Reference Document 2006 AREVA UK

Total Page:16

File Type:pdf, Size:1020Kb

Reference Document 2006 AREVA UK Reference document Reference document 2006 This reference document was filed with the French financial market authorities AMF (Autorité des Marchés Financiers) on April 27, 2007, in accordance with articles 211-1 to 211-42 of its General Regulations. It may be used in support of a financial transaction if it is accompanied by an offering circular signed by the AMF. CONTENTS CHAPTER 1 Person responsible for the reference document and persons responsible for auditing the financial statements 1 1.1. Person responsible for the 2006 reference document 2 1.2. Attestation by the person responsible for the reference document 2 1.3. Persons responsible for auditing the financial statements for 2003, 2004, 2005 and 2006 3 1.4. Persons responsible for financial information 4 1.5. Communications policy and tentative financial communications schedule 4 CHAPTER 2 Information pertaining to the transaction (Not applicable) 7 CHAPTER 3 General information on the company and its share capital 9 3.1. Information on AREVA 10 3.1.1. Legal name (article 2 of the bylaws) 10 3.1.2. Establishing order 10 3.1.3. Legal form of the company and applicable legislation (article 1 of the bylaws) 10 3.1.4. Purpose of the company (article 3 of the bylaws) 10 3.1.5. Corporate office (article 4 of the bylaws) 11 3.1.6. Statutory term (article 5 of the bylaws) 11 3.1.7. Business registry, business code, registration number 11 3.1.8. Availability of incorporating documents 11 3.1.9. Annual financial statements 12 3.1.10. Information on general meetings of shareholders and voting right certificate holders 13 3.2. Information on share capital and voting rights 15 3.2.1. Capital stock (article 6 of the bylaws) 15 3.2.2. Changes in share capital since 1989 (article 7 of the bylaws) 16 3.2.3. Shareholders and voting rights 17 3.2.4. Treasury shares 18 3.2.5. Form of shares, investment certificates and voting right certificates (article 11 of the bylaws) 18 3.2.6. Transfer of shares, investment certificates and voting right certificates (article 12 of the bylaws) 18 3.2.7. Rights and obligations attached to shares, investment certificates and voting right certificates (article 14 of the bylaws) 19 3.2.8. Liens 19 3.2.9. Breaching shareholding thresholds 19 3.3. Investment certificate trading 20 3.4. Dividends 22 3.5. Organization chart of AREVA group companies 23 3.6. Equity interests 24 3.7. Shareholders’ agreements 26 CHAPTER 4 Information on company operations, new developments and future prospects 33 4.1. Overview and strategy of the AREVA group 34 4.1.1. Overview 34 4.1.2. Strategy 36 4.1.3. Background of the AREVA group 38 4.1.4. Operating organization 41 4.2. The Nuclear Power and Transmission & Distribution markets 42 4.2.1. The global energy situation 42 4.2.2. Nuclear power’s contribution to electricity generation 43 4.2.2.1. A brief history of nuclear power’s contribution to electricity generation 43 4.2.2.2. Status of nuclear power 44 4.2.2.3. Outlook for nuclear power around the globe 46 4.2.2.4. The challenges of nuclear power in different regions of the world 47 4.2.3. The Transmission & Distribution market and challenges around the world 51 4.2.3.1. The Electricity Transmission and Distribution market 51 4.2.3.2. The challenges of power transmission and distribution around the world 51 4.3. The energy businesses of the AREVA group 53 4.3.1. Nuclear power 53 4.3.1.1. A few fundamental concepts for an understanding of the group’s nuclear power operations 53 4.3.1.2. AREVA’s nuclear businesses 54 4.3.2. Electricity transmission and distribution operations 56 4.3.2.1. A few fundamental concepts for an understanding of the transmission and distribution business 56 4.3.2.2. The transmission and distribution business 56 4.4. Front End division 57 4.4.1. Mining business unit 60 4.4.2. Chemistry business unit 73 4.4.3. Enrichment business unit 76 4.4.4. Fuel business unit 80 4.5. Reactors and Services division 85 4.5.1. Plants business unit 87 4.5.2. Equipment business unit 92 4.5.3. Nuclear Services business unit 96 4.5.4. AREVA TA business unit 99 4.5.5. Nuclear Measurement business unit 101 4.5.6. Consulting and Information Systems business unit 103 4.5.7. Renewable Energies business unit 105 4.6. Back End division 107 4.6.1. Treatment and Recycling business units 109 4.6.2. Logistics business unit 114 4.6.3. Cleanup business unit 116 4.6.4. Engineering business unit 118 4.7. Transmission & Distribution division 120 4.7.1. Products business unit 124 4.7.2. Systems business unit 127 4.7.3. Automation business unit 129 4.7.4. Service product line 131 4.8. Major contracts 133 4.9. The principal sites of the AREVA group 136 4.10. AREVA’s customers and suppliers 145 4.11. Sustainable Development and Continuous Improvement 147 4.12. Capital spending programs 148 4.13. Research and development programs, intellectual property and trademarks 150 4.14. Risk and insurance 156 4.14.1. Overall organization of risk management 156 4.14.1.1. Organization of Risk and Insurance department 156 4.14.1.2. Risk mapping 156 4.14.1.3. Risk management 156 4.14.2. Managing risk related to the group’s industrial operations 157 4.14.2.1. Regulations applicable to the group’s nuclear facilities in France and abroad 157 4.14.2.2. Nuclear safety in the group’s nuclear facilities 159 4.14.2.3. Nuclear risk management and prevention 161 4.14.2.4. Prevention and management of chemical hazards 164 4.14.3. Risk factors 166 4.14.3.1. Risk related to the group’s overall business 166 4.14.3.2. Risks related to the nuclear divisions 169 4.14.4. Market risks 173 4.14.5. Disputes and legal proceedings 177 4.14.6. Risk coverage and insurance 179 4.14.6.1. Special coverage relating to nuclear facility operations 179 4.14.6.2. Other AREVA insurance programs 181 4.14.6.3. Other insurance 181 4.14.6.4. Outlook and trends in 2007 181 CHAPTER 5 Assets - Financial position - Financial performance 183 5.1. Analysis of and comments on the group's financial position and performance 184 5.1.1. Overview 184 5.1.1.1. Business trends 184 5.1.1.2. Key characteristics of AREVA’s business model 185 5.1.1.3. Highlights of the period 185 5.1.2. Key data 186 5.2. 2006 Human Resources Report 212 5.2.1. Key data 212 5.2.2. Change in number of employees and human resources data 213 5.2.3. Supporting the group’s international development through human resources programs 214 5.2.4. 2006 Review 216 5.3. Environmental Report 221 5.3.1. Environmental policy 221 5.3.2. Environmental risk management and prevention 224 5.3.2.1. Monitoring releases and the environment 224 5.3.2.2. Radiological impact of the sites 224 5.3.2.3. Maintaining a high level of safety and managing risk 225 5.3.2.4. Preventing environmental health risks 225 5.3.2.5. Prevention programs for technology risks and natural hazards 226 5.3.2.6. Soil management 226 5.3.2.7. Protecting and restoring ecosystems 227 5.3.3. Environmental performance improvement 228 5.3.4. Strengthening relations with external stakeholders 234 5.4. Consolidated financial statements 236 5.4.1. Statutory Auditors’ report on the consolidated financial statements 236 5.4.2. Consolidated income statement 239 5.4.3. Consolidated balance sheet 240 5.4.4. Consolidated cash flow statement 242 5.4.5. Consolidated statement of changes in equity 243 5.4.6. Segment reporting 244 5.5. Notes to the consolidated financial statements 250 Note 1. Accounting principles 250 Note 2. Consolidation scope 263 Note 3. Sales revenue 265 Note 4. Personnel expenses and operating leases 266 Note 5. Depreciation, amortization and impairment of property, plant and equipment and intangible assets and provisions impacting operating income 266 Note 6. Restructuring, early retirement and other operating income and expenses 267 Note 7. Net financial income 268 Note 8. Income taxes 269 Note 9. Net income from discontinued operations 271 Note 10. Goodwill 272 Note 11. Intangible assets 274 Note 12. Property, plant and equipment 276 Note 13. End-of-life-cycle operations 278 Note 14. Equity associates 285 Note 15. Other non-current financial assets 287 Note 16. Inventories and in process 289 Note 17. Accounts receivable and related accounts 289 Note 18. Other operating receivables 290 Note 19. Cash and cash equivalents 290 Note 20. Other current financial assets 290 Note 21. Equity 291 Note 22. Minority interests 292 Note 23. Employee benefits 292 Note 24. Other provisions 299 Note 25. Borrowings 301 Note 26. Advances and prepayments received 304 Note 27. Other liabilities 304 Note 28. Net cash from operating activities and net cash flow from discontinued operations 305 Note 29. Related party transactions 306 Note 30. Greenhouse gas emission allowances 307 Note 31. Derivative instruments 307 Note 32. Commitments given or received 313 Note 33. Disputes and contingent liabilities 314 Note 34. Events subsequent to year end 316 Note 35. Main consolidated companies 317 5.6.
Recommended publications
  • Jules Horowitz Reactor (JHR), a High-Performance Material Test Reactor in Cadarache, France
    The Swedish-French collaboration on the research reactors ASTRID & JHR Prof. Christophe Demazière Chalmers University of Technology Department of Applied Physics Division of Nuclear Engineering [email protected] Background − the ESS project • ESS: European Spallation Source – a European Union facility. • Will be built in Lund. • Participation of France is formalized in a contract between France and Sweden. • Sweden has to spend 400 MSEK on joint research in subjects relevant to France (energy and environment). • Out of this, 100 MSEK is devoted to fission-based nuclear energy. Background – the European research program • Vision: Sustainable Nuclear Energy Technology Platform (SNETP). • Planned facilities: – Jules Horowitz Reactor (JHR), a high-performance material test reactor in Cadarache, France. Start of operation: 2014. – MYRRHA facility in Mol, Belgium, a fast spectrum irradiation facility working as an ADS. Start of operation: ca. 2023. – ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), a prototype Gen-IV sodium-cooled fast reactor to be built in France. Start of operation: ca. 2020. – VHTR, a first-of-a kind Very High Temperature Reactor for, among others, hydrogen production. VR Multi-project Grant in Nuclear Energy Research • 3 multi-grant projects granted by the Swedish Research Council in the spring of 2012 (projects in collaboration with CEA, France – French Alternative Energies and Atomic Energy Commission): – DEMO-JHR (coordinator: Prof. Christophe Demazière, Chalmers): 3 PhD projects. – ASTRID
    [Show full text]
  • The Jules Horowitz Reactor Project, a Driver for Revival of the Research Reactor Community
    THE JULES HOROWITZ REACTOR PROJECT, A DRIVER FOR REVIVAL OF THE RESEARCH REACTOR COMMUNITY P. PERE, C. CAVAILLER, C. PASCAL AREVA TA CEA Cadarache - Etablissement d'AREVA TA - Chantier RJH - MOE - BV2 - BP n° 9 – 13115 Saint Paul lez Durance - France CS 50497 - 1100, rue JR Gauthier de la Lauzière, 13593 Aix en Provence cedex 3 – France ABSTRACT The first concrete of the nuclear island for the Jules Horowitz Reactor (JHR) was poured at the end of July 2009 and construction is ongoing. The JHR is the largest new platform for irradiation experiments supporting Generation II and III reactors, Generation IV technologies, and radioisotope production. This facility, composed of a unique grouping of workshops, hot cells and hot laboratories together with a first -rate MTR research reactor, will ensure that the process, from preparations for irradiation experiments through post-irradiation non-destructive examination, is completed expediently, efficiently and, of course, safely. In addition to the performance requirements to be met in terms of neutron fluxes on the samples (5x1014 n.cm-2/sec-1 E> 1 MeV in core and 3,6x1014 n.cm-2/sec-1 E<0.625 eV in the reflector) and the JHR’s considerable irradiation capabilities (more than 20 experiments and one-tenth of irradiation area for simultaneous radioisotope production), the JHR is the first MTR to be built since the end of the 1960s, making this an especially challenging project. The presentation will provide an overview of the reactor, hot cells and laboratories and an outline of the key milestones in the project schedule, including initial criticality in early 2014 and radioisotope production in 2015.
    [Show full text]
  • French Nuclear Company Orano Upgraded to 'BB+' on Improved Liquidity and Capital Structure; Outlook Stable
    Research Update: French Nuclear Company Orano Upgraded To 'BB+' On Improved Liquidity And Capital Structure; Outlook Stable Primary Credit Analyst: Christophe Boulier, Paris (39) 02-72111-226; [email protected] Secondary Contact: Andrey Nikolaev, CFA, Paris (33) 1-4420-7329; [email protected] Table Of Contents Overview Rating Action Rationale Outlook Ratings Score Snapshot Issue Ratings--Recovery Analysis Related Criteria Ratings List WWW.STANDARDANDPOORS.COM/RATINGSDIRECT APRIL 5, 2018 1 Research Update: French Nuclear Company Orano Upgraded To 'BB+' On Improved Liquidity And Capital Structure; Outlook Stable Overview • Orano has reported EBITDA of close to €1 billion for 2017, despite challenging industry conditions, and its recent restructuring and capital increases have improved its liquidity and capital structure. • We think Orano will continue to focus on cost-cutting and generate moderately positive free operating cash flow, enabling it to reduce net debt in 2018-2020. • Consequently, we are upgrading Orano to 'BB+' from 'BB'. • The stable outlook reflects our view that Orano will be able to reduce adjusted debt to EBITDA to below 5.5x in 2019-2020 despite challenging industry conditions, supported by its sizeable, long-term order backlog. Rating Action On April 5, 2018, S&P Global Ratings raised its long-term issuer credit rating on France-based nuclear services group Orano to 'BB+' from 'BB'. The outlook is stable. We also raised our ratings on Orano's senior unsecured bonds to 'BB+' from 'BB'. Although we expect substantial recovery (70%-90%; rounded estimate 85%) on the bonds in the event of a default, the recovery rating is capped at '3' due to the bonds' unsecured nature and issuance by a company rated in the 'BB' category.
    [Show full text]
  • Les Réacteurs Expérimentaux Et Leur Contrôle ▼ Les Réacteurs Expérimentaux Et Leur Contrôle Experimental Reactors and Their Regulation
    Dossier: Les réacteurs expérimentaux et leur contrôle ▼ Les réacteurs expérimentaux et leur contrôle Experimental reactors and their regulation Chargement de la cuve du réacteur à haut flux (RHF). 2 Dossier: Les réacteurs expérimentaux et leur contrôle ▼ Éditorial 4 Foreword Le contrôle des réacteurs expérimentaux : la démarche de l’Autorité de sûreté nucléaire 5 Experimental reactor regulation: the Nuclear Safety Authority’s approach LE RÔLE DES RÉACTEURS EXPÉRIMENTAUX Le poids des réacteurs expérimentaux dans les programmes de recherche : l’exemple de l’énergie nucléaire 15 The importance of experimental reactors for research programs: The example of nuclear energy Les réacteurs expérimentaux 20 The experimental nuclear reactors La contribution des réacteurs d’expérimentation aux recherches sur la sûreté 27 Contribution of research reactors to the programmes for research and technological development on the safety LES SPÉCIFICITÉS DU CONTRÔLE DES RÉACTEURS EXPÉRIMENTAUX La spécificité du contrôle des réacteurs expérimentaux: le point de vue de l’inspecteur de l’ASN 35 The specific nature of experimental reactor regulation: the viewpoint of ASN’s inspectors La sûreté des réacteurs de recherche vue du Groupe permanent réacteurs 41 Research reactor safety from the advisory committee for nuclear reactors standpoint Les facteurs organisationnels et humains et la sûreté des réacteurs d’expérimentation 47 The human factors and the safety of experimentation reactors Les réexamens de sûreté des réacteurs d’expérimentation en France 52 Periodic safety review management for french research reactors CONCILIER RECHERCHE ET SÛRETÉ: LES RÉPONSES DES EXPLOITANTS ET DES CONCEPTEURS Un enjeu majeur: concilier recherche et sûreté. Le point de vue du CEA 58 A major issue: reconciling research and safety.
    [Show full text]
  • The EPR™ Reactor
    The EPR™ reactor the reference for New Build - © Photo credits: AREVA - EDF - TNPJVC - Tracy FAVEYRIAL - Elodie FERRARE - René QUATRAIN - Charlène MOREAU - Image et Process - Image - Charlène MOREAU QUATRAIN - Elodie FERRARE René FAVEYRIAL - Tracy - EDF TNPJVC AREVA credits: - © Photo April 2014 - design and production: April 2014 - design and production: The value of experience With 4 EPR™ reactors being built in 3 different countries, AREVA can leverage an unparalleled experience in licensing and construction to deliver high-performance new-generation projects to nuclear utilities all over the world. Olkiluoto 3, Best practices from continuous Finland project experience The most advanced new-generation Licensing experience with different regulators: project in the The only reactor with 5 separate licensing processes world underway worldwide • Construction licenses granted in Finland, France and China • Full Design Acceptance Confirmation awarded in the United Kingdom • Licensing review underway in the United States Flamanville 3, The only Gen3+ reactor design submitted to the European France “post-Fukushima” stress tests The first reactor in the new EDF’s EPR™ fleet Project management excellence • The largest in-house nuclear Engineering Procurement Construction (EPC) team: - More than 1,000 project management skilled people - 6,000+ Engineering and Project experienced workforce • Most Taishan Project Directors have worked on Taishan 1 and 2, Olkiluoto 3 or Flamanville 3 projects China EPR™ projects on track to be delivered Company-wide
    [Show full text]
  • Green Hydrogen the Next Transformational Driver of the Utilities Industry
    EQUITY RESEARCH | September 22, 2020 | 9:41PM BST The following is a redacted version of the original report. See inside for details. Green Hydrogen The next transformational driver of the Utilities industry In our Carbonomics report we analysed the major role of clean hydrogen in the transition towards Net Zero. Here we focus on Green hydrogen (“e-Hydrogen”), which is produced when renewable energy powers the electrolysis of water. Green hydrogen looks poised to become a once-in-a-generation opportunity: we estimate it could give rise to a €10 trn addressable market globally by 2050 for the Utilities industry alone. e-Hydrogen could become pivotal to the Utilities (and Energy) industry, with the potential by 2050 to: (i) turn into the largest electricity customer, and double power demand in Europe; (ii) double our already top-of-the-street 2050 renewables capex EU Green Deal Bull Case estimates (tripling annual wind/solar additions); (iii) imply a profound reconfiguration of the gas grid; (iv) solve the issue of seasonal power storage; and (v) provide a second life to conventional thermal power producers thanks to the conversion of gas plants into hydrogen turbines. Alberto Gandolfi Ajay Patel Michele Della Vigna, CFA Mafalda Pombeiro Mathieu Pidoux +44 20 7552-2539 +44 20 7552-1168 +44 20 7552-9383 +44 20 7552-9425 +44 20 7051-4752 alberto.gandolfi@gs.com [email protected] [email protected] [email protected] [email protected] Goldman Sachs International Goldman Sachs International Goldman Sachs International Goldman Sachs International Goldman Sachs International Goldman Sachs does and seeks to do business with companies covered in its research reports.
    [Show full text]
  • Design of Liquid Metal Fast Breeder Reactor (Lmfbr) Core Under Dynamic Loading
    Transactions, SMiRT-22 San Francisco, California, USA - August 18-23, 2013 Division III DESIGN OF LIQUID METAL FAST BREEDER REACTOR (LMFBR) CORE UNDER DYNAMIC LOADING Nadim Moussallam1, Guilhem Deuilhé2, Benoit Bosco3, Daniel Broc4, David Gentet5 1 Engineer, AREVA Engineering & Projects, Lyon (France) - [email protected] 2 Engineer, AREVA Engineering & Projects, Lyon (France) 3 Engineer, AREVA Engineering & Projects, Lyon (France) 4 R&D Engineer, CEA/DEN/DANS/DM2S/SEMT, F-91191 Gif-sur-Yvette, France 5 R&D Doctor-Engineer, CEA/DEN/DER/SESI/LE2S, F-13108 Saint-Paul les Durance, France ABSTRACT The present paper (a) describes the main structural characteristics of a Liquid Metal Fast Breeder Reactors (LMFBR) core, (b) exposes the design challenges posed to such structure by dynamic loadings, (c) details the different modeling strategies that could be used to represent the leading physical phenomena for the dynamic response of the core, and (d) illustrates the application of these modeling strategies to improve the design of the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) core against dynamic loadings. INTRODUCTION LMFBR belong to the 4th generation of nuclear reactors. This type of reactor is expected to significantly increase the amount of energy that could be extracted from both natural uranium and existing plutonium reserves. It does also have the potential for reducing the inventory of highly activated long duration nuclear wastes. Several experimental LMFBR have been built around the world, some of them are in operation today and some others are planned or under construction. In France, the ASTRID project aims at completing the detailed design of a LMFBR, with sodium as a primary coolant.
    [Show full text]
  • The Regulatory Control of Radioactive Waste
    RADIOACTIVE WASTE MANAGEMENTAND DECOMMISSIONING IN ITALY 1. NATIONAL FRAMEWORK FOR MANAGEMENT AND REGULATION OF RADIOACTIVE WASTE AND DECOMMISSIONING 1.1 National Framework 1.1.1 Overview of national policy Commercial utilisation of nuclear power in Italy started in 1963 and by 1981 four nuclear power plants, namely the NPPs of Garigliano (BWR), Latina (MAGNOX), Trino (PWR) and Caorso (BWR), and a LEU fuel fabrication installation (Bosco Marengo S.p.A.) had been commissioned. During that period the Nuclear Energy Research Agency (CNEN) – now the Agency for New Technologies, Energy and the Sustainable Economic Development (ENEA) - developed an extensive R&D programme on the nuclear fuel cycle with the operation of experimental fuel cycle installations (e.g. ITREC and EUREX). The three NPPs of Latina, Trino and Caorso continued to be operated until 1987, when they were definitely shut down based on a governmental decision which interpreted the results of a national referendum, called upon after the Chernobyl accident, as the will to abandon the nuclear option. The NPP of Garigliano had been already shut down in 1978, for technical reasons. At the same time the nuclear programme was cancelled, the Interministerial Committee for the Economical Planning (CIPE) required the National Electricity Company (ENEL S.p.A.) to start the decommissioning of the NPPs and a “Safe storage” (IAEA level 1/2) option was initially adopted. In 1999, all ENEL S.p.A. liabilities and assets connected to nuclear power were assigned to a newly established company, named Sogin (Società Gestione Impianti Nucleari) S.p.A., whose shareholder is the Ministry of Economy and Finance, while the Ministry of Economic Development gives the strategic and operational objectives.
    [Show full text]
  • Press Kit Inauguration of the Conversion Orano Tricastin BP 16 26 701 Pierrelatte Plant 10 September 2018
    Press kit Inauguration of the conversion Orano Tricastin BP 16 26 701 Pierrelatte plant 10 September 2018 Contacts Presse Nathalie Bonnefoy +33 (0)6 23 17 24 24 [email protected] Gilles Crest +33 (0)6 71 08 11 54 [email protected] www.orano.group Oranogroup EDITORIAL The plant we are opening today is a major industrial investment for Orano, for the French nuclear industry and for the industry of our country. ith the Georges Besse II enrichment plant on the same site, it is probably the largest industrial investment made in France in recent years. The Comurhex W II project was launched to give France an industrial facility offering cutting- edge safety, security, and environmental and industrial performance. A facility that gives us a global competitive advantage and guarantees an uninterrupted electricity supply for our markets. A tool integrating technological innovations in terms of safety, environment, and improvement of industrial performance: recycling of chemical reagents, reduction by 90% of water consumption, automated control-command system to improve the process control. It is an exceptional project that has required the best of our expertise from the teams of Orano Chemistry and Enrichment as well as Orano Projets, and throughout our group alongside our industrial partners. The project successfully completed at the same time as our group was reinventing itself to create a new flagship technology business to give nuclear materials all their value. While an important debate is taking place on France's multi-year energy program, the investment we have made in the Tricastin site and its plants shows the confidence we have in the future of nuclear energy.
    [Show full text]
  • Presentazione Standard Di Powerpoint
    Sogin decommissioning program: achievements, challenges, perspectives Francesco Troiani Development and Technology Vienna, September 19th, 2017 Innovation Department Italian nuclear activity has a long history The nuclear option was initiated prior to World War II, starting from the studies of Enrico Fermi and his team on nuclear physics, irradiating several elements with neutrons and discovering nuclear transformation. Applied nuclear research was marked by the foundation of the Research and Experimentation Information Centre (Milan 1946), that just a few months ago SOGIN led to the green field. The first reactor CP-5 for the research nuclear center of Ispra (today JRC) was commissioned in 1955. Enrico Fermi in his physics lab, The commercial use of nuclear energy Rome 1935 began in the early 1960s. CP-5 construction, ISPRA 1956 Security Class: Classes: Public Use, Internal Use, Controlled Use, Restricted Use 2 Public Use Industrial use of nuclear energy Four NPPs were connected to the grid: - 210 MWe GGR (5/63) – Latina, - 160 MWe BWR (4/64) – Garigliano - 270 MWe PWR (10/64) – Trino - 870 MWe BWR (12/81) – Caorso An extensive R&D program was developed: - several Research Reactors were tested; - Plutonium and OPEC plants – Casaccia, - EUREX repr. and IFEC fabr. plants – Saluggia, - ITREC repr. plant at Trisaia. A private LEU fuel fabrication plant was Nuclear Power Plant commissioned at Bosco Marengo. Nuclear Fuel Cycle Research Plant Nuclear Fuel Manufacturing Plant Security Class: Classes: Public Use, Internal Use, Controlled Use, Restricted Use 3 Public Use Post-Chernobyl accident On 1987, a national referendum on nuclear activities was called after the Chernobyl accident Following the results of the referendum, the same year by political decision the NPPs of Latina, Trino and Caorso were definitively shut down.
    [Show full text]
  • The Jules Horowitz Reactor Core and Cooling System Design
    The Jules Horowitz Reactor core and cooling system design M. Boyard*, JM. Cherel**, C. Pascal*, B. Guigon*** * AREVA-Technicatome, 1100 rue Jean René Guillibert Gautier de la Lauzière 13100 Aix en Provence, FRANCE ** AREVA-Framatome-ANP, 9-10 rue Juliette Récamier 69006 Lyon, FRANCE *** Commissariat à l’Energie Atomique, 13108 Saint-Paul-lez-Durance cedex, FRANCE ABSTRACT The CEA (Commissariat à l’Energie Atomique) is planning to build a new MTR called the Jules Horowitz Reactor (JHR). JHR at Cadarache will become by 2014 and for decades a major research infrastructure in Europe for supporting existing power plants operation and lifetime extension as well as future reactor developments [1]. AREVA (Technicatome and Framatome- ANP) and EDF are performing the design studies. The JHR will be a tank pool type reactor using light water as coolant and moderator. The reactor has been designed to provide a neutron flux strong enough to carry out irradiation relevant for generations 2, 3 and 4 power plants: flexibility and adaptability, high neutron flux, instrumented experiments, loops to reproduce environments representatives of the different power plant technologies . Updated safety requirements and LEU fuel elements have been taken into account in the design of this high flux reactor. This paper presents the guidelines for the design of the main items, the various options considered and the choices made at the end of the detailed studies phase regarding: − Core shape, − Fuel element and core pitch, − Reflector and core-reflector interface, − Normal and emergency cooling systems, − Reactivity control system. MAIN OBJECTIVES OF THE REACTOR The “Jules Horowitz Reactor” (JHR) will be a structuring infrastructure of the European research area.
    [Show full text]
  • The Future Jules Horowitz Material Testing Reactor: an Opportunity for Developing International Collaborations on a Major European Irradiation Infrastructure
    The Future Jules Horowitz Material Testing Reactor: An Opportunity for Developing International Collaborations on a Major European Irradiation Infrastructure D. Parrat1, G. Bignan2, B. Maugard2, C. Gonnier2, C. Blandin2 1 CEA, DEN, DEC, Fuel Research Department, Cadarache, France 2 CEA, DEN, DER, Reactor Studies Departmen t, Cadarache, France Abstract early their needs, thanks to either participation to the JHR Consortium, or to international programs or through bilateral collaborations. Development process of a fuel product or a nu- clear material before using at an industrial scale A general presentation of this research infra- in a power reactor ranges from characterization structure and associated experimental capabil- th of the material itself under neutronic fl ux up to its ity has been made at the 9 WWER Fuel Perfor- qualifi cation in accidental conditions. Irradiations mance Meeting in 2011. Current paper updates in in Material Testing Reactors (MTRs) are in practice a fi rst part the facility building status and the cur- the basis of the whole process, in complement of rent design work carried out on irradiation hosting prediction capabilities gained by modelling. Dedi- systems for nuclear materials and nuclear fuels cated experimental reactors play also an impor- and on non-destructive examination benches. tant complementary role for some specifi c integral Then expected main performances are reviewed tests (e.g. RIA tests). Irradiations of precursors in and collaborations set up around each study are power reactors are often limited to products which also underlined, as they often correspond to an present a slight design evolution compare to the “in-kind” contribution of a Consortium member.
    [Show full text]