time independently of each other. We thus obtain n independent copies of the random variable X which we denote X1;X2; ··· ;Xn Such a collection of random variable is called a IID sequence of random variables where IID stands for independent and identically distributed. This means that the random variables Xi have the same probability distribution. In particular they have all the same means and variance 2 E[Xi] = µ ; var(Xi) = σ ; i = 1; 2; ··· ; n Each time we perform the experiment n tiimes, the Xi provides a (random) measurement and if the average value X1 + ··· + Xn n is called the empirical average. The Law of Large Numbers states for large n the empirical average is very close to the expected value µ with very high probability Theorem 1. Let X1; ··· ;Xn IID random variables with E[Xi] = µ and var(Xi) for all i. Then we have 2 X1 + ··· Xn σ P − µ ≥ ≤ n n2 In particular the right hand side goes to 0 has n ! 1. Proof. The proof of the law of large numbers is a simple application from Chebyshev X1+···Xn inequality to the random variable n . Indeed by the properties of expectations we have X + ··· X 1 1 1 E 1 n = E [X + ··· X ] = (E [X ] + ··· E [X ]) = nµ = µ n n 1 n n 1 n n For the variance we use that the Xi are independent and so we have X + ··· X 1 1 σ2 var 1 n = var (X + ··· X ]) = (var(X ) + ··· + var(X )) = n n2 1 n n2 1 n n 1 By Chebyshev inequality we obtain then 2 X1 + ··· Xn σ P − µ ≥ ≤ n n2 Coin flip I: Suppose we flip a fair coin 100 times.
    [Show full text]
  • Laws of Large Numbers in Stochastic Geometry with Statistical Applications
    Bernoulli 13(4), 2007, 1124–1150 DOI: 10.3150/07-BEJ5167 Laws of large numbers in stochastic geometry with statistical applications MATHEW D. PENROSE Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom. E-mail: [email protected] Given n independent random marked d-vectors (points) Xi distributed with a common density, define the measure νn = i ξi, where ξi is a measure (not necessarily a point measure) which stabilizes; this means that ξi is determined by the (suitably rescaled) set of points near Xi. For d bounded test functions fPon R , we give weak and strong laws of large numbers for νn(f). The general results are applied to demonstrate that an unknown set A in d-space can be consistently estimated, given data on which of the points Xi lie in A, by the corresponding union of Voronoi cells, answering a question raised by Khmaladze and Toronjadze. Further applications are given concerning the Gamma statistic for estimating the variance in nonparametric regression. Keywords: law of large numbers; nearest neighbours; nonparametric regression; point process; random measure; stabilization; Voronoi coverage 1. Introduction Many interesting random variables in stochastic geometry arise as sums of contributions from each point of a point process Xn comprising n independent random d-vectors Xi, 1 ≤ i ≤ n, distributed with common density function. General limit theorems, including laws of large numbers (LLNs), central limit theorems and large deviation principles, have been obtained for such variables, based on a notion of stabilization (local dependence) of the contributions; see [16, 17, 18, 20].
    [Show full text]
  • What Psychodynamic Psychotherapists Think About Free Will and Determinism and How That Impacts Their Clinical Practice : a Qualitative Study
    Smith ScholarWorks Theses, Dissertations, and Projects 2012 What psychodynamic psychotherapists think about free will and determinism and how that impacts their clinical practice : a qualitative study Patrick J. Cody Smith College Follow this and additional works at: https://scholarworks.smith.edu/theses Part of the Social and Behavioral Sciences Commons Recommended Citation Cody, Patrick J., "What psychodynamic psychotherapists think about free will and determinism and how that impacts their clinical practice : a qualitative study" (2012). Masters Thesis, Smith College, Northampton, MA. https://scholarworks.smith.edu/theses/872 This Masters Thesis has been accepted for inclusion in Theses, Dissertations, and Projects by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected]. Patrick Cody What Psychodynamic Psychotherapists Think about Free Will and Determinism and How that Impacts their Clinical Practice: A Qualitative Study ABSTRACT This qualitative study explored psychodynamic psychotherapists’ beliefs about free will and determinism and how these impact their work with clients. A secondary goal was to determine if and how knowledge of psychodynamic theory, neuropsychology and/or physics has shaped those views. Twelve clinicians were asked questions related to free will, determinism and clients’ behavioral change. All participants said that psychodynamic theory has influenced their beliefs, and a majority said that neuropsychology has done so. Major findings include that 11 of the 12 participants endorsed the concept of compatibilism, that free will and determinism can co- exist and are not mutually exclusive in impacting behavior. This finding compares to, but does not confirm, research that found psychodynamic clinicians were more deterministic than other clinicians (McGovern, 1986), and it contrasts with research that suggests that the science related to free will and determinism has not reached the field and influenced clinical practice (Wilks, 2003).
    [Show full text]